Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ белков и ферментов

    Анализ ряда ферментов показал, что они являются просто белками и не содержат иных соединений. С другой стороны, известно значительное число ферментов, представляющих собой системы из двух составных частей белка, иногда называемого апоферментом, или носителем, и активной, или прос.тетической, группы небелковой природы, Активная группа может быть прочно связана с белком и не терять связи с ним в процессе катализа, но может удерживаться и очень слабо и в ходе метаболических реакций переходить с одного ферментного белка на другой. В этом случае активную группу часто называют коферментом. Ко-фермент, субстрат и белок объединяются в общий комплекс в момент реакции. Мы встречаемся здесь с весьма своеобразным явлением, резко отличающимся от тех, к которым мы привыкли при изучении обычных каталитических реакций в неживой природе. Динамические свойства ферментов определяются динамикой образования и распада белковых структур высших порядков и самого белка. Если же активная группа фермента имеет небелковую природу, то, вообще говоря, скорость обмена белковой и небелковой частей могут и не совпадать. Активные группы некоторых ферментов представляют собой витамины запас витаминов в организме нуждается в постоянном пополнении, так как высшие организмы не способны сами синтезировать их. Это тот крайний случай, когда скорость образования активной группы сама по себе равна нулю и практически зависит от темпа введения витаминов с пищей. [c.54]


    Гипотеза один ген-один фермент получила прочное экспериментальное подтверждение. Как показали работы последующих десятилетий, она оказалась удивительно плодотворной. Анализ дефектных ферментов и их нормальных вариантов позволил вскоре выявить такой класс генетических нарушений, которые приводили к изменению функции фермента, хотя сам белок по-прежнему обнаруживался и сохранял иммунологические свойства. В других случаях менялся температурный оптимум активности фермента. Некоторые варианты можно было объяснить мутацией, влияющей на общий регуляторный механизм и изменяющей в результате активность целой группы ферментов. Подобные исследования привели к созданию концепции регуляции активности генов у бактерий, которая включала и концепцию оперона. [c.9]

    При исследовании субстратов с длинной цепью [149] было установлено, что некоторые нативные белки устойчивы к действию фермента, в то время как белок с развернутыми цепями, а также окисленный или денатурированный белок легко гидролизуется. Например, цинковый комплекс инсулина почти не расщепляется ферментом, но удаление цинка облегчает ступенчатый гидролиз. В этом случае гидролиз не затрагивает дисульфидных мостиков. Разделенные цепи А и Б окисленного инсулина легко гидролизуются. Аминокислотный анализ свидетельствует о гидролизе всех связей в цепи- А, в то время как более медленный гидролиз цепи Б позволил установить последовательность первых шести остатков в этой цепи. [c.236]

    Тонкие различия в первичной структуре родственных белков часто удается выявить методом отпечатков пальцев . Метод этот состоит в том, что белок подвергают частичному перевариванию с помощью одного или нескольких протеолитических ферментов, а затем разделяют продукты гидролиза и идентифицируют их, пользуясь для этого либо электрофорезом, либо хроматографией на бумаге. На фиг. 32 приведены полученные таким способом отпечатки пальцев , или пептидные карты , нормального и аномального гемоглобинов. Детальное изучение этих пептидных карт показывает, что все пептидные пятна, за исключением одного, идентичны. Таким способом генетически измененный структурный элемент выявляется очень легко, и для установления природы структурного изменения нет надобности устанавливать полную аминокислотную последовательность всей молекулы. Действительно, в ряде случаев весьма определенные указания относительно природы имеющегося замещения можно получить просто исходя из результатов анализа аминокислотного состава соответствующих пептидов, выделенных из двух белков. Но, конечно, однозначные доказательства замены одной аминокислоты на другую получают только после установления аминокислотной последовательности анализируемых пептидов. [c.96]


    При помощи радиоактивного ДФФ найдено, что 1 моль фермента присоединяет 1,1 моля фосфора, а химическим анализом установлено, что в молекулу внедряются две изопропильные группы и совсем не вводится фтор. Ни одна из встречающихся в химотрипсине аминокислот не реагирует с ДФФ, а кристаллический ингибированный фермент содержит такое же количество аминного азота, что и активный белок. Однако эти результаты можно отнести за счет нечувствительности методов. [c.323]

    Индивидуальные нуклеосомы можно получить, обработав хроматин ферментом нуклеазой микрококков. Это эндонуклеаза, которая разрезает нить ДНК в местах соединения между нуклеосомами. Сначала освобождаются группы частиц, а потом отдельные нуклеосомы. Мономерные нуклеосомы отчетливо видны на рис. 29.2 в виде компактных частиц (настоящая форма которых похожа на диск см. ниже). Они седиментируют примерно со скоростью 11S, что соответствует общей массе в диапазоне 250000-300000 дальтон. Отношение белок/ДНК составляет около 1,25. Димеры, тримеры и т.д. имеют соответствующие свойства при биохимическом анализе или при наблюдении под электронным микроскопом. [c.360]

    Вмешательство протекторов в синтез белка объясняется непосредственным их взаимодействием с ферментами или с другими структурными компонентами ядер клеток. Анализ химической связи протектора с ядерными белками показал, что только сме-шаиодисульфидные связи протектор — белок имеют максимум в период повышенной радиорезистентности. Считается, что временное образование смешанных дисульфидов (тиольный протектор — белок фермента) блокирует биохимические реакции, ответственные за процессы синтеза белка. Авторы предполагают также возможность влияния тиольных радиопротекторов на конформацию молекул белков, участвующих в синтезе белка в ядре клетки. [c.275]

    Выполнение работы включало три основных этапа I) направленный синтез высокоспецифических реагентов, являющихся основой получения коньюгатов антигенов, и последующая наработка иммуноспецифических субстанций антител к наркотикам и монодисперсных полимерных суспензий с заданными свойствами реакционно-способных комплексов гаптенов либо их специфических антител с ферментом или их макромолекулярным носителем (белок, полимер) 2) разработка иммунохимического метода анализа для определения опиатов, каннабиноидов и гидазепама на основе полученных реагентов с использованием латексной агглютинации 3) разработка экспериментально-технологического регламента и пакета нормативно-технической документации для выпуска опытно-промышленной серии иммунодиагностикумов для быстрого определения наркотиков в биологической жидкости человека. Создание и испытание опытных серий наборов тест-систем для получения необходимых рекомендаций для внедрения в клиническую практику. [c.200]

    Удобным объектом для изучения свойств мембранных ферментов является Са-АТФаза (КФ 3.6.1.38) СР скелетных мыщц кролика, поскольку содержание этого белка в легкой фракции мембран ретикулума достигает 80—90% выделяемые препараты СР стабильны при хранении и имеют постоянный белковый и фосфолипидный состав. Цель работы — знакомство с методическими подходами к изучению взаимодействия мембранных ферментов с субстратами и регуляторами, к анализу конформационной подвижности мембранных белков, а также характера и роли белок-липидных взаимодействий в биологических мембранах. [c.358]

    Биораспознающий компонент биосенсора—это белок, макромолекула или комплекс со специфической поверхностью или внутренними распознающими центрами, необходимый для распознавания определяемого вещества. Компонент обусловливает селективность по отношению к определяемому веществу и передает сигнал на преобразователь. Тип реакции, катализируемой фермен> том, определяет выбор преобразователя. Определяемое вещество, а значит, и доступньк методы преобразования обусловливают природу биораспознающего компонента. Рассмотрим два примера, в которых фермент используют для создания сенсора на субстрат этого фермента. На схеме 7.8-1 ферментативная реакция включает перенос злектрона таким образом, для определения холестерина можно использовать в качестве преобразователя амперометрический электрохимический сенсор. Схема 7.8-2 включает изменение [Н+1 следовательно, контроль превращения ацетилхолина возможен с помощью рН-электрода или рН-чувствительного красителя в оптическом приборе. Другие ферменты можно использовать в случае реакций гидролиза, этерификации, расщепления и т. д. определяемое вещество обычно является субстратом фермента. (Как можно провести анализ, если вы не смогли найти подходящую ферментативную реакцию с участием определяемого вещества, ио знаете, что оно является иигибитором ферментативной реакции ) [c.519]

    Димерный белок тирозил-тРНК-синтетаза, для которой сделан рентгеноструктурный анализ с разрешением 0,27 нм, характеризуется М 90 ООО и размером молекулы 13 нм. Узнавание ферментом нужной аминокислоты и тРНК происходит с исключительной точностью. Комплекс фермент — аминокислота образуется путем электростатического взаимодействия с элементами белковой структуры, а также за счет полярных и гидрофобных связей с боковой цепью аминокислоты. Условием для образования комплекса является наличие правильной конфигурации аминокислоты. [c.389]


    Механизм по схеме (22) расширен на схеме (23) [45]. Известно, что основание Шиффа (22) легко восстанавливается гид-ридными донорами. Подходящим агентом, который можно использовать в водном растворе, является борогидрид натрия. Поэтому можно было надеяться зафиксировать интермедиат (22), восстанавливая его в стабильный вторичный амин при проведении реакции в присутствии NaBH4. Эксперимент проводили с использованием С-меченного ацетоацетата, и фермент инактивировался, как и предполагалось для случая, если ЫНг-группа активного центра превращается во вторичный амин (ЫаВН4 не инактивирует фермент в отсутствие субстрата). Неактивный белок, выделенный из реакционной смеси, содержит, как и предполагалось, один эквивалент С на молекулу. Затем белок был подвергнут деградации обычными методами и изучен его аминокислотный состав (эти методы обсуждаются в части 23). Аминокислотный анализ показал в сравнении с нативным ферментом исчезновение одного остатка лизина и появление новой аминокислоты. Последняя была иден- [c.480]

    Многие из указанных выше эффектов можно прекрасно проиллюстрировать на примере механизмов связывания и катализа, осуществляемых ферментом лизоцимом. Лизоцим занимает особое место в истории энзимологии, поскольку его трехмерная структура была первой нз структур белков, определенных методом рентгеноструктурного анализа [134]. Это маленький белок, состоящий из одной полипептидной цепи длиной в 129 аминокислотных остатков, катализирует гидролиз гликозидных связей углеводного компонента клеточной стенки бактерий (как часть защитного механизма против бактериальной инфекции). Природным субстратом лизоцима является чередующийся сополимер (86) Л -ацетил-[5-0-мурамовой кислоты (NAM) и Л -ацетил-р-й-глюкоз-амина (NAG), связанных [i-1-> 4-гликозидными связями, однако большая часть работ по изучению механизма была проведена на более простых субстратах. Так, поли-Л -ацетилглюкозамин также гидролизуется ферментом, однако эффективность этой реакции существенно зависит от размера субстрата и трисахарид (NAG)3 фактически является ингибитором лизоцима. Сравнение трехмерных структур фермента и комплекса последнего с (NAG)a показывает, что трисахарид связывается во впадине фермента. Такое сравнение позволяет детально исследовать связывание трех моно-сахаридных звеньев (NAG)a в участках А, В и С фермента, которое осуществляется посредством комбинации гидрофобных рччимодействий и водородных связей. Как отмечалось при об- [c.528]

    Высаливание. При добавлении растворов солей щелочных и щелочноземельных металлов происходит осаждение белков из раствора. Обычно белок не теряет способности растворяться вновь в воде после удаления солей методами диализа или гельхроматографии. Высаливанием белков обычно пользуются в клинической практике при анализе белков сыворотки крови и других биологических жидкостей, а также в препаративной энзимологии для предварительного осаждения и удаления балластных белков или выделения исследуемого фермента. Различные белки высаливаются из растворов при разных концентрациях нейтральных растворов сульфата аммония. Поэтому метод нашел широкое применение в клинике для разделения глобулинов (выпадают в осадок при 50% насыщении) и альбуминов (выпадают при 100% насыщении). [c.26]

    Можно представить себе, что обычный регуляторный ген , активированный соответствующим сигналом дифференциации, инициирует биосинтез всех компонентов клетки, характерных для соответствующей стадии дифференциации. Но это не так. Напрнмер, стадии, необходимые для морфологической дифференциации, регулируются независимо от стадий, необходимых для синтеза медиатора. Эта область исследования бурно развивается п мы должны удовлетвориться кратким описанием, чтобы не утонуть в потоке предварительных наблюдений. Один из методов исследования заключается в действии на подходящую клеточную линию биологических (например, фактор роста нерва, сокращенно NGF рис. 11.3) или искусственных (например, ди-бутирил-сАМР, диметилсульфоксид) стимулов до тех пор, пока нейриты разрастутся параллельно устанавливаются, например, изменения состава ферментов или мембранных белков. Интересно отметить, что в ходе дифференциации in vitro наблюдались только количественные изменения в составе белка таких клеточных линий хотя используемый для анализа метод двумерного электрофореза очень чувствителен, ни один новый белок не был идентифицирован и ни один из ранее присутствовавших белков не псчез. [c.323]

    Принципиальное значехше имело изучение Г. Теореллем [61] в 1934 г. химической природы так называемого желтого фермента Варбурга . Отщепив при помощи катафореза белок от ко-фермента, он показал, что последний является не чем иным, как фосфорным эфиром витамина В2. Сообщение об этом открытии на Международном конгрессе физиологов и биохимиков в Ленинграде в 1937 г. было встречено аплодисментами. Этой работой была доказана связь между ферментами и витаминами — двумя классами биологически активных соединений. В дальнейшем было показано, что открытие Теорреля — не случайный факт. Аналогичные исследования были проведены и с другими ферментами. Для развития энзимологии это имело немаловажное значение, так как позволило использовать достижения химии витаминов для анализа механизмов ферментативных реакций, катализируемых сложными ферментами. [c.174]

    Наоборот, удаление углеводов и родственных им соединений, особенно из растительных белков, без изменения состава этих белков достигается обычно с трудом, а иногда это и невозможно. Напрпмер, при анализе общего белка в зернах злаков значительная часть углеводов может быть удалена при помощи амилолптическнх ферментов или же белок может быть [c.352]

    Осуществленный таким способом гидролиз пептидньк связей-это необходимый шаг в определении аминокислотного состава белков и последовательности составляющих их аминокислотных остатков. Пептидные связи могут быть гидро-лизованы также под действием некоторых ферментов, таких, как трипсин и химотрипсин, представляющие собой протеолитические (белок-расщепляю-щие) ферменты, секретируемые в кишечник и способствующие перевариванию, т. е. гидролитическому расщеплению, белков, входящих в состав пищи. Если кипячение пептидов с кислотой или щелочью приводит к гидролизу всех пептидных связей независимо от природы и последовательности соединенных при их помощи аминокислотных звеньев, то трипсин и химотрипсин осуществляют каталитическое расщепление пептидов избирательным образом. Трипсин гидролизует только те пептидные связи, в образовании которьсс участвуют карбоксильные группы лизина или аргинина. Химотрипсин же атакует только те пептидные связи, которые были образованы с участием карбоксильных групп фенилаланина, триптофана и тирозина. Как мы увидим дальше, такой избирательный ферментативный гидролиз оказьшается очень полезным при анализе аминокислотных последовательностей белков и пептидов. [c.130]

    Рибонуклеаза, еще один глобулярный белок небольшого размера, представляет собой фермент, секретируемый клетками, поджелудочной железы в тонкий кишечник, где он катализирует гидролиз некоторых связей в молекулах рибонуклеиновых кислот, содержащихся в перевариваемых пищевых продуктах. Третичная структура рибонуклеазы, установленная методом рентгеноструктурного анализа (рис. 8-7), характеризуется тем, что в ее полипептидной цепи имеется очень мало а-спиральньк участков, но зато в ней есть достаточно большое число сегментов, находящихся в р-конформации. В этом отношении рибонуклеаза отличается от миоглобина, цитохрома с и ли- [c.194]

    На основе рентгеноструктурного анализа с высоким разрешением проведено сравнение стереохимических свойств трех типов взаимодействий металл—белок. Для установления структурных и электронных факторов, ответственных за регуляцию активности иона металла, рассмотрены координационные центры металл — лиганд в белках и прослежена связь между молекулярной структурой, стереохимией и электронной структурой и биологической ролью функции иона металла. Гидро( бное взаимодействие порфиринового кольца гемоглобина и миоглобина рассмотрено по данным измерений магнитной восприимчивости, спектроскопии парамагнитного резонанса и исследования поляризационных спектров поглощения монокристаллов. С точки зрения электронной конфигурации (1-орбиталей и геометрии координации обсуждается взаимодействие замещенных ионов металлов в карбоксипептидазе А с карбонильной группой субстратов при гидролизе пептидов. Предполагается, что спектральные изменения, зависящие от pH и наблюдаемые в спектре электронного поглощения, замещенного иона Со(П), каталитически активного в карбоангидразе, обусловлены образованием упорядоченной структуры растворителя вблизи иона Со(И), Корреляция между молекулярной структурой, определенной методами рентгеноструктурного анализа, и электронной структурой координационного центра металл — лиганды, оцененной из спектроскопических данных, указывает на происхождение структурной регуляции реакционной способности иона металла в белках и ферментах. [c.123]

    Большая часть гемоглобйнов, каталаз и пероксидаз представляет собой сравнительно простые и хорошо охарактеризованные белки. Они содержат один железопротопорфирин IX (рис. 29) на каждую полипептидную цепь, а каждая молекула белка состоит из одной или из четырех полипептидных цепей. Структуры нескольких гемоглобинов и миоглобинов установлены методом рентгеноструктурного анализа. Другие металлопротеины могут содержать несколько полипептидных субъединиц (свыше ста в случае некоторых гемоцианинов, разд. 7.1), а каждая полипептидная цепь может содержать большое число ионов металла (например, 40 ионов железа и 2 иона молибдена в некоторых нитрогеназах, разд. 9.2). Кроме того, ферменты (или ферментные системы) могут содержать только один белок (как в случае пероксидазы, разд. 8.1), два белка (нитрогеназа, разд. 9.2) или набор белков (цитохромная цепь переноса электронов). Мы пока не знаем, какова природа лигандов в ферментах, содержащих медь или молибден. Отсюда видно, насколько непроста ситуация в этой области исследований и насколько ограничены наши знания. Ясно, что любые заключения общего характера, которые можно будет сделать в этом обзоре, будут в лучшем случае лишь частично отражать истинное положение вещей. [c.137]

    О пространственной структуре молекул ферментов известно пока мало. Считают, что количество спиральных участков в них невелико это было доказано методом рентгеноструктурного анализа для ряда белков, в частности яичного альбумина наиболее подробно — для лизоцима, а также для рибонуклеазы, а-химотрипсина. Сходные данные найдены и методом спектрополяри-метрии, например по Моффиту-Янгу (10—20—30%). Несомненно, что каждый ферментный белок обладает уникальной третичной структурой, где между спирализованными участками располагаются неспирализованные, количество которых велико и которые составляют значительную часть молекулы. Частицы многих ферментов состоят из нескольких (2—4) одинаковых субъединиц, связанных между собой различными способами (четвертичная структура). Часто они удерживаются вместе с помощью атомов металлов, коферментов. Разбавление во многих случаях приводит к диссоциации субъединиц, иногда же силы, связывающие их, более прочны и для этого требуется действие концентрированных растворов мочевины. Химотрипсин, например, находится в растворах чаще в виде димера, при разбавлении образуется мономер (Л1—23 000), а в концентрированных растворах содержится тример. Алкогольдегидрогеназа дрожжей при удалении из нее атомов цинка диссоциирует на четыре неактивные субъединицы (М = 36 000). [c.73]

    У большинства белков в 0,1 н. растворе NaOH поглощение ослабляется с увеличением длины волны, но еще сохраняется при 330—450 ммк, где тирозин и триптофан не поглощают. В качестве контроля для измерения характеристического поглощения при 294 и 280 ммк можно измерить экстинкцию при 320 и 360 ммк и экстраполировать полученные данные к 294 и 280 ммк. У аминокислот, связанных в белке, где максимум поглощения перемещается по сравнению со спектром свободных аминокислот на 1—3 ммк в длинноволновую область, более совершенными стандартами могут служить чистые пептиды, содержащие тирозин и триптофан. Очень серьезным источником ошибок является легкая мутность раствора если белок в условиях анализа склонен к денатурации, то для получения совершенно прозрачного раствора рекомендуется предварительно обработать белок протеолитическим ферментом. [c.269]

    Все это показывает, как широко используется ультрацентрифугирование при изучении нуклеиновых кислот и биосинтеза белка. Ультрацентрифугирование незаменимо также при все более расширяющемся изучении смежных проблем — в частности при изучении механизмов регуляции ферментативных реакций. Метаболические потребности клетки удовлетворяются, как известно, благодаря тонкой согласованности скоростей различных биохимических последовательностей. Такая согласованность возможна благодаря чувствительности аллостерических ферментов к изменениям концентраций отдельных метаболитов, что в свою очередь зависит от конформационных изменений, вызываемых соответствующим метаболитом и, очевидно, передающихся путем взаимодействия субъединиц ферментного белка. Успехи, достигнутые в изучении свойств аллостериче-ского фермента — аспартат-карбамоилтрансферазы, хорошо иллюстрируют большое значение ультрацентрифугирования — особенно когда оно используется в сочетании с другими методами анализа. Так, Герхарт и Шахман [5] показали, что этот фермент, представляющий собой глобулярный белок с молекулярной массой около 3-10 , после обработки соединениями ртути распадается на субъединицы двух типов. Каталитической активностью обладают лишь субъединицы одного типа, в субъединицах же другого типа, не обладающих каталитической активностью, находится центр по которому происходит присоединение цитидинтрифосфата. С этой регуляторной субъединицей связывается 5-бромцитидин-трифосфат, о чем свидетельствует соответствующая картина седиментации. Позже Вебер [6] определил аминокислотный состав и Ы-концевые остатки субъединиц обоих типов и установил, что одна молекула фермента содержит четыре регуляторных и четыре каталитических субъединицы. [c.9]

    Протромбин превращается в активный фермент тромбин под влиянием тромбопластина — вещества, присутствующего в кровяных пластинках, в легких, мозге и других органах. В качестве источника тромбопластина при клинических анализах крови на содержание в ней протромбина используется обычно мозг кролика. Тромбопластин содержится, повидимому, в клеточных гранулах, так как при скоростном центрифугировании он обнаруживается в осадке [54]. Тромбопластин представляет собой рыхло связанный комплекс белка с рибонуклеиновой кислотой и ацетальфосфатидом [55]. Этот комплекс может быть расщеплен на растворимый в воде белок и нерастворимый липоид. Хотя последний во многих отношениях подобен кефалину, однако при замещении его синтетическим кефалином процесс превращения протромбина в тромбин идти не может [55]. [c.181]

    При анализе аминокислотного состава белков Т-4 бактериофага Е. oil был установлен крайне интересный факт, состоящий в том, что аминокислотный состав этого вирусного белка почти идентичен аминокислотному составу белков самих кишечных бактерий [127]. Это удивительное сходство аминокислотного набора заставляет думать, что вирусный белок образуется путем перегруппировки аминокислот хозяина и что превращение белка хозяина в вирусный белок может не сопровождаться дезаминированием или другими процессами глубокого распада аминокислот. Однако, с другой стороны, было показано, что Н Нз, добавленный к среде, на которой происходит размножение ука-за шого вируса, проникает в вирус, тогда как бактериальный азот вирусом не используется [128]. Это как будто дает основание считать, что вирусный белок бактериофага образуется за счет веществ, находящихся в питательной среде, а не за счет бактериального белка. Однако опыты с радиоактивным фосфором показали, что около 75% входящего в состав данного вируса фосфора состоит из радиоактивного фосфора среды, а для построения остальных 25% используется бактериальный фосфор. Очень трудно интерпретировать эти разноречивые данные. Не исключена возможность того, что бактерия-хозяин доставляет ферменты, необходимые для синтеза белков вируса [128]. [c.399]

    В последние 10 лет в нескольких лабораториях были разработаны методы получения высокоочищенной карбоангидразы из эритроцитов [34—42]. Они заключаются в осаждении гемоглобина смесью хлороформ—этанол [37, 39, 42] с последующей хроматографией на колонке, заполненной ДЭАЭ-целлюлозой [34, 37, 42], ДЭАЭ-сефадексом [43] или гидроксилапатитом [37, 39, 42]. Белок хорошо переносит лиофилизацию, и в большинстве методов она используется на той или иной стадии выделения. Накопленный опыт препаративной работы выявил некоторые особенности методов очистки фермента. Обработка смесью хлороформ—этанол существенно не меняет большинство физико-химических свойств. Но, как показал рентгеноструктурный анализ, воздействие этой смеси на фермент С человека снижает качество кристаллов [22, 23]. Для удаления гемоглобина лучше использовать гель-фильтрацию [37] или хроматографию на ДЭАЭ-сефадексе [43]. Качество кристаллов повышается, если проводится электрофоретическая очистка фермента [23] и если не применяется лиофилизация [22, 23]. [c.562]

    Тот факт, что перенос фосфата протекает через ковалентное промежуточное соединение, фосфорилфермент, служит основой предполагаемого механизма катализа щелочной фосфатазой. Фосфорилированный белок можно осадить из смеси фосфата с ферментом прибавлением трихлоруксусной кислоты [60]. Анализ продуктов расщепления белка показывает, что фосфат присоединен к остатку серина [61]. В щелочной среде обнаружить ковалентно присоединенный фосфат не удается, одна1ко Вильсон и сотр. [62—67] с помощью кинетических и изотопных методов показали, что фосфорилфермент образуется при всех значениях pH и что он идентичен фосфорилированному белку, выделяемому из кислого раствора. Свободная энергия гидролиза этого промежуточного соединения удивительно мала, и по величине соответствующей ей константы равновесия он в 10 раз устойчивее обычных фосфорных эфиров [62—64]. Причина того, что фосфатаза не оказывается в термодинамической ловушке, заключается в образовании нековалентного комплекса фермент—фосфат, который при pH 8 в 100 раз устойчивее фосфорилфермента [62]. В результате этого равновесие [c.638]

    Первым ферментом, пространственное строение которого было подробно изучено с помощью рентгеноструктурного анализа с разрешением до 2 A, позволяющим установить расположение всех тяжелых атомов в молекуле, оказался лизоцим яичного белка [16, 33]. Лизоцим представляет собой глобулярный белок с молекулярным весом около 14 ООО, содержащий 129 аминокислотных остатков. Пространственное строение молекулы поддерживается четырьмя дисульфидными и многочисленными гидрофобными и водородными связями. На рис. 26 приведена модель глобулы фермента с разрешением 6 A, схематически показано расположение молекулы субстрата в фермент-субстратном комплексе и приведена первичная структура молекулы. На этом рисунке изображены аминокислотные остатки, образующие поверхность щели — активного центра молекулы. Необычная форма ферментной глобулы, как бы разделяемой глубокой щелью на две неравные части, связана со строением субстрата фермента длинноцепочечных муконолисахаридов, построенных из чередующихся остатков N-аце-тилглюкозамина (АГА) и N-ацетилмураминовой кислоты (AMA), соединенных (1—4) гликозидными связями. Полимерный субстрат адсорбируется ферментом на отрезке, содержащем 6 остатков сахара, причем гидролизу подвергается только одна р-гликозидная связь между четвертым D и пятым Е остатками сахара. Положение разрываемой [c.110]

    Определение химической структуры белка следует начинать с количественного анализа аминокислотного состава его полипептидных цепей. Для этого чистый и, если это возможно, кристаллический белок подпер-гают обычно кислотному гидролизу, чтобы гидролизовать все имеющиеся в белке пептидные связи, которые соединяют аминокислоты, входящие в состав этого белка. Затем определяют относительные количества высвобождающихся при таком гидролизе двадцати стандартных аминокислот. Определение количества аминокислот проводят с помощью метода хроматографии на ионообменных смолах, разработанного в начале 50-х годов У. Штейном и С. Муром (фиг. 39, 40). Результаты такого анализа аминокислотного состава двух ферментов Е. oli (Р-галактозидазы и триптофан-синтазы) приведены в табл. 2. (Триптофан-синтаза Е. соН, как скоро будет показано, состоит из двух различных полипептидных цепей, названных А-белком и В-белком. Данные, приведенные в табл. 2, касаются только А-белка.) [c.83]

    За 15 лет, прошедших с тех пор, как впервые удалось выделить мутантные фаги ruh, было идентифицировано много других мутантов Т-четных фагов. С помощью этого набора мутантов оказалось возможным настолько повысить разрешающую способность генетического анализа, что в конце концов удалось заполнить разрыв между химией ДНК и структурой гена (гл. XIII). Тем не менее стало ясно, что все эти мутации затрагивают только относительно малую часть всего генома фага. Причина этого совершенно очевидна большинство генов фага, несомненно, кодируют белки, осуществляющие жизненно важные функции, так что мутации по этим генам неизбежно должны быть летальными. Несмотря на очевидность этого обстоятельства, долгое время никому не приходило в голову применить к Т-четным фагам остроумный метод, разработанный Горовицем и Лейпольдом для нолучения мутантов по жизненно важным генам Е. oli. Этот метод состоит в отборе чувствительных к температуре мутантов (см. гл. V). Наконец, в 1960 г. Эдгар и Эпштейн выделили /s-мутанты фага Т4, которые совершенно не образуют стерильных пятен при 42 °С, но образуют их при 25 °С. В то же время штамм дикого типа T4/s образует стерильные пятна при обеих температурах одинаково хорошо. Изучение физиологии размножения /х-мутантов при повышенной, запрещающей температуре показало, что у разных мутантов блокированы разные стадии развития фага. Так, у /s-мутантов одного класса при запрещающей температуре репликация фаговой ДНК не может начаться вследствие того, что при 42 °С у них не могут функционировать те или иные ранние ферменты, участвующие в метаболизме нуклеотидов — предшественников ДНК у /s-мутантов другого класса при запрещающей температуре синтез ДНК начинается, блокируются же более поздние стадии. Возникают, например, мутации в гене, кодирующем фаговый лизоцим. Бактерии, зараженные такими мутантами, не лизируют при 42 °С, хотя и содержат инфекционные частицы потомства фага. Были также найдены мутации во многих генах, кодирующих структурные компоненты фага в бактериях, зараженных любым из таких мутантов, при 42 °С не происходит сборки целых частиц зрелого фага. В этом случае лизаты содержат различные типы недостроенных компонентов фага. Если мутация затрагивает ген, кодирующий белок головки фага, лизат, полученный при высокой температуре, содержит целые фаговые отростки, но не содержит головок. Когда мутация затрагивает ген, кодирующий фибриллы отростка, у почти завершенных фаговых частиц имеется головка и присоединенный к ней отросток, но отсутствуют фибриллы, необходимые для присоединения к клетке-хозяину. [c.283]

    Наличие разных моноклональных антител к одному и тому же продукту лежит в основе количественного иммунологического анализа белка методом сэндвича , когда одно антитело используется в качестве твердой фазы для связывания присутствующего в растворе антигена, а другое антитело используется в качестве меченого зонда для обнаружения иммобилизованного материала. Хотя мы работали как с зондами, меченными так и с зондами, меченными ферментативно активными конъюгатами (в последнем случае обычно к антителам присоединяли биотин и использовали конъюгат фермента с авиди-ном), здесь мы приводим описание только первой методики, поскольку в нашей практике она оказалась более удобной. Этот метод пригоден также и для выяснения следующего вопроса о том, конкурируют ли между собой антитела за взаимодействие со стерически тесно ассоциированными участками, а также для изучения белок-белковых взаимодействий. [c.197]

    Результаты анализов у одного и того же человека меняются при переходе из горизонтального положения в вертикальное повышается общий белок, альбумин, кальций, калий, фосфат, холестерол, триглицериды, A T, фосфатазы, общий тироксин, гемато-крит, количество эритроцитов и гемоглобин. Максимальные изменения касаются концентрации общего белка, ферментов (+ 11%) и кальция (3—4%). В серии исследований изменение вертикального положения на горизонтальное сопровождается снижением общего белка на 0,5 г%, альбумина—0,4—0,6 г% кальция—0,4 мг% холестерола—10—25 мг%, общего тироксина на 0,8—1,8 мкг%, гемотокрита на 4-9% (вследствие гемодилюции после возвращения интерстициальной жидкости в кровоток). [c.368]


Смотреть страницы где упоминается термин Анализ белков и ферментов: [c.348]    [c.197]    [c.540]    [c.552]    [c.204]    [c.374]    [c.112]    [c.205]    [c.41]    [c.271]    [c.44]    [c.128]    [c.324]    [c.348]    [c.97]    [c.51]    [c.202]    [c.387]   
Смотреть главы в:

Хроматография в биологии -> Анализ белков и ферментов




ПОИСК





Смотрите так же термины и статьи:

Ферменты белков



© 2024 chem21.info Реклама на сайте