Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения растворимости металлов

    Сплавление силиката. Для разложения силиката, т. е. для переведения его в растворимые в кислотах соединения, применяют различные способы. Если необходимо определить кремневую кислоту (наряду с другими окислами), то обычно сплавляют силикат с Na. O, или другими, аш,е всего щелочными, плавнями . В тех случаях, когда нет необходимости в определении кремневой кислоты и требуется определить только содержание окисей металлов и других элементов (например, марганца, титана, закисного железа, щелочных металлов, фосфора и др.), нередко применяют разложение плавиковой кислотой. Последний метод описа отдельно в связи с определением щелочных металлов. [c.461]


    Анодное растворение металлов из амальгамы висящего капельного электрода используется в очень простом и высокочувствительном методе определения катионов металлов, растворимых в ртути [40,41]. Электрод сначала поляризуется при некотором постоянном отрицательном потенциале, так что все катионы, имеющие более положительные значения потенциалов полуволны, разряжаются и переходят в ртуть электрода. По истечении определенного периода времени регистрируется сила тока, протекающего через ячейку, при постепенном снижении приложенного напряжения. Высота максимума на полученной кривой прямо пропорциональна концентрации металла в амальгаме и, таким образом, концентрации соответствующего катиона в растворе. Этот способ позволяет определять с относительной ошибкой менее 5% концентрации порядка 10 М после предварительного электролиза, продолжающегося 15 мин, или 10" М после электролиза в течение часа. Практическое использование этого метода описано в ряде работ [41— 46 [. [c.130]

    Методы определения растворимости металлов [c.82]

    Методы определения растворимости металла в солевых расплавах можно разделить на три типа изотермическое насыщение, термический анализ и электрохимический метод. При изотермическом насыщении систему металл — расплав выдерживают при постоянной температуре в герметическом сосуде и большей частью в индифферентной атмосфере до установления равновесия. Затем систему либо быстро охлаждают (закаливают), либо разделяют металлическую и солевую фазы в самих реакционных сосудах, либо отбирают пробы для анализа при температуре опытов [9, 13, 29, 33]. Количество растворенного металла определяют по убыли металла и путем анализа солевой и металлической фаз. При взаимодействии металла с солевой фазой по реакции (VI—1) определяют условную константу гетерогенного равновесия в конденсированных системах [9]. Растворимость металла и величины констант равновесия можно рассчитать на основании фазовых диаграмм. Последние строят как по кривым охлаждения, так и по визуальным политермам [91. [c.82]

    Электрохимический метод определения растворимости металлов основан на том, что индифферентный электрод (графит, молибден), погруженный в расплавленную соль приобретает электродную функцию растворяющегося металла. В момент насыщения разность потенциалов между индифферентным электродом и растворяющимся металлом стремится к нулю. Обычно измеряют э. д. с. гальванических цепей двух типов  [c.82]


    Для определения концентрации растворов в основном используются пламенные источники атомизации и возбуждения. Несмотря на ряд ограничений, пламенно-эмиссионный метод остается одним из самых простых и чувствительных методов определения растворимости солей легко возбуждаемых элементов - щелочных и щелочно-земельных металлов [182-186] и некоторых переходных элементов [187, 188] как в водных, так и в неводных растворителях. Предел обнаружения этим методом для щелочных и щелочноземельных металлов находится в диапазоне 0,001-1 нг МЛ". Предел обнаружения порядка 0,1-1 нг мл" достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий. [c.297]

    Надежным и быстрым методом определения растворимости в двойной системе является метод рентгенографии на основе использования закона Ве-гарда — прямолинейной зависимости параметра решетки от концентрации. Для этого достаточно знать, кроме периода решетки основного металла, еще период для одного однофазного ири данной температуре сплава известной концентрации и одного сплава из заведомо двухфазной области [136]. [c.26]

    Применение к комплексам ионов металлов. Прямой метод растворимости применяется главным образом для определения растворимости труднорастворимых солей металлов в присут- [c.235]

    По изложенным причинам в данной работе связанную воду определяли другим методом, ранее применявшимся для определения растворимости органических жидкостей в линейных полимерах [10—12]. Здесь и ниже термин связанная вода, принятый в литературе по ионному обмену, означает то же, что термодинамическое понятие растворенная вода, то есть распределенная молекулярно. Соответствующее количество воды гидратирует атомные группы, отдельные атомы и ионы ионита, способные взаимодействовать с молекулами воды посредством водородных связей или электростатически. (Не исключено, что некоторое количество воды присоединяется к атомам переходных металлов посредством донорно-акцепторных связей). Количество воды, которое растворимо в ионите при данной температуре Т, при 7 <273 К и Р= 101,325 кПа не вымораживается. Если же в ионите имеется избыток воды над ее растворимостью ( свободная вода), то она в виде самостоятельной фазы находится в равновесии с раствором воды в катионите, причем ниже 273 К она закристаллизовывается. Именно на этом различии связанной и свободной воды основан указанный метод определения растворимости ее. Он заключается в том, что образцу безводного катионита определенной массы дают набухнуть в воде и определяют массу набухшего образца. Затем его помещают в калориметрическую ампулу установки для измерения теплоемкости и охлаж- [c.88]

    Известно много косвенных методов определения основанных на применении электродов второго рода. Металл, погруженный в раствор, содержащий мало растворимую соль данного металла, является электродом второго рода по отношению к аниону этой соли. Так, серебряная проволока в растворе с осадком хлорида серебра представляет собой электрод второго рода. Металл электрода, как и в случае электрода первого рода, изменяет потенциал в соответствии с изменением концентрации ионов серебра в растворе однако концентрация ионов серебра в свою очередь зависит от концентрации ионов хлора. Поэтому в конечном счете потенциал такого электрода изменяется с изменением концентрации ионов хлора. Действительно [c.463]

    Содержание растворимых смол определяется путем быстрого испарения крекинг-бензинов в условиях, при которых не происходит дальнейшего окисления и смолообразования. Быстрое испарение крекинг-бензинов в струе пара как будто является операцией, полностью удовлетворяющей вышеупомянутым условиям. Этот метод может применяться для определения растворимых смол. Ганн, Фишер и Блек-вуд [25] показали, что в этом определении струя пара может быть заменена струей воздуха без заметного окисляющего действия при условии, если время опыта будет коротким. Испытание производится в фарфоровой или стеклянной чашке. Применение металлических чашек не рекомендуется вследствие каталитического действия многих металлов на окисление углеводородов. [c.313]

    ВЛИЯНИЕ РАСТВОРИМОСТИ МЕТАЛЛОВ В РТУТИ НА ИХ ПОВЕДЕНИЕ ПРИ АМАЛЬГАМНЫХ МЕТОДАХ РАЗДЕЛЕНИЯ И ОПРЕДЕЛЕНИЯ МЕТАЛЛОВ [c.214]

    Данный метод определения очень точный, но длительный. Определению мешают ионы железа, алюминия, хрома, марганца, титана, циркония и другие образующиеся в аммиачной среде гидроокиси. Поэтому перед осаждением к кислому раствору предварительно добавляют винную или лимонную кислоты, которые связывают указанные элементы в прочные растворимые комплексные соединения, вследствие чего эти элементы не образуют гидратов. Механизм образования растворимых прочных комплексных соединений с винной кислотой заключается в том, что ионы металла замещают атомы водорода как карбоксильных, так и спиртовых групп  [c.305]


    Для разработки экстракционно-каталитических методов целесообразно использовать окислительно-восстановительные реакции с участием органических реагентов-восстановителей, легко растворимых в органических средах. Рекомендуется использовать реакции, катализируемые комплексами металлов с лигандами, которые являются активаторами или субстратами (восстановителями) индикаторной реакции. Условия экстракции должны обеспечивать оптимальную концентрацию лиганда в органической фазе. В качестве окислителя, кроме пидроперок-сидов, можно использовать пероксид вoдqpoдa или бромат-ион. Для повышения растворимости окислителя необходимо применять смешанные водно-органические среды с содержанием воды 1—20% (объемн.). Руководствуясь указанным подходом к выбору индикаторных реакций, экстракционных систем и растворителей, были разработаны экстракционно-каталитические методы определения ряда металлов. Ниже рассмотрены особенности экстракционно-каталитических методов определения меди, железа, титана—-переходных элементов, которые чаще всего определяют в особо чистых веществах, а также ванадия и ниобия — элементов, которые могут извлекаться из конструкционных материалов при очистке веществ. [c.153]

    В предлагаемом нами методе определение проводят титрованием раствором дитизона в присутствии комплексона П1, который связывает в очень прочные комплексные соединения все другие металлы, образующие растворимые в органическом растворителе дитизонаты. [c.144]

    Например, при определении калия, рубидия и цезия осаждением хлорной кислотой из водно-спиртовых растворов приходится предварительно удалять почти все элементы, соли которых мало растворимы в разбавленном спирте. Используя метод изотопного разбавления, определение щелочных металлов можно проводить в водной среде, несмотря на то, что растворимость соединений других элементов в воде достаточно велика [222]. Для этого необходимо к исследуемому раствору добавить определенные количества калия, рубидия и цезия, меченных их радиоактивными изотопами, и осадить некоторые количества перхлоратов этих элементов. Расчет проводится по обычной формуле изотопного разбавления. Метод изотопного разбавления позволяет в этом случае исключить стадию предварительного отделения мешающих элементов. [c.119]

    Измерение растворимости труднорастворимых твердых веществ в водных растворах комплексообразующего агента — один из самых старых методов изучения равновесия в растворе. В конце прошлого столетия этим способом были исследованы молекулярные комплексы пикриновой кислоты [5, 51], а несколько лет позднее прямой метод [35, 46] и метод конкурирующей растворимости [9, 14, 28, 29] были использованы для определения констант устойчивости комплексов ионов металлов. Этот метод был также применен для изучения равновесия в смешанных водно-органических растворителях [22, 54, 78] и в системах, насыщенных по отношению к труднорастворимым жидкостям или газам. [c.230]

    Метод Берцелиуса долго был единственным практическим методом определения щелочных металлов, но в настоящее время он в значительной мере вытеснен методом Смита. Метод Смита имеет несколько существенных преимуществ, наибольшим из которых является то, что магний при работе этим методом не сопроьождает щелочные металлы в водном растворе, вследствие чего устраняются затруднения и ошибки, связанные с отделением этого металла и д])угих металлов, кроме кальция. Ббльшая часть бора также остается нерастворенной в виде бората кальция. Кроме того, метод Смита не требует осаждения большого количества сульфата бария, при котором можно всегда опасаться окклюзии солей щелочных металлов. Наконец, операции после смешения навески с указанными реактивами в методе Смита проше, чем в методе Берцелиуса. Поэтому метод Смита предпочитают теперь все, кто пользовался обоими методами. Его рекомендуют даже для анализа силикатов, растворимых в соляной кислоте, особенно тех, которые содержат магний. [c.1006]

    Многие комчлексные аммиакаты растворимы в воде, однако известны и очень плохо растворимые соединения. Связь аммиака с платиновыми металлами очень прочна, поэтому к растворам комплексных аммиакатов не применимы обычные методы определения платиновых металлов. Например, из аммиачных растворов платина не осаждается сероводородом, а органическими восстановителями выделяется лишь частично. Поэтому при анализе никогда не следует вводить в раствор аммиак, в частности, нельзя пользоваться им для нейтрализации растворов. [c.56]

    Среди комплексонометрических методов определения растворимости широкое практическое использование нашел метод, основанный на взаимодействии ионов определяемых металлов с полидентатными ди-гандами, приводящем к образованию растворимых комплексов. В настоящее время комплексонометрическое титрование проводят почти исключительно стандартным раствором одного из соединений класса ами-нополикарбоновых кислот, этилендиаминтетрауксусной кислотой (комп-лексон-Ш). [c.280]

    Все эти свойства неорганических соединений можно в значительной степени усилить применением подходящих органических реагентов. Иногда также модификация реагента улучшает его аналитические свойства. Так, в разбавленных минеральных кислотах цирконий и гафний (также Т1, ТЬ, 5п и А1) образуют интенсивно окрашенные, но мало растворимые лаки с ализарином XV и другими оксиантрахинонами, такими, как пурпурин (1, 2, 4-триоксиантрахинон), хинализарин X, морин XI и кверце-тин (отличающийся от морина только положением одной из ок-сигрупп в боковом фенильном ядре). Введение в молекулу ализарина сульфо-группы придает лакам растворимость в воде без всякого побочного влияния на реакцию, которая является основой фотометрических методов определения этих металлов. В данной книге будет сделана попытка выявить факторы, вызывающие такого рода эффекты. [c.20]

    Перхлорат натрия легко растворяется в воде, но перхлораты, перйодаты и гексахлороплатинаты К, КЬ, Сз довольно плохо растворимы в воде и практически нерастворимы в 90%-ном этаноле (диэлектрическая проницаемость и влияние растворителя). Аналогично этому тетрафенилбораты лития и натрия умеренно растворимы в воде и применимы для осаждения тетрафенилбо-ратов К, НЬ и Сз из нейтральных или слабокислых водных растворов [7]. Такое осаждение обычно используют в качестве гравиметрического метода определения этих металлов [8]. Другой путь — прямое титрование с амперометрическим определением конечной точки [9]. Как и следует ожидать, учитывая неспецифическую природу этой реакции, нерастворимые тетрафенилбораты образуют также и другие крупные однозарядные катионы —Ад+, Т1+ и Си+, а также многие содержащие азот основания. Медь(1) [c.200]

    В качестве растворителей дитггзона используют преимущественно четыреххлористый углерод и хлороформ. Растворимость дитизона в хлороформе больше (1 г в 100 мл), чем в четыреххлорнстом углероде (0,08 г в 100 мл). Если отсутствует специальное указание, что в качестве растворителя необходимо использовать хлороформ, то применяют четыреххлористый углерод. Последний менее летуч, чем хлороформ, имеет больший удельный вес, вследствие чего быстрее происходит разделение фаз после встряхивания с водным раствород . Четыреххлористый углерод менее растворим в воде (0,08%), чем хлороформ (0,8%о), и, кроме того, менее токсичен. В приведенных в последующих главах методах определения ряда металлов с использованием дитизона говорится о применении только четыреххлористого углерода. [c.42]

    Включены основные таблицы, применяемые для вычисления результатов разнообразных химических анализов, а также практически все сведения, необходимые для работы химиков-аналитнков. В шестом издании (5-е изд.— 1979 г.) уточнены значения констант произведений растворимости, ионизации кислот и оснований, устойчивости комплексных соединений, стандартных окислительных потенциалов и т. п. Введены новые данные о маскировании мешающих ионов и об атомно-абсорбционных методах определения различных металлов. [c.335]

    Определение калия и натрия. Гравиметрическое определение щелочных металлов относится к сравнительно сложным анализам главным образом из-за большой растворимости солей этих металлов. Калий и натрий могут быть определены один в присутствии другого, но нередко применяется и косвенный анализ определяют сумму хлоридов или сульфатов этих металлов, затем содержание одного из них устанавливают экспериментально, а содержание другого рассчитывают по разности. Иногда используют метод определения суммарной массы хлоридов калия и натрия, а затем после обработки H2SO4 — суммарной массы их сульфатов. Если гп — масса хлоридов, — масса сульфатов, aw — массовая доля (%) КС1 в осадке хлоридов, то [c.166]

    Есть три метода определения коэффициентов активности метод, основанный на измерении электродвижущих сил цепей без переноса бесконечно разбавленных растворах в различных растворителях метод, основанный ыа определении различия давления нара растворенного электролита метод, основанный на определении растворимости в различных растворителях (см. гл. I). В настоящее время еще мало данных о величинах нормальных потенциалов цепей в неводных растворах. В работах автора совместно с Е. Ф. Ивановой были измерены электродвижущие силы ряда цепей, содержащих галоидные соли щелочных металлов в спиртах. Было показано, что величины Ig 7о исследованных солей линейно зависят от 1/е (рис. 46). Этот результат кажется до некоторой степени неожиданным, так как теоретически выведенное уравнение (IV,60) o toiit из двучлена, первый член которого [c.187]

    Принципиальная возможность определения щелочных металлов методом инверсионной вольтамперометрии основана на восстановлении в неводной среде до металла и сравнительно высокой растворимости в ртути [460]. Анодные пики всех металлов, кроме лития, совпадают. Разработаны методики определения суммы натрия и калия (10 —10 %) в HNO3, HF, а также методики определения до 10 —10 г этих металлов в пленках Si02- [c.93]

    Метод может быть применим в тех случаях, когда имеется определенная растворимость труднорастворимых соединений в некоторых средах, пропорциональность количества выделенного на катоде металла пропущенному току при электролизе в определенных условиях, создание насыщенных адсорбционных слоев на адсорбенте, образование строго заданных количеств соединений, экстрагирующихся экстрагентом в определенных условиях, и др. [c.234]

    Известно два косвенных полярографических метода определения золота. Берге и соавт. [784] предложили метод определения 10 г-ион л Аи, основанный на уменьшении пика сульфид-ионов в присутствии золота. Мешают ионы Pt, Ag и Hg, ведуш ие себя аналогично ионам Au(HI). Косвенно определяют золото [718] с по-мош ью тирона, окисляюш,егося ионами Аи(1И) в растворах с pH 9,5—10,0. Продукт окисления тирона дает катодную волну. Для определения золота можно использовать электроды в виде проволоки, стержня или диска. Материалом электрода служат благородные металлы — золото и платина, а также графит, прессованный графит со специальной обработкой, графитовая паста. Анодное окисление золотого электрода в серной кислоте изучали в работе [1088]. Растворимость золота в H2SO4 различной концентрации при 18° С равна 1,32 2,61 29,6% в 1,1 10,8 и 35,8 N Н28О4 соответственно. Анодное растворение золота ускоряется при повышении температуры и в присутствии НС1 при малой плотности тока [1527—1530]. Изучено 1145] окисление поверхности золотого. электрода при анодной поляризации в растворах H IO4. При понижении кислотности в 100 раз (от 0,1 до 0,001 М) потенциал закономерно смеш ается в сторону положительных значений на 60 мв  [c.172]

    Отсутствие плохо растворимых солей сильно затрудняет аналитическое определение щелочных металлов. Для анализа этих металов используется пламенно-спектрофотометрический метод, основанный на том, что в видимой части спектра многих металлов, в частности щелочных, имеются характерные для данного металла линии, в результате чего они окрашивают пламя в определенный цвет, характерный только для данного металла. Для натрия характерен желтый цвет пламени, для калия — фиолетовый, для лития — красный и т. д. (прns переходы валентных электронов, см. раздел 3.2). Названия двух щелочных металлов — рубидий и цезий — произошли от цвета окраски пламени (рубиновый и небесно-голубой). [c.133]

    Содержание металлов в полимерах обусловлено, как правило, применением катализаторов. Для определения металлов в полимерах химическим путем необходимо последние разрушить и перевести металл в растворимое состояние. Более доступным и широко применимым является метод разложения полимера в колбе Кьельделя смесью серной кислоты с перманганатом калия или смесью азотной и хлорной кислот [65—67]. Почти все определения ионов металлов в полученных растворах (после сожжения органической части) проводятся комплексометрическим методом [68]. [c.82]

    МОСТИ перхлората калия в 97%-ном этиловом спирте (или этила-цетате) и растворимости других перхлоратов в этих растворителях. Метод дает точные результаты и в значительной степени вытеснил более дорогой метод определения калия в виде хлорпла-тината. Смит с сотр изучили условия определения калия в виде КС10[ в присутствии натрия и лития и условия отделения перхлората калия, как промежуточного продукта при определении калия хлорплатинатом. Бунге определил калий в виде перхлората во взрывчатых веществах, содержащих азотнокислый аммоний. Смит и Уиллард и Смит также исследовали растворимость перхлоратов щелочных и щелочноземельных металлов в воде и различных органических растворителях—метиловом, этиловом и и-бутиловом спиртах, этилацетате и др. Смит изучил осаждение перхлората калия из теплого водного раствора перхлоратов натрия и калия путем добавления больших количеств н-бутилового спирта. Смит исследовал растворимость перхлоратов щелочных металлов в смеси органических растворителей. [c.120]

    В результате обширных исследований было найдено, что един-ственная реакция полиэтиленгликолей, имеющая практическое значение для анализа, —это образование в кислом растворе очень мало растворимых комплексов этих гликолей с неорганическими гетерополикислотами, в частности, фосфорномолибденовой и кремневольфрамовой, в присутствии катиона тяжелого металла, на пример бария. Механизм этой реакции не выяснен несмотря на это она явилась основой количественного определения растворимых полиэтиленгликолей. На основе этой реакции были разработаны два метода. [c.223]

    Термометрическое титрование применяется при изучении реакций комплексообразования, а также при определении ионов металлов путем измерения тепловых эффектов реакций образования комплексных соединений. В последнем случае обычно выделяют катионы металлов из раствора в виде нерастворимого соединения или используют реакции образования растворимых анионных комплексов. В некоторых случаях эти реакции протекают последовательно. Примером последнего может служить метод определения серебра по реакции ионов серебра с цианид-ионами. Образующийся вначале нерастворимый цианид серебра затем растворяется в избытке цианида калия, образуя ион дициапида серебра. [c.80]

    Миллс и сотр. [52] сконструировали электрохимическую ячейку, изолированную от воды и кислорода, для использования в полярографии, циклической вольтамперометрии и кулонометрии. Они описали метод определения от 10 ммоль до 10 мкмоль воды и кислорода в растворителях высокой чистоты. Например, малые количества воды влияют на вольтамперометрическое восстановление 2-метокси-3,8-диметилазоцина на капельном ртутном электроде. Эти исследователи [52] отмечают, что влага заметно влияет на восстановление азоцина до дианиона даже в очищенном диметил-формамиде, содержащем всего 10" моль воды. Пелег [57а] описывает определение воды в плавленых нитридах щелочных металлов вольтамперометрическим методом, который он затем использовал для измерения растворимости воды в нитратах лития, натрия и калия. Серова и сотр. [67а] применили реакцию с нитридом магния [уравнение (2.44)] для косвенного полярографического определения малых количеств воды в газах. Аммиак, образующийся в реакции с водой, поглощался в ловушке 0,01 н. раствором НС1 и анализировался полярографически в интервале от —0,7 [c.66]

    Для определения легкой воды в солях тяжелых металлов Ока и Мамия [187] использовали метод дейтерообмена. Аналогичный метод был использован Моулом и Терстоном [181] для определения растворимости воды в бензоле и других неполярных жидкостях. Показано, что количество HjO в образце зависит от концентрации DaO. Поглощение измерялось при 3400 см" . Необходимо строго контролировать температуру, поскольку неточность ее установления в 0,05 °С приводила к ошибке, равной 0,17%. Эти авторы контролировали температуру при определении растворимости с точностью до 0,02 °С в интервале 9—50 °С. [c.402]

    Операций по отделению золота и серебра можно избежать, титруя палладий (II) раствором-иодида калия , с которым палладий (II), так же,как и серебро, дает осадки, практически нерастворимые в воде, но сильно отличающиеся по растворимости в аммиаке константы нестойкости аммиачных комплексов палладия и серебра отличаются больше чем на 20 порядков. Отсюда следует, что из аммиачной среды в осадок будет выпадать только иодид серебра (/( ест = 5,89 10 ), а палладий останется в растворе (К нест = 2,5 10 °). Золото (III) не может мешать при этом титровании, равно как не мешают ему и цветные металлы, даже в 100—1000-кратном избытке (см. описание иодидного метода определения серебра в разделе Серебро ) не Ьказывают влияния и ионы платины. [c.279]

    Применяются как прямые, так и косвенные потенциометрические методы. Прямым потенциометрическим методом определяюг концентрацию ионов водорода, концентрацию ионов металла над плохо растворимым осадком, pH гидролизующей соли и т. п. Из этих определений наиболее важным является определение pH раствора. По сравнению с другими методами определения pH потенциометрический метод обладает рядом преимуществ. Он дает возможность определять величину pH в окрашенных растворах при непрерывном ее изменении, что важно для производственного контроля, и определять значение pH в присутствии сильных окислителей и восстановителей, когда другие методы определения pH неприменимы. [c.421]


Смотреть страницы где упоминается термин Методы определения растворимости металлов: [c.532]    [c.249]    [c.20]    [c.204]    [c.2164]    [c.171]    [c.20]    [c.211]    [c.246]    [c.216]   
Смотреть главы в:

Электрическое лужение из солевых расплавов -> Методы определения растворимости металлов




ПОИСК





Смотрите так же термины и статьи:

Металлы определение методом ААС

Растворимость определение

Растворимость, методы определения



© 2024 chem21.info Реклама на сайте