Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ изотопов и меченых соединений

    Качественные теории масс-спектрометрии базируются на ряде эмпирических закономерностей, которые установлены при анализе масс-спектров соединений, строение которых известно. В общем случае структуры ионов, образующихся в масс-спектре, неизвестны. В соответствии с качественными теориями фрагментным ионам приписывают структуру с учетом механизма их образования. При этом, придавая иону ту или иную структуру, исходят из того, что распад молекулярных ионов протекает с минимальными структурными изменениями на каждой стадии распада. Основная трудность заключается в определении механизма образования фрагментных ионов. В некоторых случаях такие механизмы были установлены, например, с помощью применения соединений, меченных стабильными изотопами. Трудность заключается также и в том, что предполагаемая структура ионов и механизм их образования чаще всего не подтверждаются термохимическими методами. [c.92]


    Представляет ценность и метод изотопного разбавления, в котором определяемая карбоновая кислота является радиореагентом, а производное образуется из нерадиоактивного соединения. В этом методе не требуется количественного получения производного. Он особенно удобен и при разделении кислот-гомологов или кислот, родственных по другим признакам, когда применение изотопного разбавления с использованием только Меченой кислоты недостаточно эффективно. Этот метод применялся в работе [115] для анализа смесей хлорированных феноксиуксусных кислот. В этом анализе синтезировали меченые (изотопом С1) и чистые немеченые анализируемые кислоты (например, 2,4-дихлор- и 2,4,5-трихлор-феноксиуксусные). Известное количество меченой кислоты в растворе добавляли к анализируемой пробе, а также к определенному количеству той же самой чистой немеченой кислоты. В раствор с меченой кислотой намеренно добавляли значительные количества [c.160]

    При выборе подходящего изотопа для мечения органического соединения следует оценить ряд факторов. Прежде всего необходимо учесть факторы, обусловленные составом соединения и его назначением, а также химическими трудностями, возникающими при введении изотопа. Наряду с этим приходится считаться с доступностью изотопа, периодом его полураспада, требуемой удельной активностью, чувствительностью доступных методов изотопного анализа, устойчивостью меченых молекул и, наконец, стоимостью замещенных изотопом соединений. Наиболее важные характеристики, которые необходимо учитывать при выборе изотопа для получения нужного меченого соединения, приведены в табл. I. [c.22]

    Жидкостной сцинтилляционный счетчик позволяет быстро и эффективно анализировать различные меченные радиоактивными изотопами органические и неорганические соединения, а также биологические препараты. Высокая общая эффективность счета и легкость подготовки образцов для анализа делают этот метод особенно привлекательным при работе с веществами, меченными H С " и 8 . В большинстве случаев можно использовать систему, обладающую способностью растворять исследуемое органическое соединение если же такую систему подобрать не удается, то очень хорошие результаты дает суспендирование анализируемого вещества в жидком [69] или тиксотропно-геле-образном [71] сцинтилляторе. В последнем случае анализ веществ, меченных тритием, осуществить не удается, так как само-поглощение очень мягких р-лучей частицами суспензии слишком велико. Поправку на отклонения, например вследствие тушения, можно определить после подсчета активности пробы, добавляя внутренний стандарт. Метод можно использовать для одновременного анализа двух или трех радиоактивных изотопов при условии, если энергетические спектры их излучения достаточно сильно различаются. Опубликованы обзорные статьи, посвященные жидкостным сцинтилляционным счетчикам [99—101]. [c.28]


    Приготовление проб. Главной задачей при анализе многих органических соединений, меченных радиоактивными изотопами, является их превращение в химическую форму, удобную для проведения изотопного анализа с использованием счетчика. Необходимость превращения исследуемого соединения в образец требуемой формы определяется природой этого соединения, энергией излучения изотопа, используемого для мечения, а также требованиями, предъявляемыми к анализируемому образцу. Эти же факторы часто определяют выбор наиболее подходящего счетчика. [c.29]

    Процессы изотопного обмена имеют очень важное значение для решения многих химических, биологических и физических проблем. Особый интерес они представляют для радиохимии и изотопных методов исследования. Детальное изучение процессов изотопного обмена — одно из важнейших условий понимания природы химических реакций, индуцированных ядерными превращениями, разработки методов обогащения радиоактивных изотопов и разделения ядерных изомеров. Только с учетом количественных характеристик реакций изотопного обмена можно правильно определять выход продуктов ядерных реакций, а также получать правильные результаты активационного анализа и анализа методом изотопного разбавления. Процессы изотопного обмена лежат в основе установления природы химических связей, их равноценности в молекуле, а также методов получения меченых соединений. Особое значение эти процессы имеют для изучения механизма реакций. [c.10]

    Расположение зон меченых соединений в хроматограмме определяется также способом радиоавтографии. Этот способ основан на фотографическом действии радиации, испускаемой радиоактивным изотопом. Радиоавтография имеет большое значение при анализе бумажных хроматограмм, так как она исключает в этом случае необходимость проявлять хроматограмму опрыскиванием бумаги проявителем. [c.43]

    Для количественного анализа, основанного на этом методе [106], 0,2 мл раствора НгО в безводном диэтиловом эфире (1 нл воды на 1 мл эфира, полная радиоактивность 6,67 мкКи) добавляют к не более чем 0,033 мэкв смеси кислот в безводном диэтиловом эфире, ацетоне или диоксане. Спустя 15 мин кислоты количественно этерифицируют, добавляя к смеси раствор диазометана в эфире. Продукты этерификации разделяют методом тонкослойной хроматографии (ТСХ) на силикагеле, проявляют пятна разделенных эфиров, опрыскивая их подходящим реагентом, и измеряют их радиоактивность жидкостным сцинтилляционным счетчиком. При этом эфиры можно либо экстрагировать из силикагеля смесью диэтилового эфира и гексана (7 3 по объему) с последующим выпариванием растворителей и добавлением раствора сцинтиллятора, либо путем измерения радиоактивности взвесей, полученных путем соскабливания соответствующих пятен с пластинки для ТСХ. Второй метод часто предпочитают при анализе высокополярных кислот. При использовании первого метода экстракция из адсорбента должна быть количественной. Если в пробе содержится менее 1—5 мг жирных кислот, то перед хроматографированием в раствор необходимо добавить нерадиоактивные метиловые эфиры анализируемых соединений. При этом метод становится применимым для анализа микрограммовых количеств соединений Для калибровки метода к пробе добавляют определенные количества анализируемых кислот и повторяют весь анализ. Анализ известных смесей стеариновой, бензойной и фталевой кислот, а также смесей стеариновой и /-винной кислот показал, что введение трития в эфиры происходит без каких-либо ограничений. В дальнейшем этот факт подтвердился и в анализе стеариновой и бензойной кислот, меченных изотопом С. Данный метод дает результаты с воспроизводимостью 5%. [c.155]

    АНАЛИЗ ИЗОТОПОВ И МЕЧЕНЫХ СОЕДИНЕНИЯ [c.348]

    В случае меченых соединений указанные цифры относятся к содержанию изотопа в метке . Подсобные данные химического анализа указываются в паспорте.  [c.245]

    Направление научных исследований теоретическая физика термоядерная физика методы измерения параметров плазмы кинетика химических реакций синтез моно- и поликристаллов сверхчистых керамических материалов свойства керамических материалов при высоких температурах синтез меченых соединений разделение устойчивых изотопов 0 , В °, N методом изотопного обмена в процессе дистилляции электронная структура молекул органических соединений синтез органических соединений синтез и полимеризация новых мономеров синтез гетероциклических соединений химические материалы для защиты от радиации координационные соединения синтез и спектральный анализ порфиринов и их металлических комплексов химия высокомолекулярных соединений эффект радиации на полимеры физические и реологические свойства высокомолекулярных соединений ионообменные смолы оптически активные, хелатные и изотактические полимеры изучение механизма каталитических реакций, особенно гетерогенного катализа с использованием металлов и окислов металлов радиационная химия радиолиз водных растворов антибиотики, противоопухолевые и противотуберкулезные препараты меченые органические соединения полярографические исследования в области органической химии и биохимии микробиология фермен- [c.377]


    Эффективность торцового счетчика -частиц по отношению к определенному -излучателю лучше всего определить путем калибровки с помощью счетчика с геометрией 4я. Сначала определяют с помощью 4я-счет-чика абсолютную скорость распада невесомого образца нужного изотопа, нанесенного на тонкую пленку. Затем с помощью торцового счетчика измеряют активность образцов, полученных из аликвотных порций меченого соединения и осажденных с носителем на подложках. Относительные количества активности в этих пробах и в образце, используемом для анализа на счетчике с 4я-геометрией, можно определить, исходя из взятых объемов растворов радиоактивного вещества, или, что значительно удобнее, сравнивая активности с помощью детектора, показания которого не- [c.419]

    Для определения содержания меченого соединения, образующегося при реакции и присутствующего в смеси ее продуктов, применяют так называемый метод обратного изотопного разбавления. С этой целью к смеси прибавляют известное количество немеченого образца того же соединения, а затем выделяют обратно путем фракционирования небольшую порцию добавленного образца в чистом виде и определяют изотопный состав выделенного образца. Содержание меченого изотопа первоначальной смеси определяется по анализу образца, полученного без прибавления немеченого носителя. Если последнее невыполнимо, содержание меченого изотопа может быть определено путем рассмотрения механизма образования анализируемого соединения или путем проведения двух параллельных экспериментов с прибавлением разного количества немеченого носителя и решением полученной таким образом системы уравнений с двумя неизвестными количеством присутствующего в смеси соединения и его изотопным составом до прибавки немеченого носителя (метод двойного обратного изотопного разбавления) [137, 138]. Рассмотренный обратный метод рекомендован, например, в тех случаях, когда [c.96]

    Для определения концентрации веществ в большинстве иммунохимических методов к анализируемому раствору, содержащему определяемое соединение и его меченый аналог, добавляют реагент в количестве, намного меньшем необходимого по уравнению (7.12). Как немеченые, так и меченые соединения взаимодействуют с реагентом практически одана-ково, поэтому отношение их концентраций будет одним и тем же в растворе и в связанном состоянии. При этом возможность применения метода во многом определяется доступностью меченого антигена и соответствующих антител. Для введения метки используют различные реагенты радионуклиды, ферменты, красящие вещества, флуоресцентные и хеми-люминесцентные зонды, ионы металлов. До последнего времени в качестве маркеров антител применяли радиоактивные изотопы этот метод назьшается радиоиммунохимическим анализом (РИА). При этом степень [c.298]

    И. о. используют при изотопов разОеленип, получении меченых соединений с его помощью изучают строение молекул. На анализе И. о. основан один из способов определения низких давлений насыщенных паров. В отд. случаях И. о. может исказить результаты опыта так, при изучении И.о. между в-вами, растворенными в воде, нужно учитывать возможность обмена изотопов водорода между исследуемыми в-вами и молекулами воды. [c.198]

    Американскому изданию руководства предпослано подробное введение, в котором изложены основы принятой авторами номенклатуры меченых соединений, рассмотрены особенности синтезов с изотопами (использование микромстодов и вакуумной техники, необходимость определения не только химической, но и изотопной чистоты продуктов синтеза и т. д.), указаны общие принципы, на которых основаны методы анализа стабильных и радиоактивных изотопов, а также изложены основные положения техники безопасности при работе с радиоактивными веществами. Поскольку материал, содержащийся во введении, относится по существу ко всему руководству в целом, было признано целесообразным полностью сохранить его. Перевод введения помещен в книге Синтезы органических соединений с изотопами водорода . [c.6]

    С точки зрения синтеза практически более полезным представляется метод, в котором индикаторный изотоп вводится в ангидрид. Однако при использовании подходящего способа метки радиоактивными можно сделать и определяемые стероид или стерин. Возможность определения степени превращения по реакции с помощью меченых веществ отмечалась в ранних работах, посвященных использованию радиоизотопных методов в анализе аминокислот [90, 91]. Стероиды и стерины трудно количественно экстрагировать из биологических жидкостей добавление к этим жидкостям радиоактивных субстратов в качестве индикаторов дает удобный способ измерения выхода. Если радиоактивный субстрат добавить в жидкость перед экстракцией, то по относительной радиоактивности выделенного вещества можно точно оценить полные потери целевого соединения в ходе анализа, включая и потери, обусловленные неполным ацетилированием. В работе [92 описано использование в таких анализах стероидов, меченных тритием, имеющих высокую удельную радиоактивность. Приготавливали такие стероиды методом Вильсбаха. В настоящее время большое число стероидов, меченных изотопом С, имеется в продаже. [c.72]

    Очевидно, работа по компиляции этих данных будет очень трудоемкой. В то же время необходимая информация большей частью уже содержится в существующей литературе ее систематический анализ и выявление необходимых данных не представляют принципиальных трудностей и моглн бы выполняться стандартной автоматической системой хранения данных с соответствующей программой поиска информации, использующей перекрестные ссылки. Особая ценность такой системы как вспомогательного средства в биосинтетических исслелованиях заключается в том, что ее можно использовать, во-первых, для логического анализа структуры природных соединений с целью выявления звеньев первичных предшественников и, во-вторых, для установления таксономической корреляции индивидуальных соединений со Сходными метаболитами из других природных источников. Корреляции такого типа составляют основу гипотетических схем биосинтеза, которые затем проверяются экспериментально, обычно с помощью меченных изотопами предполагаемых предшественников. В настоящее время эти корреляции, как и структурный анализ, выполняются только путем кропотливого и длительного изучения множества источников информации, которые редко полностью Доступны каждому исследователю. [c.345]

    Трудности третьего типа возникают тогда, когда меченое соединение биологически не идентично немеченому, т. е. когда имеет 1есто так называемый изотопный эффект . К счастью, биологический изотопный эффект имеет ту же самую основу и подчинЯ ется тем же правилам, что и эффекты химических систем поэтому его учет не представляет больших сложностей для химика. В частности, изотопные эффекты обычно проявляются только у изотопов водорода. Следует иметь в виду, что радиоактивные изотопы обычно занимают только небольшую часть меченых полох<ений . Так, в образце [ 1- С,2-ЗН] ацетата большая часть молекул не содержит ни одного изотопа, практически нет молекул, имеющих оба изотопа, и совершенно отсутствуют соединения, содержащие более одного атома трития. Так, если образец превращается химическим или биологическим путем в СНС СОК, не следует ожидать, что 2/3 всего количества трития будет потеряно наиболее вероятный результат будет зависеть от тонких деталей механизмов превращений. Ситуация складывается совершенно иначе, если все возможные положения действительно заняты атомами изотопа, как это обычно бывает в случае тяжелых изотопов, например [2-2Нз] ацетата. Так, для определения числа атомов водорода, переносимых вместе с атомом углерода в процессе С-метилирования, обычно используют [Ме-2Нз] метионин (при этом основным методом анализа служит масс-спектрометрия). Стереоспецифическое введение метки, например частичное включение в прохираль-ную СНг-группу, широко применяется для изучения стереохимии процессов биосинтеза. В любом случае, однако, следует помнить, что скорость реакций меченых соединений может отличаться от скорости реакций немеченых аналогов, и интерпретировать результаты с необходимой осторох<ностью в общем случае предпочтительным является эксперимент, дающий ответ типа да — нет, а не тот, который можно интерпретировать только на основе неопределенных в количественном отношении изотопных эффектов. [c.469]

    Меченые органические соединения обычно синтезируют для того, чтобы по изменению концентрации изотопа судить о количественных превращениях в исследуемых системах. Химику-органику часто самому приходится использовать синтезируемые им меченые соединения и он часто вынужден осушсстплять изотопные анализу при изучении механизма реакций, при наблюдении за процессом меченого синтеза или же при определении концентрации изотопа в конечном продукте. [c.23]

    Выбор исходной концентрации радиоактивного изотопа в меченом соединении определяется степенью суммарного изотопного разбавления в реакционной системе, а также зависит от эффективности метода изотопного анализа. При изучении механизма органических реакций или при проведении анализов методом изотопного разбавления исходная концентрация изотопа на несколько порядков меньше концентрации, необходимой при изучении биологических систем, для которых характерны большие степени разбавления. Самопроизвольный распад соединений, меченных радиоактивными изотопами, обусловлен самопоглоще-нием излучаемой радиации, а также изменением номера атома вследствие изотопного распада. Второй из этих факторов обычно не имеет существенного значения, тогда как первый фактор при проведении опытов в условиях высокой удельной активности или при продолжительном хранении следует строго учитывать. [c.31]

    Использование этих материалов в анализе методом изотопного разбавления рассматривалось в гл. 3 применение изотопов для получения меченых соединений посвящен следующий раздел. Разделенные изотопы широко используются во многих областях физики [34], о чем упоминалось ранее. В исследованиях по ядерной физике они применяются для идентификации естественных радиоактивных изотопов, в частности их использовали для идентификации радиоактивного калия [2020]. Излучение -частиц таким легким элементом было настолько неожиданным, что вначале предполагали, что оно является следствием примеси к калию элемента с массой 87 (Fr) [499]. Частичное разделение изотопов привело к выводу [885], что радиоактивность не была следствием присутствия Однако только после того, как было проведено полное разделение изотопов Смайтом и Хеммендингером [1901], наконец установили, что радиоактивность связана с К, а не с К. Изящный метод, позволяющий устанавливать, какой из нескольких изотопов данного элемента радиоактивен. [c.461]

    В последние годы, особенно в хромато-масс-спект-ральном анализе биологически активных соединений, широко используют в качестве внутренних стандартов соединения, меченные стабильными изотопами [27], причем одним из оптимальных методов является использование соединений, содерлощих 3 или 4 атома С. Как положительную особенность этого метода следует отметить отсутствие изотопного эффекта в процессах газохроматографического разделения, или при детектировании в процессе химической ионизации, исполь- [c.21]

    Имеются, однако, новые экспериментальные результаты, показывающие, что может происходить не только обмен между углеродными атомами без изменения самого углеродного скелета, но также и полная перестройка углеродного скелета молекулы, приводящая к образованию химически новой частицы. Наиболее характерны в этом отношении результаты Мейерсона и Рюландера, полученные при анализе спектров меченых алкилбензолов и те/)е я-алкильных производных [8, 9, 10, И, 12]. При интерпретации экспериментально наблюдаемого распределения изотопов в ионах эти авторы считали, что происходит перегруппировка третичных соединений в ионизированные циклопропановые грунны. Появление этих групп нельзя рассматривать как очевидный результат диссоциации исходных соединений. Использование меченых соединений в этом случае было единственным путем установления ист1шы. [c.381]

    Оба радиоактивных изотопа обладают чрезвычайно мягким р-излучением (Ямако трития = 0,0185 Мэв макс—углерода-14 = 0,156 Мэв), которое может поглощаться уже очень тонкими слоями (толщина полуослаб-ления ( 1/2 трития < 0,2 мг/см , толщина полуослабления углерода-14 = = 2,7 мг/см у, поэтому работа с ними связана с известными трудностями. Для преодоления последних разработаны различные методы измерения, которые (особенно для трития) требуют затраты значительного времени и труда. В то время как измерения с веществами, меченными углеродом-14, можно проводить с торцовым счетчиком, для трития этот метод неприменим. При определениях активности малоактивных соединений, меченных тритием или углеродом-14, необходимо исключать поглощение излучения, вызванное слоем воздуха между образцом и окошком счетчика, а также и самим окошком. В этом случае активности твердых или малолетучих жидких проб можно измерять в 2я- или 4я-проточных счетчиках, поэтому из всех адсорбционных эффектов приходится считаться только с самопоглощением. Непременным условием воспроизводимости результатов является одинаковая толщина слоя и поверхность препарата. Для измерения твердых и жидких соединений используются также сцинтилляционные счетчики. При этом выход по счету значительно выше, чем в 2л-счетчике в сцинтилляционных счетчиках исследуемый материал находится в растворенном или суспендированном состоянии и самопоглощение отсутствует. Несмотря на наличие в настоящее время большого числа сцинтилляционных систем, состоящих из сцинтиллятора, растворителя для меченого вещества и (в случае необходимости) преобразователя длин волн, этот метод остается в значительной мере специфичным, зависящим от природы вещества [3]. Идеальным является такой метод, который позволяет измерять любые воспроизводимые образцы, независимо от вида меченого соединения. Подобным методом является измерение газа (например, СО5) в ионизационной камере [4—6] счетчиком Гейгера—Мюллера и пропорциональным счетчиком [7, 8]. Перевод вещества в СОз можно провести методами классического элементарного анализа или сжиганием по Ван Слайку [9, 10]. [c.426]

    Другим важным применением масс-спектрометрии с использованием изотопов является исследование реакции обмена с нерадиоактивными изотопами. Для нахождения скорости обмена измеряется изотопный состав продуктов обмена или меченого исходного вещества в зависимости от времени. Продукт или исходное вещество превращается в газообразное соединение, содержащее метку, и из масс-спектра находят отношение изотопов. Эти вещества могут исследоваться непосредственно, и локализацию и количество меченого соединения можно установить путем анализа изменения спектров различных осколков. Установив, какой пик в спектре изменяется при введении изотопов, можно определить, в какой части молекулы происходит обмен. В случае реакции метанола с бензойной кислотой путем исследования с мечеными атомами, включавшего масс-спектрометри-ческий анализ, было показано, что эфирный кислород в продукте реакции происходит из метанола [c.411]

    При биосинтезе и исследованиях процессов метаболизма, по-видимому, нельзя обойтись без использования меченых соединений. Анализ с помощью ГЖХ и обычного массового детектора, как правило, показывает присутствие в разделяемой смеси многочисленных соединений, некоторые из которых удается идентифицировать по известным временам удерживания ожидаемых продуктов разделения. Решающее значение имеет обычно присутствие или отсутствие радиоактивности в определенных соединениях если соединение радиоактивно, то его так или иначе следует связать с исходным меченым материалом. Наиболее простой способ проверки радиоактивности разделенных соединений — объединить процесс сбора этих соединений и измерение их радиоактивности (при тех значениях времен удерживания, которые соответствуют ожидаемым меченым соединениям). Измерение радиоактивности можно проводить при этом в течение продолжительного времени. Это позволяет работать с малыми уровнями радиоактивности, и в этом основное преимущество данного способа. Использование сигнала массового детектора для управления сбором разделенных веществ сопряжено с риском, так как радиоактивное соединение может иметь малую массу и не быть обнаружено детектором. Для того чтобы по возможности не пропустить радиоактивного соединения, отбор фракций следует проводить часто и в течение одинаковых промежутков времени на протяжении всего процесса хроматографического разделения (или до тех пор, пока не будет точно известно, что из колонки вышли все нужные соединения). Выполнить все это вручную довольно трудно, поэтому здесь имеет смысл использовать автоматические устройства для отбора фракций [93]. Систему для газовой радиохроматографии с двойной меткой (изотопом С и тритием) и с высоким уровнем автоматизации описали Томас и Дюттон [94]. Эта система включала в себя не только устройство для автоматического [c.297]

    Соединения, меченные радиоактивными изотопами, часто используют при количественном анализе веществ в биологических объектах. Если добавить некоторое количество меченого соединения, а затем выделить его обратно, то количество этого соединения в биологическом объекте может быть определено по разбавлению радиоактивной индикаторной метки независимо от выхода при выделении. В 1940 г. Графф, Риттенберг и Фостер [6] описали метод, который позволяет определить как L-, так и в-аминокисло-ты в биологических материалах, используя изотопное разбавление. Лишь через пятнадцать лет Берсон и Бен-Эфраим [7] разработали простую методику и применили метод изотопного разбавления для определения оптической чистоты. [c.287]

    На химической секции Конференции было заслушано и обсуждено более 50 сообщений, главным образом но радиохимии, радиационной химии, по методам получения меченых соединений, а также по использованию изотопов при изучении кинетики и механизма химических реакцш и аналитической химии и физико-химическом анализе и др. [c.3]

    При выборе пути синтеза меченого соединения следует соблюдать осторожность, поско.мьку решение этого вопроса наиболее затруднительно и часто не может быть сделано произвольно. То или иное вещество можно обычно синтезировать различными путями, причем число последних бывает иногда весьма велико. Следует также отметить, что использование редкого или дорогого промежуточного соединения, которое исключает возможность проводить синтез с макроколичествами веществ, очень часто полезно при проведении микросинтезов. На начальных стадиях синтеза допустимы низкие выходы, однако после того, как в соединение введен изотоп, выходы реакции должны быть высокими. Предварительный выбор пути синтеза может быть основан на личном вкусе и опыте исследователя. После этого обычно остается еще несколько способов, одинаково заслуживающих внимания. Эти методы следует тщательно исследовать, применяя количества веществ порядка 0,2- 1,0 г. При помощи аналитических весов необходимо проверить все выходы и потери, получающиеся на каждой стадии синтеза. Вероятно, нелишним будет подчеркнуть, что микросинтез очень близок к анализу. Наиболее важным инструментом при проведении микросинтеза являются аналитические вес1)1. При синтезе микроколичеств веществ следует делать точные записи относительно количеств и чистоты исходных веществ, а также промежуточных и конечных продуктов. После того как избран и проверен путь синтеза, необходимо выбрать шкалу количеств веществ, с которыми придется работать в горячем опыте . С этой целью проводят слепые ( холодные ) опыты до тех пор, пока каждая операция не будет осуществляться экспериментатором автоматически и все условия синтеза будут проверены. Эти холодные опыты проводят с теми же реагентами и в той же аппаратуре, которые будут применяться в горячем опыте . Горячий синтез выполняют почти автоматически, и результаты его уже заранее известны. Горячий опыт является обычным термином, распространенным среди исследователей, занимающихся синтезом соединений, меченных радиоактивными изотопами. Горячий опыт является синонимом опыта с использованием радиоактивных изотопов холодные опыты служат для проверки и улучшения того или иного метода. [c.313]

    Результат анализа вычисляется непосредственно пз ус.ловия сохранения постоянным общего количества индикатора, введенного в смесь в виде меченого соединения. Обозначим через х искомое число грамматомов меченого элемента интересующего нас соединения в исходной смеси, а через а—нормальное содержание в нем редкого изотопа (индикатора) в атомных процентах. Пусть в смесь введено у грамматомов этого же элемента в форме того же соединения с содержанием редкого изотопа а- -С , где —избыток содержания редкого изотопа над естественным его содержанием (в атомных процентах). Пусть после смешения и определения изотопного состава содержание редкого изотопа оказалось равным а-1-С, где С—избыток редкого изотопа после смешения против нормального содержания. В соответствии с условием постоянства общего количества грамматомов редкого изотопа можно наннсать [c.95]

    Вышеописанный метод применяли также для элементарного анализа органических соединений с целью определения содержания кислорода [141,142], углерода[143]и азота [144] с использованием изотопов 0 , и N1 . Павеска исследуемого соединения совместно с известным количеством меченого соединения (скажем, Оз" илп N Hg) обычно сжигается или пиролизуется пр11 высокой температуре, а в продуктах сгорания определяется степень разбавления прибавленного меченого изотопа. В идеальном случае можно проводить одновременное определение углерода, азота, водорода и кислорода, используя универсальные меченые соединения, содержащие дейтерий, 14 и 0 , и последовательно определяя все четыре изотопных состава этих элементов в продуктах сгорания. Затруднения, возникающие при определении дейтерия (рассмотрены ниже на стр. 99), иока ограничивают возможности применения этого метода к определениям водорода [144]. [c.97]

    Во всех случаях применения этого метода, изложенных выше возникают химические задачи, заключающиеся в синтезе меченых соединений и преобразовании продуктов реакции в форму, удобную для масс-спектрометрических анализов. Стабильные изотопные индикаторы имеются обычно в виде следующих соединений дейтерий—вода или газ, углерод—цианистый калий или карбонат бария, азот—аммониевая соль и, наконец, кислород—вода или газ. Из них часто изготовляются некоторые промежуточные продукты широкого синтетического применения, такие, как метил-иодид-С , фталимид-Н и азотная кислота-К . Это, однако, не избавляет от необходимости в каждом отдельном случае проводить синтез требуемого соединения [146, 147]. В иринциие синтезы эти одинаково применимы как для радиоактивных, так и для стабильных изотопов. В работе Веннесленда [122] перечислены синтетические соединения, содержащие изотопы углерода и азота со ссылками на опубликованные методы их приготовления. [c.98]


Смотреть страницы где упоминается термин Анализ изотопов и меченых соединений: [c.155]    [c.155]    [c.174]    [c.127]    [c.130]    [c.383]   
Смотреть главы в:

Библиографический указатель трудов ГИПХ с 1919 по 1967 г -> Анализ изотопов и меченых соединений




ПОИСК





Смотрите так же термины и статьи:

Мечение изотопами

ПРИМЕНЕНИЕ РАДИОАКТИВНЫХ ИЗОТОПОВ В ХИМИЧЕСКИХ ИССЛЕДОВАНИЯХ Синтез и анализ меченых соединений

Радиационная химия, ядерные реакции, анализ изотопов и меченых соединений, радиохроматография

меченый



© 2025 chem21.info Реклама на сайте