Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен вторичная

    Однако вследствие большой прочности связи С—Н в этилене в первом случае гораздо более вероятно присоединение радикала к этилену по двойной связи, т.е. реакция роста цепи соседство активного центра практически не влияет на прочность связи вторичного водорода (49, с. 27], так что эта реакция также маловероятна. Вьшолненная в работе [37, с. 418] оценка значений См из данных по содержанию в полиэтилене винильных двойных связей, даже в предположении, что все они образуются при передаче цепи на мономер по реакциям (4.28) и (4.29), дает для нее малое значение См = 3 10" —7 10 . Кроме того, несоответствие экспериментальных данных об объеме и энергии активации передачи цепи на мономер аналогичным величинам, известным для других мономеров, также свидетельствует о практическом отсутствии передачи цепи на мономер при полимеризации этилена [50]. [c.64]


    Линейной потерей энергии (ЛПЭ) называют линейную скорость потери энергии частицей или излучением, проходящим через материал. В первом приближении ЛПЭ может быть вычислена простым делением общей потери энергии частицы на длину ее пути. Такое вычисление, однако, весьма неточно, так как потеря энергии меняется при уменьшении скорости частицы, а энергия ионизирующей частицы не поглощается локально, а передается среде с помощью вторичного излучения. Например, энергия 7-излучения и рентгеновского излучения передается в итоге посредством вторичных электронов, которые имеют широкий спектр энергий с разной ЛПЭ. В тех случаях, когда средний потенциал возбуждения известен, можно ЛПЭ вычислить, например, по уравнению (УП.1) или по другим уравнениям, описывающим иные механизмы потери энергии. Значени.ч ЛПЭ увеличиваются в ряду 7-кванты < электроны высоких энергий < рентгеновское излучение малых энергий < р-частицы < тяжелые частицы. Для электронов, проходящих через полиэтилен, ЛПЭ = (980/ )1 (0,2 ) 10- эВ/нм, при Е — 0,25 МэВ ЛПЭ ==2-10 эВ/нм и возрастает до 23-10- эВ/м при Е = 1 кэВ. [c.214]

    Полистирол блочный с антистатическими свойствами, ТУ 6-05-041-329—71 Полистирол вторичный гранулированный, ТУ 6-05-1438—71 Полистирол суспензионный низковязкий ПС-Н, ТУ 6-05-111-172—72 Полиэтилен вторичный гранулированный, ТУ 6-05-1436—71 Полиэтилен вторичный низкой плотности гранулированный, ТУ 6-05-1437—71 Полиэтилен высокой плотности самозатухающий (ПЛС), ТУ 6-05-1445—72 Полиэтилен высокой плотности (низкого давления) наполненный, [c.574]

    Однако на)ряду с этим в нефтеперерабатывающей промышленности существовали факторы, приведшие к снижению производительности труда это ввод новых трудоемких процессов ухудшение состава сырья, увеличение в структуре производства доли масляного и нефтехимического производства. Как показали расчеты, ввод большей части вторичных процессов, которые, как известно, связаны либо с повышением качества продукции, либо с производством новой продукции (полиэтилен, полипропилен и др.), но отличаются высокой трудоемкостью, приводит к снижению производительности труда. Отрицательное влияние яа производительность труда оказывали также медленное освоение этих процессов и недостатки в методике построения цен, -которая не учитывала качество продукции и эффект у потребителя. Поэтому разработка более обоснованных цен, учитывающих общественную полезность продукции и ее качество, введение надбавок при присвоении продукции Знака качества , а также проведение мероприятий, направленных ца ускорение внедрения новой техники и повышение ее эффективности, обеспечат значительный рост производительности труда. [c.238]


    При окислении полимерных углеводородов соблюдается следующая закономерность. Более легко окисляется водород у третичного атома углерода, затем у вторичного и труднее всего у первичного. Поэтому полимеры, содержащие третичные атомы углерода (например, полипропилен), менее стойки к окислению, чем полиэтилен. По этой же причине разветвленный полиэтилен окисляется легче, чем полиэтилен неразветвленный. [c.87]

    Образующиеся в результате реакций передачи цепи вторичные радикалы способны к дальнейшим превращениям, важнейшими из которых являются реакции, приводящие к образованию в полиэтилене различных видов ненасыщенных групп. [c.53]

    Вместе с другими характеристиками термодинамической гибкости, например длиной сегмента - 1,83 нм, меньшими, чем у других неполярных полимеров (полиэтилен, полипропилен и др.), они свидетельствуют о достаточно высокой гибкости ПИБ в растворе. С другой стороны, в конденсированном состоянии ПИБ обладает относительно жесткой цепочкой, показателем которой служит малая амплитуда либрации - быстрого движения межъядерного вектора С-Н метиленовой группы [8]. Это указывает на большие стерические затруднения у этой группы, с чем связано появление в локальной динамике ПИБ помимо классического сегментального движения ряда вторичных релаксационных процессов (р-процесс, вращение СНз-группы, переход типа жидкость -жидкость и др.) [9 . [c.215]

    Аналогичным по смыслу, но не столь крайним случаем усложнения структуры является разветвленность цепей, когда из нескольких точек главной цепи начинаются вторичные цепи, как это показано на рис. 1.3 для полиэтилена. В полиэтилене низкой плотности, в отличив от линейного полиэтилена высокой плотности, модель цепи которого приведена на рис. 1.1, на каждую молекулу [c.12]

    В процессе структурообразования в полиэтилене низкого давления при температурах от комнатной до 120° и различных растворителях при низких температурах возникают сложные вторичные образования плоскости, спирали, кристаллы. При повышении температуры выше 100° образуются преимущественно пачечные структуры и ленты. Самое большое многообразие вторичных структур наблюдается при 90°. [c.148]

    В стадии плавления перед окончательной переработкой в полипропилен, а в ряде случаев и в полиэтилен, вводят стабилизаторы — ингибиторы окисления. По своей химической структуре полиэтилен близок к парафиновым, а полипропилен к изопарафиновым углеводородам. При длительном контакте с кислородом воздуха, особенно под действием солнечного света, происходит окисление полиолефинов. Естественно, что окисление полипропилена происходит легче, чем полиэтилена, так как связь С — Н у третичных атомов углерода более реакционноспособна, чем у первичных и вторичных атомов. [c.108]

    Влияние наполнителей на температуру плавления и свойства кристаллического полиэтилена высокой плотности (т. пл. 140° С) изучали Каргин и Соголова Авторами установлено, что при взаимодействии полиэтилена с поверхностью твердых частиц наполнителя (антраценом, антрахиноном, коксом, кварцевой мукой, хлористым калием, нафтенатом алюминия, асбестовой мукой и др., химически не взаимодействующими с полимером) температура плавления полиэтилена не меняется, а его механические свойства (прочность, удлинение) изменяются в широких пределах. Это свидетельствует о том, что наполнители разрушают только вторичные структуры в полиэтилене, не затрагивая первичные кристаллические области. [c.267]

    Так, Каргиным и др. при изучении влияния температуры на характер структурообразования обнаружено, что при температурах от 20 до 90° С в полиэтилене низкого давления возникают сложные вторичные образования плоскости, спирали и кристаллы. Выше 100° С образуются преимущественно пачечные структуры и ленты. [c.267]

    Некоторые полимеры имеют высокую кристалличность главным образом из-за склонности их цепей к упаковке, кристалличность же других объясняется сильными вторичными взаимодействиями. Существуют полимеры, кристаллизации которых благоприятствуют оба фактора. Например, полиэтилен с точки зрения склонности к упаковке в кристаллическую форму, по-виднмому, имеет наиболее благоприятную структуру. Очень простая п чрезвычайно регулярная структура его позволяет цепям плотно упаковываться без каких-либо ограничений. Кристаллизации полиэтилена способствует также гибкость его цепей, так как легко реализуются конформации, наиболее выгодные для упаковки. Полиэтилен легко кристаллизуется до высокой степени вследствие его простой и регулярной структуры, несмотря на то что вторичные взаимодействия в нем малы. [c.34]

    Отходы пластмасс подразделяют на производственные и потребления. Направления утилизации технол. отходов (глыбы, слитки, обрезки и др.) мех. переработка с целью приготовления той же продукции, при получении к-рой они образовались, и менее ответств. изделий (напр., с.-х. пленка и мешки для минер, удобрений, тара для упаковки хим. реактивов и товаров бытовой химии, детские игрушки) хим. переработка с получением чистых полимеров, пластификаторов, мономеров и их производных термич. переработка, напр, пиролиз с образованием сырья для орг. синтеза и углеродсодержащего остатка (основа активных углей, используемых в системах очистки отходящих газов и сточных вод). Загрязненные пром. и бытовые отходы применяют для строит, нужд (наполнители разл. изделия-плиты, блоки, трубы, кровля и др.) переработка таких отходов наиб, трудоемка, поскольку связана с их сбором, сортировкой, очисткой от посторонних примесей, уплотнением и гранулированием. Нек-рые виды пластмасс (полиэтилен, полипропилен, поливинилхлорид) способны к биодеструкции, т. е. могут разлагаться под действием бактерий, плесени и грибков для интенсификации процесса добавляют крахмал и Ре Оз, к-рые служат центрами биораспада. Разрушение пластмасс возможно под действием УФ излучения однако продукты распада отходов загрязняют окружающую среду. Осн. направления переработки пиролиз, деполимеризация с получением нсходных продуктов вторичная переработка. [c.436]


    Характеристики процесса диэлектрических потерь как для полиэтилена (7-переход), так и для поликарбоната (р-переход) наиболее отчетливо проявляются в присутствии неассоциированной воды. Как было показано, площади соответствующих пиков увеличиваются прямо пропорционально концентрации неассоциированной воды. Для поликарбоната при температуре на 40 °С ниже температуры р-перехода проявляется также и вторичный пик диэлектрических потерь, характеризующий замерзание воды в кластерах. Для воды в форме кластеров характерно проявление максимума диэлектрических потерь в диапазоне частот мегагерц (полиэтилен) и килогерц (поликарбонат), что было интерпретировано как эффект Максвелла — Вагнера. [c.430]

    М. В. Перрин [22] описывает более ранний этап экспериментальных исследований, приведших к открытию полиэтилена в лабораториях Империал Кемикел Индастриез. Это исследование вначале даже отдаленно не было связано с изучением полимеризации или свойств этилена, а было направлено на получение основных данных о влиянии высокого давления на физические свойства вещества и возможного химического эффекта от применения высокого давления. Специальный опыт, приведший к образованию полимера, предназначался для конденсации бензальдегида с этиленом. Однако при вскрытии автоклава было обнаружено, что бензальдегид остался в неизмененном состоянии, а внутренние стенки автоклава были покрыты белым твердым веществом в виде тонкой пленки. Ввиду того, что последующие опыты сопровождались взрывами, работа была прекращена. Спустя 2 года этот продукт был открыт вторично и снова случайно. Перрин подчеркивает, что факт признания открытия, может быть, является более выдающимся событием, чем само открытие. Фирма Империал Кемикел Индастриез построила небольшой завод и запатентовала полиэтилен в Англии, США и Франции как новое вещество. [c.166]

    Получение сшитого полиэтилена вулканизацией гораздо дешевле и технологически удобнее, чем облучением. Вулканизующийся полиэтилен выпускают под маркой HFDB (США) в виде различных композиций в зависимости от назначения. Для эксплуатации внутри помещений может применяться вулканизованный полиэтилен без стабилизирующих добавок, обладающий очень хорошими электроизоляционными свойствами. Для эксплуатации на открытом воздухе применяется полиэтилен, стабилизированный сажей. При применении небольших количеств сильно диспергированной сажи удается получить вулканизованный полиэтилен (марки HFDB-4204) с хорошими электроизоляционными характеристиками и высокой стойкостью к атмосферным воздействиям. Кабели с такой изоляцией могут применяться в сетях вторичной коммутации в земле и на воздухе при напряжении до 5 кв. [c.105]

    Механохим. разложение м.б. полным или частичным. Пример полного разложения-инициирование ударом распада нек-рых ВВ (напр., азидов). Сравнительно легко разлагаются, выделяя воду, кристаллогидраты, напр, медный купорос и каолин более трудно и лишь частично-нитраты, карбонаты и др. соли. При мех. деструкции полимеров связи осн. цепи разрываются по гомолитич. механизму. Энергетич. выход разрывов с образованием своб. радикалов увеличивается с ростом жесткости полимера от 10 моль/МДж (полиэтилен) до 10 (сшитые полиэфиракрилаты). В результате снижается мол. масса, а вторичные радикальные р-ции приводят к разветвлениям и сшивкам макромолекул. В присут. кислорода своб. радикалы инициируют цепное окисление, к-рое иногда вызывает глубокие изменения структуры и св-в полимера (напр., пластикация каучуков). [c.77]

    Винильные двойные связи в полиэтилене образуются также при обрыве цепн диспропорционированием и при /З-расщеплении вторичных по-лимч)ных радикалов (см. раздел 4.4.5). [c.64]

    Несмотря на преимущества спектроскопии в ближней ИК-области, следует заметить, что в данном случае перед анализом образца требуется проведение тщательной калибровки. Более того, присутствие в образце полиэтилен- или полипропиленглико-ля может ограничить воспроизводимость гидроксильного числа по отношению к длине цепи оксида этилена. Для образцов, содержащих аминогруппы, используются стандартные методы определения первичных, вторичных и третичных аминов. Общее содержание аминов определяется титрованием соляной кислотой в спирте, либо перхлорной кислотой в уксусной кислоте. Первичные амины взаимодействуют с салициловым альдегидом с образованием комплексов, не титруемых соляной кислотой. Титрование в таких условиях дает суммарное содержание вторичных и третичных аминов в образце. Первичные и вторичные амины взаимодействуют с уксусным ангидридом или фенилизоцианатом с образованием соединений, не титруемых кислотой. Проводя такую реакцию, титрованием кислотой определяют только содержание третичных аминов. В результате можно легко сосчитать относительные концентрации первичных, вторичных и третичных аминов в образце. [c.131]

    Наиболее эффективным способом утилизации отходов полимерных материалов является их вторичная (а в некоторых случаях многократная) переработка. Освоены процессы переработки вышедшей из употребления полиэтиленовой пленки в трубы для сельского хозяйства и изделия менее ответственного назначения, а также во вторичную пленку, технологический процесс получения которой начинается с фанулирования использованной пленки, и смешивании полученных фанул с первичным полиэтиленом. [c.435]

    Применение. Двухшнековые машпны тппа DSM применяют ючтд исключительно для подготовки композиций на основе термопластов. В качестве типичных примеров следует упомянуть процессы "омогенизации и окрашивания полиэтиленов высокого и низкого давления (соответственно низкой и высокой плотности) или полипро-зилена, гранулирования пластифицированного ПВХ, загрузки каландров пластифицированным или жестким ПВХ, сплавления ( легирования ) различных термопластов друг с другом и регенерации (вторичной переработки) отходов пластмасс. В табл. 22 приведены данные по производительности двух моделей машин DSM для различных термопластов и технологических процессов [66]. [c.124]

    Пленка и другие изделия нз вторичного ацетата целлюлозы Акриловые полимеры для эубиых протезов Полиэтилен [c.292]

    Полиэтилен Плеика из ПВХ Полистирол и ударопроч ный полистирол Листы из вторичного ацетата целлюлозы ПВХ [c.296]

    Удивительно, что соответствующий максимум не наблюдается при деструкции полиэтилена, полученного полимеризацией мономера. Установлено, что скорость реакции непрерывно уменьщается в интервале степеней превращения 5—95%. Это, возможно, объясняется тем, что, как было показано Оуксом и Ричардсом [37], эта реакция имеет сложную природу. Одновременное протекание быстрой реакции с участием атомов водорода у третичных углеродных атомов и значительно более медленной реакции с участием атомов водорода у вторичных углеродных атомов может привести к появлению максимума в самой начальной стадии реакции, вследствие чего этот максимум и не может быть определен. Недавно был синтезирован неразветвленный полиэтилен обработкой диазометана эфиратом трехфтористого бора. Деструкция этого полимера протекала практически, так же, как и деструкция разветвленного полиэтилена после распада всех боковых ветвей. Максимум на кривых, описывающих скорость реакции, наблюдался при степенях превращения около 25% [43]. [c.67]

    Многочисленные работы, посвященные изучению структуры полимеров, дают возможность представить весь путь возникновения сложных структур в полимерах, осуществляющийся через ряд промежуточных стадий. ]Депные молекулы образуют пачки цепей пачки упаковываются в ленты или плоскости, а из них уже строятся более сложные вторичные структуры [1]. Многоступенчатый характер возникновения структур и последовательность отдельных стадий лучше всего известны пока для полиэтилена [2]. Однако надо отметить, что в большинстве работ по морфологии полиэтилена рассматриваются только единичные кристаллы и сферолиты, хотя этим не исчерпывается все многообразие вторичных структур. Ранее нами было показано, что в зависимости от способов получения полиэтилена (низкого давления, высокого давления и радиационного) процессы структурообразования в них протекают различно [3]. Настоящая работа посвящена вопросу образования вторичных структур в полиэтилене низкого давления. [c.143]

    В предыдущей работе [1] при изучении условий возникновения вторичных структур в полиэтилене низкого давления не учитывалось влияние молекулярного веса полимера. По-видимому, именно это обстоятельство затрудняло получение монокристаллов полиэтилена в условиях быстрого испарения растворителя. Если считать, что основной структурной единицей при образовании и росте кристалла является пачка цепей полимера, то можно было предположить, что для построения монокристалла полимера необходимо наличие однородных не только по строению, но и по величине структурных единиц. Широкое же распределение молекул полимера по молекулярным весам в нефракционировапном полимере будет, очевидно, препятствовать однородному построению пачки, что, в свою очередь, окажет влияние иа дальнейший процесс структурообразования. [c.149]

    Оказалось, что фракции полиэтилена с мол. весом от 21 ООО до 300 ООО образуют в растворе одинаковые вторичные структуры в одном и том же интервале температур. При нанесении кипящего ксилольного раствора на подложку при комнатной температуре получаются кристаллы дендритного характера (рис. 1). Начиная с 40 и до 90° на подложке образуются пластинчатые кристаллы пирамидальной формы, хорошо известные в литературе [5]. На рис. 2 представлена типичная микрофотография, полученная для полиэтилена мол. веса 21 ООО при 70°. На большой плоскости основания, имеющего ромбовидную форму, расположено много более мелких пирамидальных кристал.)1ов. Отдельные слои, образующие соседние кристаллы, перекрываются, 1ю мешая друг другу. На рис. 3 (мол. вес 21 ООО, температура подложки 90°) хорошо видно, что рост кристаллов идет до дислокационному механизму. На рис. 4 приведена микродифракция, снятая с участка монокристалла полиэтилена. Кристаллы получаются в фракционированном полиэтилене низкого давления мо.л. веса от 21 ООО до 300 ООО при температуре подложки от комнатной до 100°. Кроме того, интересно отметить, что изменение концентрации раствора полимера в пределах от 0,001 до 0,1% не сказывается на характере вторичных образований в зависимости от температуры. На рис. 5 (мол. вес 30 ООО, температура 90°) отчетливо видны кристаллы, полученные из 0,1 %-ного ксилольного раствора. Эти кристаллы менее совершенны, чем возникшие в более разбавленном растворе (см. рис. 2). На микрофотографии можно рассмотреть, что утолщения и наросты располагаются чаще всего по краям плоскости основания. Таким образом, фракционированный полиэтилен с мол. весом до 300 ООО при сравнительно низких температурах (до 100°) дает пластинчатые кристаллы. Очевидно, что регулярное строение и одинаковый размер молекулярных цепей значительно облегчают условия образования однородных структурных единиц, что ведет, в свою очередь, к быстрому упорядочению их в более высоко организованные структуры. Выше 100° возникают структуры, подобные структурам в нефракционировапном полиэтилене при этой же температуре [1]. На снимках (рис. 6) появляются полосатые структуры и ленты. Возникшие кое-где плоскости часто образуют завихрения, подобные зародышам сферолитов. Это совпадает с данными Ли Ли-шен, Андреевой и Каргина [6], показавшими, что при 100° происходит резкое ослабление сил связи между отдельными лентами, образующими кристаллы. Начиная с мол. веса ЗОС) ООО и выше характер вторичных структур изменяется. При температуре подложки от комнатной до 90° наряду с пластинчатыми образованиями возникают хорошо сформированные спиралеобразные структуры. На рис. 7 дана микрофотография раствора полиэтилена низкого давления мол. веса 360 ООО при 70°. Одновременно с пластинками хорошо видны типичные спирали. Легко можно рассмотреть, как утолщенные места спирали перерастают в плоскости. Местами видны полосатые структуры. Возникшие спиралевидные образования довольно гибки (рис. 8 мол. вес 30 ООО, температура 90°). [c.150]

    В качестве объекта исследования был выбран линейный полиэтилен Хостален с т. пл. 130° и [т)] = 1,04 в декалине при 135°. Образцы были приготовлены в виде плепок толщиной 2 мм прессованием гранулированного полиэтилена в лабораторном прессе при 220° и давлении 50 атм и последующим вторичным прогревом пленок в пресс-форме при 220° без давления. Полученные таким образом пленки были полностью изотропными. Из пленок вырубали образцы в виде лопаток, с длиной рабочей части 10 лш, растягивали одноосно со скоростью движения нижнего зажима 10 мм1мин при 20, 90 и 110° в ])азрывной машине РМР -250, снабженной термокамерой. [c.340]

    Водороды у третичных углеродных атомов легче отщепляются радикалами, чем водороды у вторичных атомов углерода. Так, полипропилен окисляется значительно быстрее, чем линейный полиэтилен [6], как видно из данных, приведенных на рис. XIП-2. Полиизобутилеп, содержащий меньше метиленовых групп, частично экранированных инертными метильными группами, значительно стабильнее полиэтилена. Однако полистирол, ответвления в молекуле которого расположены так же часто, как у полипропилена, все же окисляется медленно при 100°. Необходимость детального ана-аиза при сравнении полимеров и выбранных для [c.454]

    Были проделаны анализы летучих продуктов, полученных при облучении полиэтилена [335]. Главным продуктом является водород ( 80%), остальное составляют углеводороды, главным образом Са, Сз и С4. Полагают, что боковые ветви в полиэтилене содержат примерно по 5 атомов углерода [338]. После облучения углеводорода gg получаются сходные результаты ( 80% Нг, но несколько меньшее количество углеводородов Сг, Сз и С4), тогда как полиметилен дает 99% водорода 339]. Это указывает на совершенно произвольное действие радиации на полимеры и на разрыв связей как С—Н, так и С—С приведенные данные свидетельствуют о малой вероятности такого разрыва в местах разветвлений (в случае полиэтилена). Стехиометрически выделение водорода означает образование непредельных связей или сшивание, причем в действительности наблюдаются структурные изменения обоих типов. Вероятно, в какой-то степени происходит и расщепление цепи, что доказывается образованием значительного количества летучих углеводородов в случае полиэтилена и углеводорода gg. Вследствие высокого молекулярного веса линейного полимера должно быть исключено (при расщеплении по закону случая) образование значительных количеств летучих углеводородов в процессе облучения. Сравнение летучих продуктов при пиролизе [293] и облучении [335] не показывает сколько-нибудь значительных различий в отношении образующихся углеводородов. Главное различие — образование большого количества водорода во втором случае. Трудно представить себе какую-либо селективность в отношении образования конечных продуктов в результате первичного воздействия радиации, и отсюда любой такой эффект, вероятно, должен быть отнесен к вторичным процессам. В самом деле, приблизительно равные выходы углеводородов Са, Сз и С4 (в случае облучения полиэтилена, имеющего, вероятно, многочисленные ветви С5) вполне совместимы с механизмом расщепления по закону случая. Следующая упрощенная [c.296]

    В линейных полиэтиленах-, несмотря на простоту их молекулярного строения, процессы кристаллизации весьма сложны. В этих полиолефинах сначала начинается первичный процесс кристаллизации, за которым следует вторичная кристаллизация, вклад которой может превышать 40 % от суммарного выхода кристаллической фазы. Вторичный процесс характеризуется резким замедлением кристаллизации, так как протекает более чем на порядок медленнее, чем первичный процесс. Значение показателя Аврами варьируется от 2-3 при низких вкладах от процесса вторичной кристаллизации ( 35 %) до 3,5 при умеренных вкладах ( 45 %), и до 3,5-3,8 — при больших вкладах в кристаллизационный процесс вторичной кристаллизации (55 %). Это указывает на существование сложного механизма кристаллизации, в котором начальная кристаллизация с п = 2 может быть инициирована зародышами, расположенными случайным образом или стержнеподобными включениями. Однако при и = 3 предполагается наличие гетерогенных активных центров и трехмерный рост кристаллических структур. Обычно считается, что кристаллизационный процесс в полиэтилене проходит с участием гетерогенных активных центров. [c.105]

    Химически активным может оказаться только часть всего излучения, которое обычно поглощается данным материалом. Вследствие высокой регулярности своей структуры большинство чистых органических полимеров, полученных синтетическим путем (полиэтилен, полипропилен, поливинилхлорид, по истирод и т. д.), не поглощают свет с длинами волн больше 300 ммкм и, следовательно, не подвергаются действию солнечного света. Тот факт, что эти полимеры зачастую все же разрушаются под действием солнечного света, объясняется присутствием небольших количеств включений или наличием структурных дефектов, которые поглощают свет и оказываются инициаторами деструкции. Подавляющее количество поглощенной световой энергии, как правило, диссипирует путем либо безызлуча-тельных процессов (вращения и колебания), либо вторичного излучения (флуоресценция). [c.356]

    О наличии вторичной кристаллизации в полиуретанах сообщили Дор-фурт [87] и Роледер и Стюарт [332]. Более детальные исследования вторичной кристаллизации были проведены Цахманом и Стюартом [415] на полиэтилентерефталате и Майером [257] на полиэтилене низкого давления. Обнаруженный при этом основной эффект заключался в существенном уменьшении показателя Аврами п [уравнение (33)], после того как основная доля образца была закристаллизована. Наблюдаемое часто 3 конце процесса медленное увеличение степени кристалличности характеризовалось логарифмической зависимостью от времени в течение многих порядков времени, и суммарная скорость этого процесса была более высокой для более высоких температур кристаллизации. Если эксперименты проводятся недостаточно длительное время или приборы недостаточно чувствительны, то вторичную кристаллизацию можно не обнаружить.  [c.220]

    Первое исследование кинетики кристаллизации полиоксиэтилена проведено Манделькерном и др. [264] дилатометрическим методом. Было установлено, что кристаллизация образца молекулярного веса 9 10 - 10 10 может быть аппроксимирована уравнением Аврами со значением показателя = 3. В последующих исследованиях с использованием микроскопии и калориметрии была обнаружена более сложная картина. Начальные стадии кристаллизации иногда характеризовались значением показателя и = 4 или 3, однако для последующих стадий отмечалось уменьшение этого показателя до 2 или 3. В других исследованиях экспериментальные данные удавалось описать этим уравнением во всем интервале превращения со значением показателя 2,0 или 2,5. Длительной медленной вторичной кристаллизации или совершенствования кристаллов, аналогичных тем, которые наблюдаются в полиэтилене, в полиоксиэтилене не обнаружено. В связи с этим анализ результатов на основе уравнения (61) для двухстадийного процесса кристаллизации со значением п = 3 не приводил к лучшему соответствию экспериментальных данных по сравнению с описанием его обычным уравнением Аврами с дробными или непрерывно изменяющимися в течение процесса показателями. В некоторых случаях с помощью оптической микроскопии было установлено, что вслед за образованием на начальных стадиях кристаллизации зародышей с постоянной скоростью наблюдается появление атермических гетерогенных зародышей кристаллизации. Этими особенностями зародышеобразования можно объяснить переменные значения показателя. Аврами (см. табл. 6.2). Для образцов, содержащих низкомолекулярные фракции, по мере развития кристаллизации наблюдалось замедление линейной скорости роста, что является, возможно, указанием на фракционирование при кристаллизации. Часто наблюдаемые при исследовании сферолиты были таких размеров, что на конечных стадиях роста они обычно превышали размеры образца и прекращали, расти, уменьшая таким образом суммарную скорость кристаллизации. Один лишь этот эффект может объяснить многие из наблюдаемых расхождений. [c.307]

    Очень слабую тенденцию к кристаллизации, как правило, имеют такие полимеры, как полистирол, поливинилхлорид, иоли-метилметакрилат. Это обусловлено структурной нерегулярностью полимеров этого типа. Боковые заместители повышают жесткость цепи полимера и затрудняют их упаковку, хотя из-за диполь-дипольного взаимодействия между такими группами вторичные силы более ярко выражены, чем в полиэтилене. Плохо кристаллизуются также полимеры с жесткими циклическими фрагментами в основной полимерной цепи, например целлюлоза и полиэтилен-терефталат. Вследствие очень большого числа поперечных связей, приводящего к высокой жесткости полимера, не криста.ллизуются фенолформальдегидные и мочевиноформальдегидные полимеры. [c.34]

    Ммеется сравните.тьно. мало исследовапий сильно структурированных (сшитых) [10] и наполненных [41, 42] полимеров в стеклообразном состоянии. Модуль для таких полимеров значительно возрастает. Так, в полиэтилене (при 100° и низких звуковых частотах) Е возрастает от 0,65-10 до 1,0-10" дин, см- при сильном структурировании облучение.м, а введение в вулканизованный каучук [7] 50 весовых частей сажи увеличивает предельное значенне 6 при высоких частотах от 1,0-10 до 3,0-10 . Однако о вторичных механизмах потерь, характерных д.тя стек.тообразпого состояния, имеется мало сведений. [c.382]


Библиография для Полиэтилен вторичная: [c.416]   
Смотреть страницы где упоминается термин Полиэтилен вторичная: [c.358]    [c.106]    [c.360]    [c.140]    [c.70]    [c.146]    [c.25]    [c.224]    [c.151]    [c.45]    [c.56]    [c.45]    [c.221]   
Физика макромолекул Том 2 (1979) -- [ c.220 , c.224 ]




ПОИСК







© 2024 chem21.info Реклама на сайте