Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты физическая Характеристик

    Объясните резкое возрастание активности взаимодействия щелочных металлов с водой при переходе от лития к цезию. Для ответа на вопрос используйте данные таблицы 5 (см. приложение), причем не только такие, как изменение энтальпии взаимодействия щелочных металлов с водой и гидратации их ионов, но и такие физические характеристики, как температура плавления и плотность. [c.159]


    Электропроводность служит важнейшей физической характеристикой металлического состояния. Металлы принадлежат к проводникам 1-го рода, в которых электропроводность осуществляется электронами. У проводников 2-го рода, например расплавов солей или растворов электролитов, ионный механизм проводимости. [c.360]

Таблица В.25. Некоторые физические характеристики галогенид-ионов Таблица В.25. <a href="/info/1457516">Некоторые физические характеристики</a> галогенид-ионов
    Марганец, железо, кобальт и медь имеют незаполненные -орбитали, что определяет ряд уникальных химических и физических характеристик ионов переходных металлов. Они обладают пере- [c.562]

    Определение значений радиусов в ионных соединениях требует какой-либо гипотезы, так как опыт дает расстояние лишь между разными ионами. Составлено несколько таблиц радиусов ионов. В одной из них принято, что в решетках с большим анионом и маленьким катионом (например, в ЬЛ) соприкасаются анионы. Поэтому радиус 1 находится как половина соответствующего расстояния. В других таблицах используются какие-либо физические характеристики ионов, зависящие от их радиусов (например, в гл. XXV будет показано, что рефракция ионов пропорциональна кубу радиуса). [c.632]

    Чувствительность электрогравиметрии ограничена возможностью установления различий в массе электрода до и после электролиза. Хорошие осадки должны прочно прилипать к электроду, быть мелкокристаллическими, плотными и гладкими, чтобы при промывании не было механических потерь. Их физические характеристики зависят от форм существования ионов в растворе, присутствия поверхностно-активных веществ и других факторов, которые не всегда можно установить. К факторам, влияющим на свойства осадков, относятся также выделение газа, плотность тока и температура раствора. [c.544]

    Поскольку электронная конфигурация атомов химических элементов изменяется периодически с ростом заряда их ядер, все свойства, определяемые электронным строением, закономерно изменяются по периодам и группам периодической системы К таким свойствам относятся прежде всего различные химические и многие физические характеристики элементов атомные и ионные радиусы, ионизационные потенциалы, сродство к электрону, степень окисления, атомный объем и др Периодически изменяются также многие химические и физические свойства простых и сложных веществ, образованных элементами-аналогами [c.46]


    Изучение изоморфизма в искусственных слюдах важно как с научной, так и с практической сторон. Возможность контролировать состав необходима для разработки слюд с заранее заданными физическими характеристиками, наиболее удовлетворяющими той или иной области техники слюды с более высокой по отнощению к калиевому фторфлогопиту температурной устойчивостью, гибкостью, расщепляемостью, диэлектрической постоянной и т. д. Особый интерес представляет взаимосвязь между изоморфизмом и ростовыми свойствами слюд (скорость роста, морфология и совершенство кристаллов). Возможна экспериментальная проверка степени совершенства тех или иных изоморфных замещений в слюдах по их влиянию на рост кристаллов. Действительно, чем большим по своим стерическим и энергетическим параметрам сродством к данному типу кристаллической решетки обладает ион, тем, следовательно, положительнее будет сказываться его присутствие на росте кристаллов и, наоборот, чем больше отличие в свойствах замещаемых ионов, тем более дефектным будет расти кристалл. [c.9]

    Какие характеристики липидного бислоя можно изучать, используя БЛМ как мембранную модель На рисунке 302 показана схема экспериментальной установки, обычно применяемой для проведения измерений на бислойных мембранах. Лучше всего эта модельная система подходит для измерения электрических характеристик липидного бислоя, таких, как электрическая емкость, проводимость, потенциал пробоя, мембранные потенциалы и др. Именно благодаря возможности проведения разнообразных электрических измерений БЛМ сыграли исключительно важную роль в изучении ионного транспорта через биологические мембраны. В таблице 25 сравниваются некоторые физические характеристики БЛМ и биологических мембран. [c.574]

    Попович и сотр. [34, 35] осуществили несколько иной подход, в котором подбирался электролит сравнения с катионами и анионами большего или приблизительно одинакового размера, обладающими сходными химическими структурами. Свободные энергии переноса этих ионов считались одинаковыми, поскольку их химические и физические характеристики были сходными. Поэтому ДС° для электролита сравнения (определяемое по измерению растворимости) можно было поровну распределить между обоими ионами. [c.39]

    Химические изменения при р-распаде являются своеобразным сочетанием ядерных, атомных и молекулярных процессов. Отличительной особенностью этих процессов, не зависящей от энергии и других характеристик ядерного перехода, можно считать возникновение в чрезвычайно короткий промежуток времени первичных молекулярных ионов, содержащих превращенные атомы (атомы соседнего элемента). Последующие превращения, происходящие с такими ионами, зависят от ядерно-физических характеристик р-распада, свойств дочернего элемента, состава и строения молекул материнского соединения, их фазового состояния и т. д. В определенных условиях проблема химических изменений при р-распаде может быть сведена к химии сложных молекул лярных ионов, в частности к химии однократно заряженных молекулярных ионов [134, 135]. [c.70]

    Показано, что суммарный потенциал стеклянной мембраны возникает за счет двух источников. Во-первых, из-за различия потенциалов на поверхностях раздела фаз, связанного с ионообменными процессами на внутреннем и внешнем гидратированных гелевых слоях, находящихся в контакте с водой. Во-вторых, из-за диффузионных потенциалов схожих с жидкостными диффузионными потенциалами, которые обусловлены различной подвижностью протонов и ионов лития (или других катионов щелочных металлов) внутри внутреннего и внешнего гидратированных гелевых слоев. Однако, если протоны полностью насыщают все ионообменные центры, на обеих поверхностях гидратированных гелевых слоев, как и должно быть в правильно функционирующем электроде для определения pH, и если обе поверхности гелевых слоев идентичны по своим физическим характеристикам, то два диффузионных потенциала должны компенсироваться. Тогда суммарный потенциал стеклянной мембраны будет представлять собой сумму двух потенциалов на поверхностях раздела фаз Е и Е2, показанных на рис. 11-4, т. е. [c.374]

    Кроме таких физических характеристик, как набухание и проницаемость, рассмотренных в связи с ионным обменом, авторы исследовали выщелачивание торфа. Известно, что из необработанного торфа легко вымываются водой фульвокислоты. Из модифицированных торфов помимо этого вымываются еще и растворимые продукты разложения, образовавшиеся при обработке кислот. Поэтому, если не принять соответствующих мер, возможно вторичное загрязнение воды при очистке органическими веществами. [c.249]

    Эти законы создают основу для анализа электрохимических систем. Уравнение потока (100-1) определяет коэффициенты переноса — подвижность щ и коэффициент диффузии иона в разбавленном растворе. Теория разбавленных растворов успешно применялась ко многим электрохимическим системам. Мы будем считать физические характеристики растворов постоянными. Это позволяет простейшим путем выявить основные факторы, причем получаемые результаты находят весьма широкое применение. [c.335]


    Динамический Штарк-эффект. Этот эффект проявляется в очень сильных световых полях. Начиная с некоторой критической величины интенсивности лазеров, число образуемых ионов перестаёт расти и даже уменьшается при дальнейшем росте интенсивности света (рис. 8.2.24,а). Это явление получило название ионизационных потерь, или стабилизации атома [79. Ионизационные потери, сдвиг и расщепление линии поглощения на две и более компонент (рис. 8.2.24,6) и другие изменения в характере переходов в атоме получили название динамического Штарк-эффекта в сильных лазерных полях, суть которого объясняется существенным изменением физических характеристик атома в быстропеременном электрическом поле и образованием нового состояния атом + поле [80]. [c.410]

    Первый основан на постоянстве геометрических факторов и других физических характеристик прибора в рамках одного опыта, т. е. на постоянстве константы А в уравнении (1.34) при последовательном измерении двух интенсивностей ионных токов, один из которых принадлежит стандарту с известным давлением пара, а другой — исследуемому веществу [c.27]

    Полученные результаты практически без исключения относятся к природным кристаллам или спресованным порошкам, т. е. к материалам, которым трудно дать точную химическую или физическую характеристику. Значительные качественные различия между образцами дают основания подозревать, что случайные загрязнения, которые всегда встречаются в природных кристаллах, играют в проводимости главную роль. Хотя в отдельных случаях и было установлено, например, Е. Варбургом, что имеет место электролитическая проводимость, но тем не менее все еще не был решен вопрос о том, могут ли ионы самой кристаллической решетки принимать участие в проводимости. Однако относительно поведения химически чистых кристаллов уже заранее могут быть сделаны следующие предположения. [c.174]

    Однако малая величина КОЧ не облегчает их определения. Значения факторов коррекции зависят от физических характеристик вещества, в частности, от сечений ионизации атомов и энергии их связи в твердом теле, а также от многих условий эксперимента, ряд которых (например, напряжение пробоя вакуумного промежутка и расположение разряда относительно фокусной точки ионно-оптической системы) контролировать довольно сложно [1]. Поэтому экспериментальные значения КОЧ плохо воспроизводятся во времени и не повторяются на других приборах. [c.204]

    Такая обратимость ряда селективности является примером симметричного изменения свойств ионов редкоземельных элементов . До сих пор такие эффекты наблюдали лишь на физических характеристиках (окраска ионов, поведение в магнитном поле и т. д.). [c.196]

    Плотность является важнейшей физической характеристикой ионитов. На различии плотностей катионитов и анионитов основаны некоторые способы разделения их смесей (гл. III) для раздельной регенерации. Иониты различной природы могут значительно отличаться по плотности, величина которой зависит от природы исходных мономеров, их соотношения в полученной матрице, а также природы фиксированных ионов и противоионов. Плотность [c.36]

    В отличие от ионов, имеющих только положительный или только отрицательный заряд, цвиттер-иои аминокислоты, несущий одновременно и положительный и отрицательный заряды, не мигрирует в электрическом иоле ни к катоду, ни к аноду. При pH растворителя, при котором концентрации анионных и катионных форм идентичны, миграции аминокислоты в электрическом поле вообще не наблюдается. Это значение pH называется изоэлектрической точкой и является важной физической характеристикой аминокислоты. Изоэлектрическую точку несложно найти, зная константы ионизации. Так, для глицина [c.258]

    Физические характеристики некоторых ионно-чувствительных пластин [c.110]

    Развитие работ по совершенствованию систем ионных радиусов пошло по трем направлениям по линии чисто эмпирического улучшения систем ионных радиусов, включая увеличение числа всевозможных поправок на валентность и координацию атомов по пути расчета радиусов из других физических характеристик атомов по направлению теоретического анализа распределения электронной плотности атомов в кристаллах. В каждом из перечисленных направлений были опубликованы десятки работ, мы остановимся лишь на основных из них. [c.123]

    Несмотря на большое структурное сходство катализаторов межфазного переноса с поверхностно-активными веществами, они весьма различаются по каталитическому действию. Высокоэффективные катализаторы межфазного переноса обычно являются плохими поверхностно-активными веществами. Кинетические данные и способность ониевых солей ускорять реакции даже в неполярных средах подтверждают предположение, что суть их каталитического действия заключается не в образовании мицелл, а в создании каталитического цикла, включающего обмен ионами. Было показано [9], что реакция между 1-хлор-октаном и цианидом натрия катализируется как анионными поверхностно-активными веществами (например, додецилбен-золсульфонатом натрия), так и неионными поверхностно-активными веществами (например, продуктами реакции додеканола и тетрадеканола с 6 моль этиленоксида) однако скорости реакции при этом в 100—1000 раз ниже, чем при применении четвертичных аммониевых солей. Таким образом, мицеллярный катализ можно, конечно, рассматривать как межфазный, однако ои обладает своей спецификой и далее не будет обсуждаться в данной книге (см. обзоры [10—131). Отметим, однако, что, как правило, поверхностно-активные вещества тормозят реакции в двухфазной системе. Это, очевидно, связано с тем, что образование мицелл изменяет физические характеристики системы и, кроме того, большая часть поверхности раздела фаз занимается поверхностно-активным, веществом, что приводит к вытеснению катализатора межфазного переноса. Именно поэтому для каждой системы существует свой оптимальный размер катиона, когда он еще остается катализатором межфазного переноса, но уже не является поверхностно-активным веществом. [c.16]

    Большинство исследователей склоняются к мысли, что осаждение атомов металла при потенциалах ниже равновесного следует рассматривать как результат большей свободной энергии адсорбции атомов металла на чужеродной подложке (подложке из другого металла), чем на том же металле [91 184 188 193 194 204 221 241 243 244]. На этой основе были предложены модели ДФО, связывающие избыточную свободную энергию адсорбции, пропорциональную А м = Еы — Er ( м — потенциал выделения М на 71 1, а — равновесный потенциал металла М в данных условиях), с физическими характеристиками металлов М и и их иогюв [91 204 221 251 255], в частности с работами выхода электронов и электроотрицательностями. Так как характер распределения металла по поверхности и работа адсорбции зависят от состава раствора и особенно от присутствия поверхностно-активных веществ, то и в этом случае комбинация ионов тяжелых металлов (в концентрациях, исключающих контактный обмен, но не ДФО) с ПАОВ может оказаться весьма эффективной и экономичной антикоррозионной добавкой. [c.89]

    Контроль за физико-химической характеристикой воды обеспечивает получение информации как о строении пласта, геолого-физической характеристике, так и о характеристике нефти. Наиболее простой и легкоопределяемый параметр— общая плотность воды, которая характеризует концентрацию определяющих солей в воде. По химическому составу пластовые воды могут быть представлены от хлоркальциевых высококонцентрированных до слабоконцентрированных гидрокарбонатнонатриевых растворов. Как и при контроле за свойствами нефти определяются базовая, эталонная и рабочие характеристики воды. При этом на содержание ионов исследуются пластовая, пресная и попутная вода на дату предполагаемого начала внедрения технологии ПНО. Определение иона хлора (С1 ) осуществляется методом его осаждения под воздействием азотнокислой ртути  [c.91]

    Гомеополярная связь — вид химической связи. См. Ковалентная связь. Гомогенная система (от греч. homos — равный, одинаковый) — физико-химическая система, состоящая из одной фазы. В Г. с. из двух и более химических компонентов каждый компонент распределен в массе другого в виде молекул, атомов, ионов. Составные части Г. с. нельзя отделить друг от друга механическим путем. Все физические характеристики Г. с. одинаковы во всех частях или непрерывно изменяются от точки к точке. Примеры F. с. лед, жидкие или твердые растворы, смесь газов и др. [c.42]

    Обсуждение структуры и физических свойств бинарных фторидов выходит за рамки данной главы, однако для выбора фторирующего агента при синтезах известных или новых соединений решающее значение имеют определенные физические характеристики. В связи с этим в табл. 1 приведены температуры плавления и кипения и критические давления для некоторых наиболее важных фторидов. При этом следует отметить следующее при рассмотрении сверху вниз элементов любой группы периодической системы летучесть соединений МР уменьшается (часто довольно резко) при переходе от третьего к четвертому ряду. Однако эти резкие изменения не означают перехода от ковалентного к ионному типу связи. Скорее всего большинство из них отражает изменение в координационном числе, т. е. переход от молекулярной решетки к полимерной. Так, 31Р4 и ОеР4 образуют молекулярные решетки и испаряются при низких температурах, в то время как ЗпР4, [c.307]

    Для очистки от тория как индикаторных, так и миллиграммовых количеств урана в лабораторной практике чаще всего пользуются этиловым эфиром из-за его доступности, хороших физических характеристик и большей специфичности по сравнению с другими растворителями. Процесс ведут в растворах 0,1 — 1 М HNO3 в присутствии высаливателей — нитратов магния или аммония [1013, 1185]. Торий при этом не переходит в органическую фазу, так как для его экстракции нужны более жесткие условия высаливания (см. стр. 121). Ионы, обрл-зуЕощие с ураном комплексные соединения, мешают экстракции. [c.140]

    М растворы трифенилгидроксида олова(ГУ) в бензоле или хлороформе применяют в активационном анализе для отделения Вг-ионов от ряда катионов и анионов, но они не являются специфичными экстрагентами. Из водных растворов, содержащих в 20 мл 0,5—1,0 мл конц. Н2304 или НКОз, количественно извлекаются и бром, и хлор, ио благоприятные ядерно-физические характеристики соответствующих изотопов допускают определение брома (а при не очень больших количествах последнего — и хлора) без дополнительного разделения [510]. [c.53]

    Одной из классических гравиметрических методик является осаждение гидроксидов алюминия, хрома или железа при добавлении водного раствора аммиака к растворам, содержащим один из этих элементов. В результате реакции образуется, однако, объемистый и студенистый осадок, чем объясняются М1ногочислен1ные трудно сти при фильтровании и промывании, а также возможность соосаждения других катионов и анионов. Эти трудности можно преодолеть, если использовать метод гомогенного осаждения. Так, pH раствора иона алюминия подбирают таким образом, чтобы при этом не выпадал гидроксид алюминия, затем добавляют необходимое количество карбамида, и раствор нагревают до тех пор, пока гидролиз карбамида не увеличит pH настолько, что гидроксид алюминия осадится количественно. Полученный таким путем осадок имеет лучшие физические характеристики— высокую плотность и кристалличность. ПО Сле прокаливания гидроксид алюминия превращается в о(ксид алюминия А1гОз — превосходную весовую форму для гравиметрического определения алюминия. [c.231]

    Осаждение сульфидов. Многие ионы металлов образуют нерастворимые сульфиды, растворимость (которых очень зависитот pH, потому что сероводород является очень слабой кислотой. Когда сульфиды осаждаются при пропускании газообразного сероводорода через раствор, полученные осадки ие обладают нужными физическими характеристиками, не говоря уже о неприятном запахе я токсичности самого сероводорода. Сульфиды металлов можно, однако, гомогенно осадить в результате медленного гидролиза тиоацетамида, который катализируется кислотой или щелочью [c.232]

    Условия осаждения заметно влияют на физические характеристики осадка сульфата бария. Например, частицы осадка из относительно разбавленного раствора являются более совершенными кристаллами, чем те, которые образуются из более концентрированных растворов. Кристаллы, осажденные при более иизком значении pH, меньше, но более совершенны, чем те, которые получены при высоком pH. На размер кристаллов сульфата бария может влиять даже такой, казалось бы, (несущественный фактор, как то, является ли раствор хлорида бария, применяемый для осаждения сульфат-иона, свежеприготовленным или старым. [c.246]

    С квантово-механической точки зрения химическая частица (нейтральная молекула, свободный радикал или молекулярный ион) представляет собой систему, состоящую из ядер и электронов. Если мы ставим вопрос о том, может ли некоторая совокупность из ядер и электронов образовать устойчивую (способную существовать как единое целое, не распадаясь самопроизвольно) химическую частицу, каково будет строение и возможные состояния этой частицы, каковы будут ее физические характеристики (геометрическая конфигурация ядер, энергия, распределение положительного и отрицательного заряда и т. п.), то эта задача может быть рещена на основе системы постулатов и представлений квантовой механики. Согласно основным положениям квантовой механики любое реально осуществляющееся состояние системы из ядер и электронов описывается некоторой функцией Ч ", так называемой волновой функцией, которая зависит, вообще говоря, от координат и спиновых состояний всех частиц, входящих в систему. Волновая функция Ч " должна удовлетворять ряду общих требований, накладываемых квантовой механикой на все волновые функции . [c.85]

    Помимо катионов из сточных вод следует удалять и анионы. Для этого необходима разработка дешевых и доступных анионитов. Это особенно актуально в связи с тем, что химическая и термическая устойчивость анионитов ниже, чем катионитов [31J. Для получения недорогих анионитов изучали относительно простые химические способы обработки торфа. Бриттен [32] запатентовал получение торфа-анионита с помощью азотной кислоты. Получен амфотерный ионит в результате обработки гуминовых кислот фенилендиамйном и последующей поликонденсацией с альдегидом [33]. В работе [25] рассматривается действие этилендиамина (ЭДА) на торф, модифицированный серной кислотой. Алифатический амин был использован потому, что он является не таким слабым основанием, как ароматические амины. Модифицированный торф был выбран из-за наличия дополнительных карбоксильных групп, полученных при кислотной обработке. Недостатком этого метода является то, что торф выщелачивается в основных растворах. Поэтому для создания более мягких условий, чем кипячение с раствором ЭДА, желательно совместно использовать амины и амиды. Предложено использовать тионилхлориды для образования в модифицированном торфе до обработки ЭДА хлорангидридов. Были предприняты попытки создать сильноосновный ионит, получив четвертичное аммониевое основание при действии метилиодида и диметилсульфата на слабоосновные аминогруппы. Как и для катионитов, были изучены физические характеристики полученных анионитов, а именно обменная емкость. Было исследовано также выщелачивание и набухание в зависимости от pH. [c.255]

    Рассмотрим задачу о распространении хлоридного иона по реке Манчарке длиной 9,1 км [Абдрахманов, Кудряшева, Попов, 1995], являющегося главным компонентом солевого состава, участвующего в смешении рассолов и регламентирующего использование воды для хозяйственно-питьевыхцелей, орошенияипр. Физические характеристики реки следующие уровень воды y x,t) в некоторый начальный момент времени изменяется от 0,1 м в истоке реки (х=0) до 0,12 м в устье (х = 9,1 км). Ширина реки В(х) увеличивается от 0,5 м (при х = О км), до 3 м (при х = 9,1 км). Допустим, что на рассматриваемом участке профиль русла реки прямоугольный, поэтому площадь поперечного сечения выразится уравнением  [c.250]

    Теория Томаса и Томпкинса, как и теория Мотта основываются па недоказанном существовании подвижных частиц тем самым они подчеркивают необходимость исследования физических характеристик азида бария. Тем не менее теория Томпкинса может быть приведена в согласие с более новыми экспериментальными данными, если иметь в виду, что ядра образуются на по существу аморфных участках кристаллической решетки, где обычные валентная зона и зона проводимости твердого вещества и переходы между ними заменяются на процессы переноса зарядов между почти независимыми атомами и ионами. Это означает, что F-центр может быть относительно устойчив только па расстоянии, равном небольшому числу атомных расстояний от положительной дырки. Таким образом, в пределах каждого аморфного вкрапления процессы возбуждения, ведущие к разложению, могут происходить так, как это описано Томасом и Томпкинсом. Если в пределах одного и того же вкрапления произойдут три таких последовательных бимолекулярных процесса, то образовавшееся при этом скопление из шести F-центров (или трех атомов Ва) способно катализировать прямой перенос электронов на это скопление. Это скопление представляет собой медленно растущее ядро. По мере роста оно присоединяет другие F-центры (атомы Ва), находящиеся в пределах вкрапления, пока не станет нормальным металлическим круглым ядром. В рамках этой модели небольшие дозы облучения, создавая анионные вакансии и электроны, могут обеспечить функционирование большего числа аморфных вкраплений в качестве потенциальных центров образования ядер. Большие дозы облучения могут оказывать комбинированное действие, снижая в некоторых случаях до нуля число стадий термической активации, необходимых для образования активно растущего ядра, [c.233]

    Основные принципы современной теории стереохимии относительно просты. Обычно необходимы некоторые физические характеристики для того, чтобы сделать выбор из двух или большего числа энергетически возможных конфигураций. Прежде всего нужно различать два крайних типа межатомной связи—злектровалент-ную, или ионную, и ковалентную. Электровалентность обусловливает возникновение решетки из заряженных ионов расположение этих ионов определяется их числом и численным соотношением, размерами и зарядами. В настоящей главе ионные решетки будут рассмотрены лишь постольку, поскольку они встречаются при агрегации комплексных ионов. [c.246]

    Из данных главы II видно, что ацетилен в комплексах и этинильных соединениях различных металлов подвергается сильному воздействию металла, приводящему к существенному изменению физических характеристик и химического поведения молекулы ацетилена. Механизм этого воздействия, как уже отмечалось, описывается двумя типами связи — донорно-акцепторной и дативной, образующимися за счет свободных орбиталей металла и его -электронов. Применение концепции активации кратных связей в каталитических синтезах, основанной на донорно-акцепторном, механизме (участие л-электронов кратной связи и свободных орбиталей различных ионов в образовании я-комплексов) началось с работ Дьюара [424, 428] и получило пшрокое распространение в работах Саломона [666], Шилова [667], Сыркина [433, 668], Вартаняна [669], Вестина [477] и Флида [4—5, 8]. [c.185]

    Основное препятствие при удалении микрокомпонента из солей рубидия и цезия — это изоморфная сокристаллизация. В применявшихся ранее соединениях для целей разделения она не могла быть устранена. При выборе таких соединений обычно не учитывался тот факт, что на изоморфную кристаллизацию большое влияние оказывает поляризация ионов. Если степень поляризации сильно различается, то даже при равенстве радиусов ионов можно избежать образования изоморфных смесей. Поляризуемость (деформируемость) и поляризующая способность элементов, как известно, вообще весьма существенно сказывается на их химическом поведении, в частности на устойчивости соединений. Что же касается близких по свойствам щелочных элементов, то как раз среди их немногих наиболее различающихся физических характеристик одно из первых мест принадлежит поляризуемости ионов (коэффициент поляризуемости К — 0,87, Rb — 1,87, s — 2,79). В связи с этим большой интерес представляют такие соединения, в которых взаимная поляризация ионов особенно валика. В этом отношении среди различных комплексных соединений несомненно выделяются изо-или гетерополигалогениды щелочных элементов [191, 192] или, иначе, их анионгалогенааты [193]. [c.87]

    Константа диссоциации характеризует силу кислоты или основания константа диссоциации у сильных кислот и оснований настолько велика, что они диссоциируют практически нацело слабые кислоты и основания диссоциируют незначительно. Определяемые обычным путем константы диссоциации — постоянные величины лищь в данном растворителе, поэтому сила кислот и оснований сравнивается по значениям Ка или Къ только для данного растворителя. В различных растворителях эти константы различны, т. е. сила кислот и оснований зависит от химической природы растворителя и физических его свойств. Химическая природа характеризуется протонно-донорными и протонно-акцепторными свойствами растворителя и химическим взаимодействием молекул растворителя с молекулами и ионами кислоты или основания. Физическая характеристика связана прежде всего с диэлектрической постоянной растворителя, влияющей на энергию межионного взаимодействия. [c.59]

    Существует несколько способов оценки доли ионной связи в реальных кристаллах [8]. Чаще всего реальное распределение электронной плотности в твердых телах характеризуют эмпирической величиной — так называемым эффективным зарядом иона, определяемым из измерений каких-либо физических характеристик кристалла (электрических, магнитных, оптических и др.). Числовое значение эффективного заряда подбирается таким образом, чтобы путем подстановки его в формулы классической физики ионных кристаллов получить экспериментальное значение измеряемой физической величины. При таком определении эффективных зарядов совершенно естественно, что их значения, найденные с помощью измерений различных физических характеристик, должны различаться. Однако эти различия сравнительно невелики, поэтому можно считать, что экспериментальные значения эффективных зарядов близки к значениям истинного заряда ионов, т. е. к ве-шичине локализованного из них электрического заряда, л 1 В табл. 1.1 приведены отношения эффективных зарядов Ч ионов 2 к номинальным значениям валентностей г, предусмат- г иваемым классической моделью, для кристаллов бинарных со-единений. Эти отношения убедительно показывают ограниченность классической ионной модели твердого тела. Эффективные заряды ионов близки к номинальным только для галогенидов щелочных и частично щелочноземельных металлов. Для оксидов заряд иона кислорода близок к —1, а для халькогенидов и прочих соединений заряды анионов по абсолютной величине существенно меньше единицы. [c.17]

    Физические характеристики этих ионно-чувствительных слоев были детально обсуждены несколькими исследователями (Мак-Кри, 19666, 1967, 1971 Вагнер, Блютнер, 1965 Вернер, Нью-венхьюзен, 1967 Хениг и др., 1967а). [c.109]


Смотреть страницы где упоминается термин Иониты физическая Характеристик: [c.162]   
Ионообменная технология (1959) -- [ c.30 , c.238 ]

Ионообменная технология (1959) -- [ c.30 , c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Физический смысл термодинамических характеристик ионов в растворах



© 2025 chem21.info Реклама на сайте