Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галоидные механизмы

    О механизме реакции десульфирования пока еще ничего неизвестна. Он напоминает разложение галоидных солей диазония  [c.387]

    Предложен механизм реакции (LXX), включающий превращение галоидного алкила в карбоний-ион под влиянием галоидного металла с последующей реакцией карбоний-иона с ароматическими углеводородами [256]  [c.428]

    Каталитическое действие галоидных солей алюминия и фтористых соединений, а также механизм изомерных превращений гомологов ароматических углеводородов g подробно рассмотрены в монографиях [3, 4]. Галоидные соли алюминия в промышленных установках изомеризации применения не нашли. Это объясняется их высокой коррозионной агрессивностью в присутствии влаги и сложностью регенерации. Применение в качестве катализатора фтористого водорода в смеси с трехфтористым бором позволило разработать эффективный процесс изомеризации. Однако наибольшее распространение в промышленной практике получили катализаторы на основе окиси алюминия и алюмосиликатов. [c.152]


    Приведите примеры галоидных алкилов, для которых реакция гидролиза по механизму 3]у2 протекает легче. Рассмотрите механизм этой реакции. Какова геометрия переходного состояния Укажите условия, способствующие протеканию 5 у.2-реакций. [c.42]

    Зайцевым было сформулировано правило, согласно которому отщепление Н — X (где X — галоген) от галоидных алкилов по механизму Е происходит таким образом, что водород уходит от наименее гидрогенизированного атома углерода. Это объясняется тем, что сольволиз галоидного алкила приводит к возникновению промежуточного органического катиона, который может далее отщепить Н"" двумя различными путями и образовать два непредельных изомера 1 и П [c.201]

    Гавриил Гавриилович Густавсон (1842—1908)—выдающийся русский химик. Первые работы Г. Г. Густавсона были проведены под руководством Д. И. Менделеева и относились к реакциям обмена безводных солей металлов. Им было открыто каталитическое действие галоидных солем алюминия иа некоторые реакции ароматических соединений. Это открытие было позднее применено Фриделем и Крафтсом во Франции к известной реакции алкилирования ароматических соединений. Механизм этой реакции подробно изучил Густавсон. Он же открыл общую реакцик> синтеза циклопропановых углеводородов отщеплением цинком двух атомов брома от дибромидов  [c.424]

    Наконец, следует подчеркнуть, что окончательная трактовка механизма КР титановых сплавов является преждевременной. Либо экспериментальные методы, либо экспериментальные результаты недостаточно детализированы или точны для того, чтобы создать основу для любой количественной теории, описывающей процессы, происходящие в вершине трещины. Установлено, что определенные компоненты среды могут вызывать растрескивание, например газообразный водород, жидкая ртуть, ионы хлора в расплавленных солях. Однако использование таких аргументов, как потому что растрескивание происходит в газообразном водороде или растрескивание в водном растворе вследствие этого элемента , или потому что растрескивание происходит в СС , или хлор-ионы относятся к опасным компонентам в водных растворах , кажется необоснованным. Полемика по поводу роли водорода или галоидных ионов в процессе КР титановых сплавов по-прежнему остается проблематичной. [c.432]

    Впервые галоидные соли алюминия были применены в качестве катализаторов органических реакций Г. Г. Густавсоном. Особенно большое значение имеют его работы по изучению механизма реакции взаимодействия роматических углеводородов с галоидалкилами в присутствии галогенидов алюминия. [См. Г. Густавсон, ЖРФХО, 10, 390 (1871) С. г., 136, 1065 (1903) 140, 940 (1905)]. Примечание редактора.  [c.291]


    В целом можно сделать вывод, что увеличение напряженности молекулы галоидного алкила вследствие взаимного отталкивания атомов и групп ведет к увеличению скоростей реакций, протекаюш,их по моно-молекулярному механизму Такое явление называется простран- [c.517]

    Данные об анодном растворении германия немногочисленны [373]. В анодном растворении олова в спиртовых растворах принимают непосредственное участие галоидные анионы и молекулы растворителя. Данных для установления механизма растворения недостаточно. [c.114]

    При нагревании комплекс диссоциирует на компоненты Механизм активирующего действия хлористого алюминия А И Титов представляет следующим образом Алюминий, благодаря своей резко выраженной координационной ненасыщенности в галоидных солях, производит глубокое поляризующее действие на молекулы, способные подвергаться деформации, и может даже вызвать их ионизацию [c.408]

    Реакции радикального присоединения протекают обычно по цепному механизму. Этим объясняется тот факт, что достаточно следов промотора, чтобы превратить некоторые ионные реакции в радикальные. Так, в присутствии перекисей присоединение галоидоводородных кислот к олефинам приводит к необычной ориентации. Атака галоидного радикала направлена по наименее замещенному месту, характеризующемуся наибольшей электронной плотностью, в то время как обычно эта позиция атакуется ионом Н (а) (см. стр. 260). Это противоречие правилу Марковникова, известное под названием эффекта Караша, исчезает, если процесс идет в присутствии антиоксидантов р  [c.398]

    Еще в 1875 г. Зайцев указывал [112], что среди изомерных олефин в, образующихся из вторичных и третичных алкилгалогенидов при отщеплении НХ, преобладают те структуры, которые получаются отщеплением водорода от углеродного атома, наименее богатого водородом. Таким образом, преимущественно образуются производные этилена, имеющие максимальное количество замещающих алкильных групп. Механизм этих реакций обсуждался Инголдом [65]. Ранее по вопросу об образовании олефинов из галоидных алкилов приводились в литературе весьма противоречивые данные, что свидетельствует о том, что состав продуктов реакции, как и при дегидратация спиртов, сильно изменяется в зависимости от условий реакции. Неф [97], например, наблюдал, что выход олефинов нри реакции с третичными алкилгалогенидами выше, чем в случае применения вторичных галоидпроизводвых. Прямо противоположные результаты, однако, сообщались Брусовым 17]. [c.419]

    Должно быть объяснено также присутствие алкильного иона, такого, как вто/>-пропил-ион. Вообще вполне целесообразно предположить наличие при крекинге предельных углеводородов некоторого термического крекинга, или окисления, приводящих к образованию олефинов. Последние, в свою очередь, быстро образуют над кислотным катализатором ионы карбония Л+, которые затем и инициируют указанную выше реакцию переноса гидридного иона так образуются требуемые ионы карбония из парафинов. Доказательство переноса гидридного иона между третичными структурами в низкотемпературных системах над кислыми катализаторами может быть найдено в работе Бартлетта [1]. Брюйер и Гринсфель-дер [5] установили обмен вторичного гидридного иона с третичным галоидным ионом в аналогичных системах, распространив таким образом этот механизм на важные структуры типа нормальных парафинов и неза- [c.124]

    Реакция, катали.чируемая галогенидами металлов. Галоидводородный обмен имеет место в том случае, когда предельные углеводороды, содержащие третичные атомы углерода, реагируют с галоидными алкилами в присутствии хлористого алюминия [1]. Нанример, в результате взаимодействия изопентана с третичным хлористым бутилом в присутствии бромистого алюминия при времени контакта около 0,001 сек. образуется т/)ет-амилбромид (50—70% от теоретического выхода) и изобутан. Эту реакцию можно рассматривать как доказательство способности иона карбония отнимать гидридный ион в соответствии с правилом 5. Механизм обмена можот быть выражен следующим образом  [c.217]

    Инициированное термическое алкилирование. Термическое алкилиро-вание.парафигговых углеводородов можно осуш ествить в мягких условиях, если к смеси парафинового и олефинового углеводородов добавить небольшие количества (1—3% вес. на о бщ ую загрузку) таких веществ, как алифатические галоидные или нитросоединения [33]. Парафиновые углеводороды с прямой и разветвленной ценью алкилируются ири 300—400° и давлении 210 ат и выше. При этом получаются такие же продукты, как и при чисто термических реакциях это указывает на то, что и здесь имеет место свободно-радикальный механизм реакции, а катализаторы служат в качестве инициаторов цеии путем распада их с образованием радикалов при сравнительно более низкой температуре, чем в случае углеводородов. [c.308]


    Наконец, становится ясным, что полное понимание механизма реакции Фриделя — Крафтса невозможно без детального представления о характере взаимодействия между различными компонентами типичной реакционной смеси. Такая смесь включает галоидный металл МХ , галоидо-водород НХ, галоидный алкил RX, ароматический углеводород АгН и один или несколько алкилированных продуктов ArR или ArRj. В настоящее время известно, что многие из этих индивидуальных компонентов реагируют между собой с образованием продуктов присоединения или комплексов, а получающиеся при этом продукты должны рассматриваться как важные составные части реакционной смеси. Поэтому следует рассмотреть данные, относящиеся к этим взаимодействиям, прежде чем перейти к детальному обсуждению механизма реакции Фриделя — Крафтса. [c.430]

    Чтобы проверить это предположение, было исследовано взаимодействие хлористого галлия с рядом галоидалкилов [45, 62], а также взаимодействие галоидных солей алюминия с мстил - и этилгалоидами [61], Результаты с несомненностью подтверждают общность предложенного ионного механизма. [c.433]

    На этой основе реакция Фриделя—Крафтса между галоидалкилами и ароматическими углеводородами идет вполне аналогично другим реакг циям замещения галоидных алкилов [163], Уже давно известно, что реакции замещения третичных галоидалкилов протекает преимущественно через механизм мономолекулярной ионизации, соответствующие же реакции первичных галоидалкилов преимущественно идут по пути бимолекулярного замещения. [c.435]

    В предложенном механизме образование переходного состояния было выражено в виде двуз стадийного процесса с образованием в первой стадии продуюта присоединения и реакцией ароматических соединений с этим продуктом присоединения в последней стадии (LXXXII). Эта формулировка лучше, так как она указывает на образование продукта присоединения 1 1 между галоидной солью металла и галоидалкилом, процесс, наличие которого было доказано [45, 61]. Однако возможность образования переходного состояния в результате тримолекулярных столкновений всех трех компонентов нельзя исключать, хотя это значительно менее вероятно, чем предложенный механизм. [c.441]

    Хотя по механизму галоидирования в присутствии галоидных солей металлов имеется очень мало работ, весьма вероятно, что эти реакции вполпо аналогичны но механизму реакции Фриделя-Крафтса. Соответственно этому представляется обоснованным механизм (LXXXVII) [c.445]

    Превращения насыщенных циклических углеводородов в присутствии галоидных солей алюминия хорошо известны и широко освещены в литературе, начиная со времени работ Гриньяра, Статфорда, Зелинского, Туровой-Поляк 21—24], а также более поздних исследований Мехтиева [36]. Однако жесткие каталитические условия обычно приводили к получению равновесных смесей изомеров, что, конечно, не позволяло разобраться в деталях кинетики и механизма этих интересных реакций. [c.148]

    Адсорбционные явления в растворах органических веш,еств при высоких анодных потенциалах отличаются еш,е большей сложностью. Прежде всего это определяется многообразием форм хемосорбции кислорода и сложным механизмом реакции выделения кислорода в этой области Ег- До сего времени нет единства мнений о формах поверхностных кислородных соединений на металлах группы платины. Наиболее надежные и однозначные результаты но адсорбции кислорода получены для платинового электрода. Сделан вывод о наличии нескольких хемосорбционных форм кислорода (не менее трех) н образовании фазовых окислов различной стехиометрии. Ряд особенностей характерен и для адсорбции ионов в рассматриваемой области Ег. Так, для галоидных анионов на основе данных по вытеснению ими адсорбированных сульфат-анионов установлен порядок адсорбционной активности, обратный наблюдаемому на Pt в области низких анодных потенциалов ( . 0,9 В) Р >С1 >Вг >1 . Правда, необходимо учитывать, что С1 -, Вг"- и 1 -анионы окисляются при высоких Ег и адсорбируются, вероятно, в виде кислородсодержащих соединений. Зависимости адсорбции катионов и анионов от потенциала в области высоких Ег являются сложными, полнэкстремальньши. [c.118]

    Реакции нуклеофильного замещения часто сопровождаются отщеплением. При взаимодействии со щелочами галоидные алкилы образуют не только спирты, но и непредельные соединения. Последние возникают так н<е как побочный продукт действия минеральных кислот на спирты. Разложение четвертичных аммониевых оснований также дает в качестве побочного продукта замещенный этилен. Все это подтверждает предположение о существовании общего механизма замещения и отщепления. Реакция замещения обозначается символом Е (elimination)..Так же как и для нуклеофильного замещения, здесь возможны два механизма бимолекулярный ( 2) и мономолекулярный [c.200]

    Веш ества первой группы могут быть только деполяризаторами эл0ктрох имических коррозионных процессов. Вещества второй группы могут, кроме того, при определенных условиях, реагировать с металлом химически с непосредственным образованием окисных, галоидных и т. п. пленок. Это может существенно повлиять на механизм, а подчас и на кинетику коррозионных процессов. [c.414]

    Схема реакции не раскрывает ее механизма, который большей частью значительно сложнее, чем схема. Так, исследования П. П. Шорыгина и других химиков показали, что при реакции Вюрца натрий сначала замещает галонд, после чего натриевое производное реагирует с галоидным алкилом  [c.51]

    Механизм действия катализаторов—галоидных солей металлов заключается в том, что они облегчают образование галоидирующего агента—катиона галоида (т. е. облегчают гетеролитический разрыв связи в молекуле галоида) например  [c.174]

    Т651 в условиях контролируемого потенциостатического режима. Результаты приводятся на рис. 53 и 54. Здесь также отмечается, что присутствие галоидных ионов влияет только на область II кривой и—/С и скорость роста трещины в этой области зависит линейно от концентрации галоидных ионов, после того как концентрация превысит значение 2-10 моль/л. Полученные данные обеспечивают количественную основу для фундаментальных исследований механизма КР и для разработки методов ускоренных испытаний на КР. [c.203]

    Предполагается, что и в этом случае галоидные ионы и водород в качестве опасных компонентов ответственны за высокотемпературное растрескивание. Предположение о роли водорода бы ло впервые сделано в работе [139], авторы которой остались его наиболее активными сторонниками. В основе предложенной гипотезы лежит образование водорода в результате пирогидролиза хлорида. Этот водород абсорбируется либо в металле, либо в области концентрации напряжений в вершине трещины, снижая энергию разрушения. Доказательства, приводимые в пользу механизма водородного охрупчивания, следующие 1) водород образуется в процессе высокотемпературной солевой коррозии 2) данные ASTM [144] и результаты [148] показывают, что водород может абсорбироваться в условиях высокотемпературного солевого коррозионного растрескивания 3) при комнатной температуре [c.402]

    Каталитическое действие галоидных солей алюминия на реакции органических соединений открыл русский химик Г. Г. Густавсон. В 1877 г. Густавсон (раньше Фриделя и Крафтса) указал на активацию бромистым алюминием молекулы ароматических веществ в реакции бромирования [ЖРХО, 9, 213, 286, 287 (1877)]. В дальнейшем он первый тщательно изучил механизм каталитического действия галоидных солей алюминия и объяснил механизм этого действия через образование комплекса с органическим компонентом [ЖРХО, 10, 296, 390 (1898) И, 81, 120 (1879) 12, [2], 7 (1880) 14, 354 (1882) 15, 50 (1883) 21,34(1889) 22,443 (1890) J. prakt hem., 63, 209 (1903) 72,57 (1905)]. [c.427]

    В процессах полиамидирования с этой целью применяются фосфорная и борная кислоты, оксид магния, хлористый цинк и др. [30]. При полипереарилировании, процессах ацилирования и алкилирования используются катализаторы типа катализаторов Фриделя-Крафтса [3, 128, 129]. При взаимодействии альдегидов с фенолами и аминами в качестве катализаторов применяют различные минеральные и органические кислоты, щелочи, оксиды металлов, многие соли [4, 128, 155, 180]. При дегидрополиконденсации используются платина, комплексы меди с аммиаком, оксид ванадия и др. [4, 128]. В процессах, протекающих по радикальному механизму, применяются пероксиды, например пероксид третичного бутила [4], в случае ион-радикальной поликонденсации используют галоидные производные лантанидов [176-179]. [c.40]

    Данные о механизме реакции металлоорганических соединений с галоидангидридами кислот немногочислен1 ы. Считалось [5], что Механизм реакции ааключается либо в присоединении магний-органического соединения по карбонильной группе с последующим отщеплением галоидной соли магния, либо в образовании комплекса реактива Гриньяра с галоидангидридом за счет карбонильного кислорода с последующей перегруппировкой координационного комплекса I и отщеплением МдХг. [c.44]

    Для приведенного механизма реакции имеются достаточные доказательства. Анионы кетонов могут быть получены действием сильного основания, подобного амиду натрия или трифенилметил-натрию, и выделены в виде натриевой соли. Анионы этих натриевых солей можно ацилировать не только сложными эфирами, ко также, в отдельных случаях, и хлорангидридами кислот (стр. 124) более того, анионы кетонов могут подвергаться карбонизации [3] или алкилированию [4]. Конденсация карбонильной группы сложных эфиров с анионами кетона, изображенная уравнением (2), с формальной точки зрения аналогична реакциям карбонильной группы с анионами оснований других типов (например с ионом гидроксила), механизм которых обычно изображают сходными схемами [5а]. Было найдено, что конденсация сложных эфиров с анионами кетонов, полученными при помощи трифенилметилнатрия в эфире, является бимолекулярной реакцией [56]. Поскольку Р-дикетоны являются более сильными кис-, лотами, чем кетоны, из которых они образовались, следует ожидать превращения их в соответствующие анионы. О том, что это имеет место при ацилировании кетонов сложными эфирами, даже в присутствии этилата натрия, свидетельствует тот факт, что при добавлении к реакционной смеси галоидного алкила могут быть получены алкилированные р-дикетоны [6]. [c.92]

    При исследовании механизма реакции хлорирования фенолов с помощью хлорноватистой кислоты Сопер и Смис пришли к заключению, что хлорирова1ше вызывается не положительным галоидным ионом, но, вопреки часто высказываемому мнению, тем, что хлор и хлорноватистая кислота реагируют, как целые молекулы, и в виде промежуточной стадии образуют соединение с феноксидным ионом. Чем сильнее выражен кислый характер фенола, тем слабее реакция меи<ду его ионом и хлорноватистой кислотой. Последняя не реагируете эфирами фенолов, так как эти эфиры не способны давать феноксидных ионов (эти представления можно с таким же правом перенести на реакции бромироватшя и иодирования). [c.340]

    Ненасыщенность эта может иметься как в виде кратной связи (между атомами углерода), так и в виде двувалентного атома углерода и проявляется в сходном механизме действия О. В. на организм. Хорошим примером из описанных О. В. этой группы является окись углерода, С = О. Сюда относятся также некоторые производные непредельных жирных углеводородов и галоидные ацетилены СоВг и gJg сюда же, наконец, могут быть отнесены и цианистые соединения (см. ниже). [c.36]

    В связи с этим Гриньяр 2 считает, что лишь жидкий хлористый циан имеет нормальную структуру бромистый же и иодистый циаиы, а также газообразный С1СЫ имеют изо-строение. Однако, едва ли реакция с М - комплексами, механизм которой ещ,е не вполне ясен, может иметь решающ,ее значение для установления структуры галоидных цианов. [c.135]

    Наличием подобного рода TayrqjuP быть может объясняется также механизм реакции образования алкилмышьяковых кислот при действии галоидных алкилов на соли мышьяковистой кислоты (см. ниже). [c.53]

    Как известно, обширные исследования по изучению старения осадков, и в частности галоидных солей серебра, проведены Кольт-гофом. Он считал, однако, что старение происходит в основном по механизму упорядочения кристаллической решетки частиц дисперсной фазы, имеющих множество внутренних и внешних дефектов. Рекристаллизации же в принятом здесь смысле слова он придавал второстепенное значение. Вместе с тем К. С. Ляликов [113], воспользовавшись экспериментальными данными Кольтгофа и О Бриена [120], показал, что процесс старения осадка, связанный [c.16]

    Широкий ассортимент гидравлических, тормозных и др. рабочих жидкостей и смазочных масел из полиалкиленгликолей выпускается английской фирмой Юнион карбайд лимитед под названием Юкон (34]. Они являются линейными полимерами К0(СН2СК 0)жК", где К, К, и К" = Н или алкил. Характерной особенностью этих продуктов является то, что они очень сильно различаются растворимостью в воде и других веществах, что зависит от типа и соотношения окисей алкиленов в молекуле, а также от строения концевых групп. Так, полигликоли с концевыми гидроксильными группами хорошо растворимы в воде. Рост молекулярного веса окисей алкиленов и полимера приводит к ухудшению растворимости в воде. Растворимость в воде резко ухудшается при замещении гидроксилов эфирными группами. Полигликоли, независимо от их строения обычно хорошо растворяются в таких веществах, как спирты, органические кислоты, альдегиды, кетоны, сложные эфиры, галоидные углеводороды. С растворимостью полигликолей приходится считаться при подборе смазочных материалов и рабочих жидкостей, в особенности, когда масла и специальные жидкости соприкасаются в механизмах с прокладками, манжетами и др. деталями из синтетических каучуков и других материалов. Растворяющая способность полигликолей используется при получении специальных масел, текстильных и других, для которых растворимость в отношении каких-либо веществ является ценным эксплуатационным свойством. [c.107]

    Гидролиз третичных галоидных производных протекает по механизму О А . Эти соединения, атом галоида в которых имеет повышенную подвижность вследствие сочетания -Ь/-эффектов трех алкильных групп, в присутствии воды могут подвергаться спонтан- [c.232]

    Реакции замещения типаО Лэ не всегда обязаны своим возникновением спонтанному анионоидному отрыву. Нбкоторые из них возникают в результате воздействия внешнего кислотного агента на удаляемую функциональную группу. Так, по механизму происходит замещение у галоидных алкилов, которые не способны к спонтанной ионизации при реакциях в присутствии ионов AgФ или Hg Ф. Эти ионы вследствие своего электрофильного характера обеспечивают отрыв галоида. При обработке галоидопроизводных суспензией окиси серебра в водной или спиртовой среде наблюдается также образование некоторых спиртов или простых эфиров. Подобным же образом могут образоваться и сложные эфиры с помощью серебряных солей различных кислот (е)  [c.236]

    Функциональные группы, связанные непосредственно с углеродными атомами бензольного кольца, как правило, удерживаются настолько прочно, что не могут быть замещены по механизму О А . Исключение представляют диазопроизводные, при разложении которых образуется карбокатион I, способный к различным электрофильным атакам. В зависимости от характера среды этот карбокатион может образовать фенолы, галоидные, нитрильные или суль-фонитрильные ароматические производные, а также нитропроизводные, сернистые производные и т. п. (а)  [c.237]

    Металлоорганические соединения, которые обычно реагируют подобно полярным соединениям, могут давать свободные радикалы, когда под влиянием физического или химического воздействия происхо]щт отщепление одного электрона, Магнийорганические соединения ведут себя подобным образом при электролизе (в) или в присутствии металлических солей — акцепторов электронов o l2,Fe lз,AgBг. Так, после добавления следов хлористого кобальта конденсация с галоидными алкилами протекает, по-видимому, по радикальному механизму (г). Опытные данные позволяют считать, что при этом сначала происходит двойное разложение, приводящее к образованию нестойкого кобальторганического соединения. Спонтанное разложение последнего дает радикал К-и хлорид кобальта низшей валентности. Имеющийся в молекуле этой соли неспаренный электрон затрачивается на образование второго радикала К - из галоид алкил а. Действительно, среди продуктов реакции обнаружены продукты конденсации радикалов Н и Н . [c.376]


Смотреть страницы где упоминается термин Галоидные механизмы: [c.420]    [c.411]    [c.515]    [c.517]    [c.395]    [c.448]    [c.328]   
Органическая химия Том 1 (1963) -- [ c.417 ]

Органическая химия Том 1 (1962) -- [ c.417 ]




ПОИСК





Смотрите так же термины и статьи:

Галоидные механизмы реакций

Литий-галоидный обмен механизм

Механизм люминесценции неактивированных фотохимически окрашенных щелочно-галоидных кристаллов

Механизм рекомбинационного свечения активированных щелочно-галоидных кристаллофосфоров Рекомбинационный характер свечения щелочно-галоидных кристаллофосфоров

Некоторые закономерности в спектрах и механизм примесного поглощения щелочно-галоидных фосфоров, активированных серебром



© 2025 chem21.info Реклама на сайте