Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликонденсация влияние функциональных групп

    Такой процесс циклизации затрудняется с увеличением расстояния между функциональными группами, в результате чего образуются малоустойчивые циклы. Таким образом, способность бифункциональных мономеров к циклизации зависит от напряженности образующегося цикла, что, в свою очередь, определяется расстоянием между функциональными группами. Кроме того, на процесс поликонденсации и иа реакционную способность мономеров влияет также и расположение в них функциональных групп. Например, внутримолекулярная циклизация становится невозможной, если две функциональные группы находятся в пара-положении бензольного кольца. В то же время циклизация происходит, если эти группы находятся в орго-положении. Оказывают влияние и стерические факторы. Так, если в орго-положении присутствуют нереакционноспособный заместитель или мешающие друг другу в пространстве функциональные группы, то это сказывается и на процессе поликонденсации. Например, близость аминогрупп в орго-фенилендиамине способствует образованию циклических продуктов, что приводит [c.402]


    Их влияние на молекулярную массу продуктов поликонденсации аналогично влиянию избытка одного из компонентов в исходной смеси. Монофункциональные соединения могут образовываться в реакционной системе в результате побочных реакций. Часто небольшие количества монофункциональных соединений специально вводятся в реакционную смесь для регулирования молекулярной массы полимеров и придания стабильности продукту (на концах цепи будут функциональные группы одного типа). В таком случае их называют стабилизаторами молекулярной массы. [c.58]

    Наибольшее влияние на направление реакции соединений X—К—V оказывают природа и строение радикала К. Если радикал состоит только из групп —СНг—, то определяющим фактором будет число этих групп, т. е. расстояние между функциональными группами. Увеличение расстояния между функциональными группами уменьшает вероятность циклизации и способствует протеканию конкурирующей реакции поликонденсации, скорость которой в первом приближении не зависит от расстояния между функциональными группами внутри молекулы. [c.134]

    Влияние примесей монофункциональных соединений на молекулярную массу продукта поликонденсации непосредственно связано с константой равновесия. При введении монофункционального соединения, блокирующего одну из функциональных групп, концентрация этих групп уменьшается и соответственно уменьшается знаменатель в выражении константы равновесия  [c.150]

    Пол и конденсацией называется реакция соединения молекул одного и разных мономеров, происходящая в результате взаимодействия их функциональных групп и сопровождающаяся выделением побочных низкомолекулярных веществ (HjO, H l, Oj и др.). Характер и количество функциональных групп исходных соединений оказывают большое влияние на строение и свойства полимеров. Вот некоторые из функциональных групп, обеспечивающие возможность участия веществ в процессе поликонденсации  [c.388]

    Влияние соотношения исходных веществ исследовалось для многих случаев равновесной и неравновесной поликонденсации [2-5, 7-9, 13, 26, 30, 64, 65, 198]. Установлено большое значение правила "неэквивалентности функциональных групп", согласно которому избыток одного из исходных веществ, если он не удаляется из сферы реакции, приводит к понижению молекулярной массы синтезируемого полимера в степени, пропорциональной величине этого избытка [40, [c.87]


    На величину молекулярной массы полимера при равновесной поликонденсации большое влияние оказывает соотношение исходных компонентов, взятых в реакцию (рис. 2.3). При этом вступает в силу правило неэквивалентности функциональных групп, которое называют правилом Коршака. Это правило заключается в том, что степень поликонденсации определяется молекулярным избытком одного из мономеров или соотноше- [c.46]

    Вопрос о влиянии наполнителей, на структуру полимеров, образующихся в их присутствии при полимеризации или поликонденсации, исследован еще недостаточно. Условия роста цепи в поверхностном слое и формирования структур при полимеризации должны оказывать значительное влияние на свойства полимера. Адсорбция олигомерных и растущих полимерных молекул на поверхности ведет к изменению условий протекания реакции. Вследствие, ограничивающего влияния поверхности изменяются условия диффузии молекул, а в результате адсорбции блокируются функциональные группы, способные принимать участие в реакции. Возможность селективной адсорбции компонентов реакционной смеси может приводить к различному распределению компонентов в гра- [c.284]

    То же самое касается и полимеров пространственного строения. При реакциях мономеров или их смесей с функциональностью более двух образуются полимеры разветвленного, сшитого или пространственного строения с произвольным распределением боковых цепей и мостиков между главными цепями молекул. Регулируя порядок распределения и расстояния между разветвлениями в главных цепях молекул, можно таким образом оказывать влияние на свойства полимеров при незначительном изменении его состава. Однако попытки регулировать разветвления в главных цепях молекул с помощью обычных методов полимеризации или поликонденсации пока не привели к положительным результатам. И все же синтез пространственных полимеров регулярного строения может быть осуществлен на основе разветвленных олигомеров, имеющих заданную длину ответвления и одну функциональную группу на конце каждого разветвления [2]. При реакциях функциональных групп таких олигомеров должен образовываться полимер пространственной структуры с заданной величиной ячейки. [c.160]

    К числу важнейших характеристик процесса О. относятся также объемная усадка отверждаемого материала и количество выделяющихся летучих веществ — низкомолекулярных продуктов реакций, легкоиспаряю-щихся компонентов (напр., остатков растворителей), продуктов частичной деструкции полимеров. Усадка, обусловленная повышением плотности материала вследствие возникновения большого числа новых химич. связей, возрастает с уменьшением мол. массы исходных олигомеров и увеличением в них числа функциональных групп. Существенное влияние на величину усадки оказывает механизм О. Напр., при О. по механизму поликонденсации, не сопровождающейся выделением низкомолекулярных продуктов, она составляет [c.267]

    На основании этих наблюдений в 1942 г. Флори [238] отчетливо изобразил протекание равновесной поликонденсации. На обе реакции (полиэтерификацию и разложение эфира образовавшимся при поликонденсации спиртом.— В. К.) катализатор и температура действуют аналогичным образом. После того как полиэтерификация подойдет к точке, где средний молекулярный вес велик, свободные карбоксилы настолько переполнены превосходящими их по количеству эфирными группами, что скорость реакции свободных гидроксилов с эфирными группами (т. е. алкоголиза.—5. К.) будет превышать их скорость с карбоксильными группами... Таким образом, можно предположить, что эфирное взаимодействие (обратная реакция.— В. К.) может оказать значительное влияние на распределение видов молекул, полученных при полиэтерификации [238, стр. 2206]. Тем самым Флори в определенной степени ставил под сомнение правомерность пренебрежения влиянием воды на характер поликонденсации, на чем основывался вывод им кинетического уравнения в работе 1939 г. [239]. Более того, в этой же статье 1942 г. Флори отметил, что в смеси, полученной при равновесной поликонденсации, идут реакции, меняющие распределение по видам молекул [238, стр. 2212]. В 1944 г. он конкретизировал это утверждение. Состояние равновесия для полифункциональной конденсации,— отмечал Флори,— рассматривается как реакция между функциональными группами, на которую не влияет степень полимеризации реагентов (подчеркнуто мной.— В. К.), положение равновесия должно быть тем же самым, [c.98]

    И, наконец, в 1946 г., обобщив результаты исследований в области поликонденсации (в том числе и собственные десятилетние работы), Флори выступил с очень интересным обзором Фундаментальные принципы поликонденсации [240], в котором сформулировал теорию реакционной способности больших молекул. В основу этой теории Флори было положено правило, выдвинутое автором в 1939 г. и затем неоднократно использованное им для интерпретации экспериментальных результатов .Реакционная способность функциональной группы должна быть совершенно независима от размера молекулы, к которой принадлежит эта группа (подчеркнуто мной.— В. К.) . Когда заместитель вводится в эту молекулу, то его влияние на реакционную способность функциональной группы будет заметным, если он расположен на расстоянии от одного до пяти-шести атомов от функциональной группы. В противном случае влиянием заместителя можно пренебречь. Следовательно,— заключал Флори,— изменение в реакционной способности функциональных групп, если это вообще происходит, будет ограничиваться начальными стадиями полимеризации [240, стр. 155]. [c.99]


    Кроме того, на процесс поликонденсации и на реакционную способность мономеров влияет также и расположение функциональных групп. Например, внутримолекулярная циклизация становится невозможной, если две функциональные группы находятся в -положении бензольного кольца. В то же время циклизация происходит, если эти группы находятся в о-положении. Оказывают влияние и стерические факторы. Так, если в о-положении присутствуют нереакционноспособный заместитель или мешающие друг другу в пространстве функциональные группы, то это сказывается и на процессе поликонденсации. Например, близость аминогрупп в о-фенилендиамине способствует образованию циклических продуктов, что приводит иногда к полному прекращению линейной поликонденсации. [c.380]

    Влияние примеси монофункциональных соединений на молекулярный вес полимера. Поликонденсация в подавляющем большинстве случаев состоит во взаимодействии двух различных функциональных групп (аминных и карбоксильных, карбоксильных и гидроксильных, альдегидных и аминных н т. д.). Если в систему ввести монофункциональное соединение, способное вступать во взаимодействие с одной из функциональных групп, участвующих в поликонденсации, то оно блокирует эти группы и прекращает процесс поликонденсации. Реакция прекратится тогда, когда функциональные группы одного типа будут израсходованы. При этом функциональные группы другого типа будут находиться в избытке, эквивалентном количеству введенного монофункционального соединения. [c.157]

    Эта реакция подчиняется всем закономерностям, присущим поликонденсации как методу синтеза высокомолекулярных соединений [1—4]. Наиболее существенными из них, которые оказывают решающее влияние на результаты синтеза ароматических полиамидов, являются резко выраженная зависимость молекулярного веса полимера от степени завершенности реакции, снижение молекулярного веса полимера при введении в систему монофункциональных добавок, необходимость поддержания эквимольного соотношения между реагирующими функциональными группами в зоне реакции для получения высокомолекулярного полимера, [c.10]

    Характер взаимодействия между функциональными группами оказывает большое влияние на закономерности поликонденсации и условия проведения процесса. [c.14]

    Изучение влияния природы катализатора реакции поликонденсации фенола с формальдегидом показало, что лучшими клеящими свойствами обладают резольные олигомеры, полученные в присутствии аммиака [125]. Имеет значение и природа растворителя, использованного для получения клеящего раствора резольного олигомера (табл. 1.77). Лучшие результаты получены при использовании в качестве растворителя этилового спирта, что, по-видимому, связано с адсорбционными свойствами этого растворителя, а возможно, и с химическим взаимодействием его с функциональными группами олигомера [126]. [c.101]

    Принято считать, что реакционная способность реакционных центров растущей макромолекулы не зависит от длины (степени поликонденсации) макромолекулы, несущей реакционный центр (функциональную группу). Это не совсем очевидно, так как можно предположить, что скорость реакции между более тяжелыми молекулами должна уменьшаться (при исключении чисто электронных влияний), вследствие меньшего числа столкновений таких молекул при определенной температуре  [c.38]

    Адгезионные и когезионные свойства, а следовательно, и клеящая способность фенолоформальдегидных олигомеров зависят от природы катализатора, применяемого в процессе их синтеза, фракционного состава, типа растворителя и т. д. Изучение влияния природы катализатора реакции поликонденсации фенола с формальдегидом показало, что лучшими адгезионными свойствами обладают резольные олигомеры, полученные в присутствии аммиака [47]. В качестве растворителя лучше всего использовать этиловый спирт, что, по-видимому, связано с хорошими адсорбционными свойствами этого растворителя, а, возможно, и с его химическим взаимодействием с функциональными группами олигомера [64]. [c.43]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    Влияние концентрации мономера. Поликонденсация протекает по ступенчатому механизму. Сначала взаимодействуют молекулы мономеров, образуя димеры. Последние взаимодействуют друг с другом и с мономером, образуя тримеры и тетрамеры и т. д. Молекулярная масса увеличивается медленно, одновременно исчерпываются функциональные группы. [c.55]

    Лактоны. — Карбоновые кислоты, содержащие спиртовую гидроксильную группу, относятся к нагреванию или к действию водоотнимающих средств по-разному, в зависимости от отюси-тельного расположения обеих функциональных групп. а-Оксикислота НО—СНг—СООН (гликолевая) содержит группы обоих требуемы> для этерификации типов и, следовательно, под влиянием кислых катализаторов этерификации или при нагревании здесь возможно образование либо внутренней эфирной связи, либо полиэфира. Действительно поликонденсацией гликолевую кислоту можно превратить в полиэфир — полигликолид (т. пл. 223 °С), а при взаимной этерификации двух молекул кислоты получается циклический эфир — гликолид (т. пл. 86 °С)г НО-СНа-СООН (СЛОа)  [c.72]

    При поликонденсации большое влияние на ход реакции оказывают так называемые сопутствующие процессы. Обычно это влияние отрицательно, так как подавляется основная реакция, ухудшается качество синтезируемого продукта, увеличиваются расход сырья и себестоимость и т д По природе сопутствующих процессов их можио разделить на химические и физические. К физическим относятся процессы исключения функцио- i натьпых групп нз реакции вследствие самопроизвольного выпадения полимера (или олигомера) в осадок, блокирования функциональных групп молекулами растворителя, повышения вязкости системы н т д., к химическим — нежелательные реакции функциональных групп с примесями, растворителями, моно функциональными добавками. Например, при взаимодействии [c.152]

    В первой части обсуждены тенденции развития области поликонденсации. На базе современных данных проанализированы особенности равновесной и неравновесной поликонденсации, константы равновесия различных процессов, влияния на них строения исходных веществ, природы реакционной среды, температуры реакции, включая равновесие в таких новых, сложно протекающих процессах, как поликонденсация тетранитрилов ароматических тетракарбоновых кислот с диаминами. Проанализированы механизм и закономерности формирования макромолекул в процессах поликонденсации, в том числе формирования микроструктуры полимерной цепи в процессах сополикон-денсации (образование статистических и блок-сополимеров), получения полимеров, построенных по типу "голова к хвосту" и конформационно-специфической поликонденсации, с учетом химического строения исходных веществ, функциональности, реакционной способности функциональных групп, природы реакционной среды, возможных побочных процессов. Рассмотрена проблема разнозвенности поликонденсационных полимеров и показана необходимость ее познания для создания полимеров с желаемым комплексом свойств. Проанализированы данные о влиянии природы реакционной среды на физическую структуру синтезируемых поликонденсацией полимеров с жесткими цепями макромолекул и показаны возможные пути регулирования конформаций макромолекул в процессе синтеза. [c.4]

    Подробно исследованы основные закономерности поликонденсации полигалогенароматических соединений с сульфидом натрия [1-7, 16, 32, 33] и обнаружены такие ее особенности, как возрастание реакционной способности функциональных групп на начальных этапах поликонденсации, возможность изменения строения элементарного звена полимера от соотношения исходных мономеров, изменение функциональности полигалогенароматических соединений за счет процессов внутримолекулярной циклизации, существенное влияние на свойства полимеров побочной реакции макроциклизации. [c.190]

    Как видно из полученного уравнения, ширина распределения растет в ходе поликонденсации от I при р = 0 до 2, когда теоретически все функциональные группы исчерпаны (р=1). Подобная взаимная связь между полидисперсностыо, представляющей собой свойство полимера, и особенностями процесса его образования (характеризуемого в данном случае изменением величины р в ходе реакции) наблюдается и при полимеризации. Более того, зная функцию распределения по молекулярным массам и построив соответствующие кривые по экспериментальным данным, можно получить ценные сведения о механизме поликонденсации и полимеризации и.наоборот, если известен механизм реакции, можно предсказать в основных чертах фракционный состав полимера, otfflзывaющий большое влияние на его свойства. [c.54]

    В заключение этого раздела мы коснемся еще одного аспекта рассматриваемой проблемы, а именно вопроса о роли некоторых эффектов цепи для реакций подвешенных функциональных групп. Этот вопрос выходит за рамки рассматриваемой в настоящем разделе проблемы и имеет общее значение для полимерной химии. Он подробно рассмотрен в работе [50]. Мы приведем лишь один пример, где эффект, связанный с цепным строением реагирующих молекул, проявляется при полифункциональной поликонденсации. При исследовании влияния среднечисленной функциональности на скорость процесса отверждения эпоксидных олигомеров новолачными смолами было обнаружено [51], что скорость реакции существенно зависит от функциональности исходных компонентов, причем чем выше функциональность отверди-теля, тем ниже энергия активации скорости реакции. Различаются также эффективные энергии активации для систем с различной функциональностью (рис. 10). Это явление связано с очень высокой само ассоциацией молекул полифенолов, которая, естественно, увеличивается при возрастании молекулярной массы или, что то же, функциональности новолачных смол. Этот эффект проявляется не только в реакциях сложных молекул, но даже при реакции полифенола с низкомолекулярным веществом — эпихлоргидрином— при эноксидировании новолачных смол предельная степень эноксидирова-ния резко падает с увеличением функциональности исходных новолачных смол. [c.69]

    Понятие о разветвлении в процессе полимеризации возникло одновременно с первыми представлениями о процессах полимеризации. Оно становится ясным из рассмотрения влияния функциональности мономера на структуру полимера. Так, при поликонденсации наличие более двух реагирующих групп в мономере приводит к образованию боковых цепей. Аналогично при ступенчатой полимеризации присутствие более одной двойной связи в мономере также ведет к образованию разветвленного полимера. Такие реакции разветвления цепи в процессе полимеризации были изучены одними из первых, поскольку, как было установлено, они приводили к образованию гелей, определяемых как трехмерные сетки. Несмотря на то что это явление было известно давно, только сравнительно недавно разработана количественная трактовка образования сетчатых полимеров, главным образом благодаря статистическому подходу, предложенному Флори [1] и Стокмейером [2]. [c.245]

    Растворитель может способствовать протеканию одновременно с поликонденсацией и нежелательных процессов обменных реакций и реакций дезактивирования и блокирования функциональных групп. Напр., при поликонденсации в среде М-замещенных амидов возможна побочная реакция дихлорангидридов дикарбоновых к-т с растворителем. Способность растворителя участвовать в побочных реакциях м. б. оценена по тепловому эффекту побочной реакции термохимич. методом. Известны многочисленные примеры дезактивирования или блокирования функциональных групп при П. в р. за счет примесей (напр., влаги), к-рые могут содержаться в растворителе. Отрицательное влияние примесей в значительной мере определяется реакционной способностью мономеров. Так, при полиамидировании дихлорангидридов дикарбоновых к-т предъявляются очень жесткие требования к отсутствию влаги в растворителе. Применение дифторангидридов тех же к-т позволяет существенно снизить эти требования. [c.432]

    Значение работ Флори конца 30 — середины 40-х годов для развития кинетики поликонденсации чрезвычайно важно. Выдвинутые им и экспериментально подтвержденные основные положения протекания реакций поликонденсации (относительная беспорядочность в реакциях функциональных групп, слабое влияние длины макромолекулы на скорость по.ииконденсации) позволили по-новому подойти к рассмотрению механизмов этих реакций. [c.101]

    В том же направлении, как и избыток одного из бифункциональных компонентов, действует прибавление монофункционального компонента — одноосновной кислоты или одноатомндго спирта, влияние которых основано на блокировании функциональных групп растущей цепи. Одноосновные компоненты (например, абиетиновую кислоту и др.) поэтому широко применяют для регулирования процесса поликонденсации, для модификации свойств полимера и в качестве стабилизаторов, препятствующих дальнейшему процессу поликонденсации. [c.568]

    Одним из важнейших требований к мономерам, используемым для поликонденсации, является высокая степень чистоты (по крайней мере, для получения линейных полимеров). Примеси обычно содернсат другие функциональные группы, и поэтому так же, как и побочные реакции, затрудняют рост цепи вследствие блокирования концевых групп макромолекулы. В табл. 8 на примере полиэфиров показано влияние наличия примесей в исходных веществах (характеризуемого температурой плавления этих веществ) на величину молекулярного веса соответствующих полиэфиров при проведении процесса поликонденсации в одинаковых условиях. [c.29]

    Большое влияние на молекулярную массу полимера при поликонденсации оказывает соотношение исходных мономеров. Для получения полимера с максимальной молекулярной массой необходимо стехиометрическое соотношение функциональных групп реагирующих мономеров. Даже при небольшом отклонении от стехаометрии молекулярная масса может сильно уменьшиться, Это показано на рис. [c.29]

    Олигомеры трехмерной структуры (разветвленные) с неупорядоченным расположением активных функциональных групп. Их получают из полифункциональных мономеров по ступенчатым реакциям поликонденсации или полиприсоединения, не доводя реакцию до точки гелеобразования. Такие олигомеры содержат функциональные группы различных типов, способные реагировать между собой. Поэтому подобные олигомеры способны образовывать сетчатые структуры без дополнительного введения в реакционную систему каких-либо полифункциональных отверждающих веществ (отвердителей). Возможно лищь использовать катализаторы, ускоряющие те же реакции, по которым образовались олигомеры. Следовательно, процесс отверждения таких олигомеров (их переход в сетчатые полимеры) является как бы второй стадией процесса, следующей за стадией образования собственно олигомеров, не доведенной до критической точки. Отверждение олигомеров происходит под влиянием тепла (термореактивные олигомеры), иногда под действием кислорода воздуха. Примером могут служить фенолоформальдегидные олигомеры резольного типа, карб-амидоформальдегидные олигомеры, глицериновые или пентаэрит-ритовые эфиры предельных или непредельных жирных кислот и др. [c.94]


Смотреть страницы где упоминается термин Поликонденсация влияние функциональных групп: [c.48]    [c.48]    [c.48]    [c.434]    [c.101]    [c.112]    [c.136]    [c.50]    [c.234]    [c.60]    [c.34]    [c.169]   
Синтетические гетероцепные полиамиды (1962) -- [ c.17 , c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Группы функциональные, влияние

Поликонденсация функциональных групп

Функциональность поликонденсация

Функциональные группы



© 2025 chem21.info Реклама на сайте