Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Винилацетат реакция роста цепи

    Ингибирующее действие прим еси может быть выражено отношением констант скоростей реакций обрыва и роста цепи (йог/йр). Для хорошего ингибитора это отношение очень велико. Поэтому концентрация мономера не успевает заметно измениться за то время, пока концентрация ингибитора уменьшается на многие порядки. Если йог/йр > 1, ингибитор полностью будет исчерпан до того, как начнется полимеризация. В том случае, когда йог/йр 1, полимеризация начинается до исчезновения примеси, но протекает с меньшей скоростью, чем в ее отсутствие. Наблюдается вырожденный перенос цепи. Такие примеси являются замедлителями реакции роста цепи. Ниже приведены значения отношения для некоторых ингибиторов и замедлителей полимеризации винилацетата  [c.14]


    Реакция роста цепи протекает с очень высокой скоростью, намного превышающей скорость инициирования. Она зависит от реакционной способности мономера (табл. 2.1), активности растущего макрорадикала (табл. 2.2) и состояния реакционной среды. Так по мере возрастания вязкости реакционной среды скорость полимеризации значительно падает. В частности Кр макрорадикалов винилацетата после 57% превращения мономера в полимер в три раза меньше, чем в начальный период реакции и в 22 раза меньше, когда прореагировало 65% мономера. Энергия активации реакции роста цепи для винильных мономеров обычно составляет 18...40 кДж/моль. [c.25]

    Как видно из таблицы, винилацетат и метилакрилат имеют приблизительно одну и ту же степень полимеризации, но последний имеет большую константу скорости реакции роста цепи. [c.230]

    Как следует из данных табл. 8.3, основным фактором повы шения скорости полимеризации является увеличение констант скорости реакций роста цепи. Гоникберг [338, с. 310] при исследовании сополимеризации винилацетата с трихлорэтиленом и тетра-хлорэтиленом показал, что особенно значительное ускорение с ростом давления претерпевают реакции, для протекания которых необходимо преодоление значительных пространственных затруднений. [c.184]

    Если рассматривать константу скорости реакции роста цепи как величину, определяемую в основном значениями Ьр и а, то она должна быть тем больше, чем меньше значения обоих показателей. Энергия мономера довольно велика, однако энергия а образовавшегося из него радикала больше, и, таким образом, поскольку (1Ьа. ЫЬр —1,48, скорость реакции роста должна быть также высокой. Значения Q и метильного показателя мономера винилацетата малы, а энергия р велика, тем не менее скорость элементарной реакции роста значительно выше, чем у стирола это явление, очевидно, может быть истолковано в рамках только что рассмотренной теории (см. табл. 8). [c.96]

    В. М. Жулин, М. Г. Гоникберг и Р. И. Байкова [22] исследовали теломеризацию винилацетата с четыреххлористым углеродом при 40° С и давлениях до 3 кбар. В этом интервале давлений скорость теломеризации возросла приблизительно втрое, но содержание хлора в теломере практически не изменилось. Это свидетельствует о примерно одинаковом ускорении давлением передачи цепи через ССЦ и реакции роста цепи при полимеризации винилацетата. О работе тех же авторов, посвященной изучению влияния давления на теломеризацию винилацетата с тетрахлорэтиленом, см. стр. 310. [c.331]


    Сравним реакцию роста цепи при полимеризации винилацетата  [c.217]

    Скорость реакции роста цепи, по-видимому, не определяется диффузией вплоть до значительно более высоких степеней превращения, в случае винилацетата, вероятно, до 50—60%. В ионных системах диффузионное торможение должно проявляться главным образом в реакциях роста и передачи цепи. Точных данных, касающихся этого вопроса, нет. Конечно, в случае анионной полимеризации под действием гетерогенных катализаторов необходимо очень тщательно рассматривать, определяется ли измеряемая скорость диффузией или химическими факторами. Системы, в которых прогрессирующее уменьшение скорости полимеризации сопровождается накоплением гелеобразного полимера вокруг катализатора [67], представляют собой, по крайней мере на первый взгляд, случай диффузионного контроля [c.116]

    Рассмотрим данные по константам скорости элементарных реакций роста цепи (л/(моль-с)) совместной и раздельной полимеризации винилацетата (1) и стирола (2) при 25 °С  [c.323]

    Выведите зависимость отношения продолжительностей роста цепи при полимеризации двух мономеров, если скорость инициирования в обоих случаях одинакова. Вычислите отношение продолжительностей роста цепи при полимеризации винилацетата (60 °С) и акрилонитрила (к = 78,2 10 л х X моль с ), если скорости инициирования одинаковы. Данные об элементарных реакциях приведены в приложении III. [c.47]

    Проводя полимеризацию винилацетата в присутствии поливинилацетата, меченного и анализируя полученный продукт, Бевингтон, Гузман и Мелвилл [47] смогли рассчитать действительную константу межмолекулярной реакции передачи цепи, приводящей к разветвлению. При 40° они получили величину Сц = /сп. п/ р =- 3,1 10" , где к , д— константа скорости реакции передачи цепи между радикалом цепи и полимером и кр — константа скорости реакции роста цени. Они определили, что разница в энергиях активации этих двух реакций ( п. п— Ер) составляет 5,0 ккал моль. [c.254]

    Изучена сополимеризация эквимолярных смесей винилацетата и трихлорэтилена в присутствии динитрила азоизомасляной кислоты при давлениях от 1 до 4000 кГ/см и температуре 65° С. Скорость реакции увеличивается с ростом давления и процент превращения возрастает от 5,50 при 1 кГ/см до 17,2% в I час при 4000 кГ/см . Установлено, что реакция обрыва цепи протекает в кинетической области На примере сополимеризации стирола с акрилонитрилом и метилметакрилатом в присутствии [c.72]

    Осуществлена прививка глицидилметакрилата на ПВХ и сополимеры винилхлорида с винилацетатом или винилиденхлоридом в метилэтилкетоне с использованием в качестве инициатора перекиси бензоила Реакция протекает, по-видимому, за счет образования макрорадикалов при отщеплении водорода от звеньев винилхлорида с последующим ростом прививаемой цепочки на возникших активных центрах, а также, в меньшей степени, путем сополимеризации концевых двойных связей модифицируемого полимера с мономером. При прививке на сополимер винилхлорида с винилацетатом звенья второго компонента также могут участвовать в реакции передачи цепи , осуществляемой путем отрыва водорода от ацетатной группы Привитый глицидилметакрилат является внутренним пластификатором для ПВХ прививка 20% этого мономера понижает теплостойкость ПВХ на 15 °С. [c.375]

    Винилацетат легко полимеризуется по радикальному механизму, причем реакция протекает с выделением большого количества тепла (89,2 кДж/моль). Элементарные звенья в цепи полимера соединяются в основном по типу голова к хвосту , однако в составе полимера имеется и некоторое число звеньев, соединенных голова к голове (1—2%). Следует отметить высокую склонность винилацетата и его полимеров к реакциям передачи цепи, приводящим к ограничению роста макромолекул и в большинстве слу- [c.351]

    В соответствии с принятым принципом оценки активности мономеров в реакциях радикальной полимеризации активность радикалов, образующихся из этих мономеров, расположится в антибат-ной (строго обратной) последовательности. Иными словами, время жизни радикала тем меньше, чем он активнее, т. е. чем меньше эффект сопряжения неспаренного электрона радикала с электронной структурой заместителя в молекуле мономера. Эта активность может быть определена по значению отношения констант скоростей обрыва и роста цепи чем больше значение /(оВр/ Ср, тем меньше стационарная концентрация радикалов растущих цепей и выше ак-дивность радикалов, т. е. ниже активность соответствующих мономеров. Количественно, например, активности радикалов винилацетата, метилметакрилата и стирола в реакции роста цепи соотносятся как 20 2 1. [c.30]

    Возможность учета влияния метильной группы на энергию активации в методе переходного состояния дала возможность теоретически исследовать реакции роста цепи при полимеризации диенов [17, 18]. Величина вычислялась по уравнению (И) с учетом сопряжения с метильной группой, полимерная цепь моделировалась также метильной группой. В качестве стандартной реакции была принята реакция роста цепи при полимеризации винилацетата дпя этой реакции = 4,5 ккал/молъ. Так как в винилацетате отсутствует сопряжение двойной связи с заместителем, то винилацетат можно моделировать этиленом, а поливинилацетат-ный радикал — этильным радикалом (группа СНз моделирует группу /w H2—). Тогда А 2 = 0,79. Для Ъ было принято значение 30. [c.270]


    Гусман [452] показал, что фотополимеризация (сенсибилизатор азобисизобутироиитрил) протекает с непрерывно возрастающей скоростью (как в присутствии добавленного полимера, так и без него), значение константы передачи цепи через бензол при 40° кп = 3,7 л/мол-сек. Полимеризация при низких температурах (ниже —30°) приводит к получению полимера с меньшей степенью разветвленности [19, 453]. Для фотополимеризации винилацетата в присутствии полимера, содержащего радиоактивный углерод (С " ), при 40 и 55° Бевингтон, Гусман, Мелвилль [454] определили число разветвлений, образовавшихся в результате реакции передачи цепи через полимер, и длину этих боковых цепей, константу скорости реакции передачи цепи через полимер йв по формуле = кр (М/С) п/А ), где кр — константа скорости реакции роста цепи л1 и С — концентрации мономера и полимера, выраженные в мономерных единицах п — число разветвлений N — число заполимеризованных молекул. При 40° Йе = 8,22 л-мол -секГ , для кр принята величина, равная 2,6-10 л-мол сек . [c.356]

    Мияма [625—627] исследовал (при помощи термистора) кинетику фотополимеризацни винилацетата с азо-бис-циклогексан-карбоновой кислотой, наблюдая повышение температуры реакционной смеси в адиабатических условиях (чувствительность установки составляла 0,6 10" °). Найдено, что значение отношений констант роста и обрыва цепей к /ко для винилацетата в процессе полимеризации медленно увеличивается от 1,8 (при глубине превращения 0%) до 9,55 (глубина превращения 50%). По достижении превращения выше 50% наблюдается резкое возрастание отношения констант (64,2 при 71,1%). Приняв, что скорость инициирования равна удвоенной скорости распада сенсибилизатора, автор рассчитал константы скоростей реакций роста цепей кр=ЪЪ ё л моль сек) и их обрыва (йо=5,118- 10 л/жоль-се/с). Определены также энергии активации реакций роста и обрыва Ер и Ео). Ер остается постоянной (3,4—3,9 ккал1моль) вплоть до глубины превращения 40—50%,затем быстро увеличивается и при глубине превращения 71,1 % достигает Ъ,О ккал/моль. Ео медленно увеличивается до 2,2 ккал моль (при 20—30% превращения), а затем резко возрастает до 16,8 ккал моль, что соответствует 71,1% превращения. [c.455]

    В табл. 3 схема реакций роста цепи [уравнение (3)] написана так, что заместители находятся по отношению друг к другу в положении 1,3. Структуры типа голова к голове или хвост к хвосту [уравнения (4а) и (46)] в общем также могут существовать, хотя их образование считается энергетически невыгодным. Обычно эти структуры могут присутствовать лишь в относительно небольших количествах . Так, например, в поли-винилацетате наличие звеньев с заместителями голова к голове удалось установить после омыления препарата до поливинилового спирта с последующим окисление HJ04. В результате было найдено 1—2% подобных звеньев  [c.31]

    Таким образом, наряду с неактивными продуктами образуется макрорадикал, а также метальный или ацетильный радикал. В присутствии винилового мономера, такого, как метилметакрилат или винилацетат, эти радикалы инициируют привитую или блок-сополимеризацию, а также и гомополимеризацию. Если каждый активный центр основной цепи будет инициировать реакцию роста цепи, то в привитом сополимере на каждую распавщуюся кетонную группу будет приходиться одна боковая цепь. Как и следовало ожидать, для простой радикальной реакции, скорость привитой сонолимериза-ции зависит от концентрации кетона и пропорциональна корню квадратному из интенсивности излучения. [c.138]

    Обсуждение реакций карбениевых ионов с я-электронными парами будет ограничено здесь рассмотрением реакций с олефинами и бензоидными ароматическими соединениями. В обоих случаях первоначальным продуктом является другой карбениевый ион, который далее реагирует с образованием устойчивых продуктов. Среди реакций циклогексадиенил-катионов, генерируемых электрофильной атакой на бензоидиые соединения, преобладает реакция, ведущая к восстановлению ароматического секстета обычно за счет потери протона. Карбениевые ионы, образующиеся при взаимодействии карбениевых ионов с олефинами, могут претерпевать дальнейшие превращения по нескольким конкурирующим направлениям, одним из которых является атака на другую молекулу олефина, что приводит к образованию полимерных продуктов. Из простых а-олефинов при катионной полимеризации образуются продукты с низкой молекулярной массой, поскольку в таких системах процессы переноса преобладают над процессами роста цепи. Полимеры с высокой молекулярной массой образуются обычно из таких олефинов как виниловые эфиры и стиролы. Типичные величины относительной реакционной способности виниловых мономеров, определенные при изучении сополимеризации в нитробензоле, следующие [46] бутадиен 0,02, изопрен 0,12, винилацетат 0,4, стирол (1,0), изобутен 4 виниловые эфиры реагируют очень быстро. Иногда катионная полимеризация протекает стереорегу-лярно. [c.541]

    Многие MOHO- и 1,1-Дизамещенные производные этилена, например винилхлорид, винилацетат, стирол, 1,1-дихлорэтилен, бутадиен-1,3, акрилонитрил, акриламид, метилакрилат и метилметакри-лат, могут полимеризоваться по радикальному механизму. Заместители стабилизируют радикалы, образующиеся при росте цепи, протекающем согласно уравнению (6). Вследствие этого все или почти все мономерные звенья включаются в растущую цепь указанным в схеме (6) путем, а не по реакции (7). Из-за пространственных препятствий 1,2-ди-, три- и тетразамещенные этилены обычно полнмеризуются с трудом или вообще не полимеризуются. Исключением из этого правила являются тетрафторэтилен и некоторые циклические ненасыщенные мономеры. [c.302]

    Данные по присоединению алкильных радикалов к олефинам в газовой фазе были критически рассмотрены в статье Керра и Тротман-Дикен-сона [1]. Авторы отмечают, что константы присоединения этильного радикала к различным олефинам (этилен, гексен, нормальные и разветвленные гептены и октены), а также различных алкильных радикалов (от метила до трет.бутила) к этилену почти одинаковы. Присоединение метила, этила и изопропила к ацетилену характеризуется такой же величиной коНстанты. При 142° С константы имеют порядок 10 —10 (для большинства реакций интервал изменений констант значительно уже). Энергия активации и предэкспоненциальный множитель незакономерно изменяются при переходе от одной реакции к другой, и эти различия, по-видимому, в значительной мере связаны с неточным определением температурной зависимости константы скорости. При пересчете констант на 60° С получаются значения около 3 -10 л1моль-сек, что не очень сильно отличается от константы роста цепи при полимеризации винилацетата. [c.225]

    В случае меркаптанов (табл. 31) по-видимому, не зависит от их молекулярного веса, но третичные меркаптаны менее реакционноспособны, чем первичные. Отличительной особенностью соединений этого класса является то, что энергия активации реакций передачи цепи может быть меньше энергии активации реакций роста (Грегг и др. [97]), Уоллинг [91] рассчитал константы передачи цепи через я-бутил-меркаптан с полимерными радикалами, образующимися из стирола, метилметакрилата и винилацетата. Сравнение полученных результатов с относительными реакционными способностями полимерных радикалов, полученными из данных о совместной полимеризации, позволило Уоллингу сделать предположение, что на реакционную способность в реакции передачи цепи может влиять образование ионных структур в переходном состоянии. Например, большую роль могут играть следующие структуры  [c.273]

    Абсолютные константы скоростей реакций стирольного и акрилонитрильного радикалов с РеС1з при 60° в растворе Ы,М-диметилформамида, вычисленные при помощи известных констант скоростей роста для этих радикалов, равны 94100 и 6533 моль- - л-сек соответственно. Общая реакционная способность полистирольного радикала, характеризуемая константой скорости реакции передачи цепи через толуол (см. стр. 118), почти в 200 раз меньше реакционной способности полиакрнлонитрильного радикала, оцененной аналогичным способом. Отсюда следует, что в реакциях с РеС1з определяющим фактором служит не общая реакционная способность, а какая-то другая величина. Наиболее вероятно, что этой величиной является электронодонорная способность радикала, которая в случае акрилонитрила сравнительно мала. Можно представить, что в переходном состоянии электрон радикала поделен между реагентами [37]. Бартлет и Кворт [117] для объяснения действия различных замедлителей на полимеризацию винилацетата применяли реакционную схему (б.ХХХУ ), в основу которой положено допущение о стационарном состоянии. По данным этих авторов, величина к 1кр при 45° лежит в пределах 20—200. [c.287]

    Как видно из табл. 13, абсолютные значения констант скорости роста цепи при 20—30° достигают величин порядка 10 —10 л/моль сек. Это громадные значения, являющиеся по существу причиной образования высокомолекулярных веществ. Сама же скорость роста цепи, т. е. [М], имеет, например для винилацетата, порядок 10 1/сек. При времени жизни 2—4 сек. это приводит к длине кинетической цепи около 4 10 . Однако материальная цепь оказывается более короткой вследствие реакции передачи цепи на мономер. Мы уже касались этой реакции в связи с поведением аллилацетата и некоторых других соединений (стр. 218), у которых передача цепи на мономер вообще исключает образование высокомолекулярных соединений. Представление о значении данной реакции при полимеризации некоторых распространенных соединений винильпого ряда дают константы С , приведенные в табл. 14. [c.231]

    Вадхьянатхан, Чайтаньян, Сантхаппа [473] исследовали полимеризацию винилацетата в растворе толуола при 75 — 100° е инициаторами — перекисью бензоила, перекисью метилэтилкетона с ди-трет.бутилпероксидом и трет.бутилгидропероксидом и показали, что в системе винилацетат — перекись бензоила М С а (А и ка — константы скорости реакции инициирования и первичной рекомбинации М — концентрация мономера). Отношение констант скорости реакции передачи цепи через толуол к константе скорости роста цепр кп/кр равно 2,7 10 при 75°. Константа передачи цепи через перекись бензоила для этой же системы равна 0,9 при 60° [474]. [c.358]

    Исследуя кинетику фотополимеризацни винилацетата дилатометрическим методом при 25° (сенсибилизатор — динитрил-азо-днциклогексанкарбоновой кислоты), Бенгоу [628—630] нашел, что стационарная скорость устанавливается примерно через 2 сек. после начала реакции. На основании полученных данных рассчитана величина отношения констант скоростей реакции роста и обрыва цепей кр ко— 2,9 10" . Он же определил значение величины теплоты (АЯ) реакции полимеризации ДЯ = =20,1 + 1,0 ккал моль. [c.455]

    Ряд работ посвящен полимеризации винилацетата в присутствии масляного и уксусного альдегидов [652—655]. Такаяма [652] показал, что скорость полимеризации винилацетата, инициируемой азо-бис-изобутиронитрилом при 60°, в присутствии масляного альдегида, пропорциональна корню квадратному из концентрации инициатора. Отношение констант реакций обрыва и роста цепей kjkp= 2,6 (как и в отсутствии масляного альдегида). Полимер содержит одну молекулу альдегида на полимернук> молекулу. Автор полагает, что масляный альдегид является передатчиком цепи. Константа передачи цепи с = 6,5 10 .  [c.457]

    Исследована кинетика полимеризации винилацетата в массе и в растворе этилацетата с азо-бис-изобутиронитрилом под действием УФ-излучения Изучение кинетики полимеризации винилацетата описано также и в других работахПоказано, что отношение р/Ао при 25° С равно 2,1 10-5 — 2,4 10 (йр и ко — константы скорости реакций роста и обрыва цепи). Определены константы передачи цепи через растворитель (С), при полимеризации винилацетата в присутствии азо-бис-изобутиронитрила (С-104) ддя этилацетата-2,9, н-пропилацетата-6,2, изопропил ацетата-3,5, н-бутилацетата-13,2, изобутилацетата-6,1, вгор-бутилацетата-4,4, грег-бутилацетата-1, 5, -гептана-17,0, изооктана-8,0 52. Для винилацетата рассчитаны отношение предэкспоненциальных факторов Лп/Лр = 5,2-10- и разность энергий активации Еа — Е = 3,8 для реакции передачи и роста цепи Определены константы передачи цепи (С) при радикальной полимеризации винилацетата для 100 веществ, в случае замещенных бензола обнаружено некоторое соответствие для величин С 1с величинами а (из уравнения Гамметта) ю54-10бз Предложено определить глубину конвер сии полимеризации винилацетата при помощи измерения диэлектрических потерь винильных мономеров в сантиметровом диапазоне с изменением конверсии степень полимеризации винилацетата проходит через минимум [c.584]

    Следующим этапом развития теории гель-эффекта были попытки установить количественные зависимости между изменениями констант скоростей реакций роста и обрыва цепи, с одной стороны, и вязкостью среды, с другой. Мияма [В5] путем сопоставления измеренных значений Щ/ко и вязкости среды г] предложил следующие уравнения для полимеризации винилацетата  [c.66]

    При сополимеризации этилена с винилацетатом в присутствии растворителей [347] скорость сополимеризации падает по мере увеличения концентрации этилена. Это явление авторы объясняют увеличением скорости реакции передачи цепи на растворитель с увеличением концентрации этилена в смеси. Активный этиленовый макрорадикал легче отрывает атом водорода от молекулы растворителя, чем менее активный винил ацетатный макрорадикал. Последующее реинициирование радикалом растворителя может протекать существенно медленнее, чем рост цепи, что приводит к снижению общей скорости сополимеризации. [c.188]

    Для радикальной полимеризации, инициируемой с поверхности твердой фазы, характерно также возрастание роли диффузионного контроля реакции обрыва цепи. Ограничение подвижности макрорадикалов при их фиксации на поверхности приводит к резкому снижению ко [35]. При полимеризации винилацетата, адсорбированного на 7-облученном аэросиле константы скорости роста цепи и бимолекулярного обрыва уменьшаются по сравнению с жидкофазной полимеризацией соответственно на 1—1,5 и на 5 порядков [389]. В связи с этим интересно провести аналогию с результатами исследования гель-эффекта при полимеризации ряда мономеров [425]. Начало автоускорения полимеризации авторы работы [425] связывают со структурообразованием реакционных систем, Рассматриваемые нами полимеризационные сиЬтемы, изначально содержащие твердую фазу, представляют собой уже на первых стадиях процесса некоторую структурированную систему, где затруднение обрыва цепи обусловлено эффектом зацепления. [c.237]

    По аналогии с поведением циклогексильных и трифенилметильных радикалов (см. ниже) резонансно стабилизованные полимерные радикалы, которые присутствуют в полимеризующихся виниловых мономерах, таких, как стирол, метилметакрилат и винилацетат, вероятно, скорее будут атаковать перекисный кислород, чем ароматическое кольцо. Сравнение поведения этих трех мономеров в процессах сополимеризации показывает, что соответствующие радикалы являются слабо нуклеофильными. Последнее обстоятельство также предполагает, что они предпочтительно будут атаковать перекисный кислород. В случае этих мономеров константы скорости для реакции (2) можно получить методом конкурирующих реакций. Эти значения, вероятно, гораздо более точные, чем полученные кинетическим разделением и В процессе полимеризации мономера перекись может действовать и как инициатор, и как агент, участвующий в росте цепи. Общий механизм полимеризации [c.171]

    При полимеризации смеси мономеров в реакции роста имеет место конкуренция между мономерами различного типа за присоединение к радикалу растущей цепи, в результате чего образуется сополимер. Такой сополимер обладает совершенно иными физическими свойствами, чем смесь соответствующих гомополимеров. Многие сополимеры, например бутадиенстирольный, этиленпропилено-вый, винилхлорида с винилацетатом и гексафторпропилена с вини-лиденфторидом (каучук вайтон), имеют большое промышленное значение. [c.520]

    В работе [203] показано, что при химической модификации глины образуют с инициатором аддукт, который мол<ет служить инициатором радикальной полимеризации. Так, в результате ионообменной реакции солянокислый 2,2 -азо-бис-изобутирамидин хемосорбируется на каолине или бентоните с образованием азоглин, которые легко инициируют полимеризацию винильных и других мономеров [204] метилметакрилата, стирола, винилацетата, акриламида, акрилонитрила, хлоропрена, 4-винилпиридина и смеси стирола с бутадиеном. Полимеризация на глинах, модифицированных инициатором, может протекать как в массе, так и в водной эмульсии с образованием значительного количества полимера, не экстрагируемого с поверхности глин. Полное разложение аддукта инициатор — бентонит, определенное по выделению азота перед прибавлением мономера, практически исключает образование полимера в объеме и увеличивает количество привитого полимера. Это связано со знач1Ительно большим временем жизни свободных радикалов, сорбированных на плоскостях в межслоевом пространстве минералов. Чем выше доступность внутренней поверхности глинистых минералов для мономеров, тем меньше возможность обрыва растущих цепей это приводит к необычно резкому увеличению скорости роста цепей. [c.170]

    Высокая активность в реакции передачи цепи позволяет использовать низкомолекулярный жидкий ПВХ в качестве регулятора роста цепи при полимеризации винилхлорида для получения полимера с высокой эластичностью без дополнительной пластификации . При изуче11ии механизма прививки винилацетата в массе или растворе на сополимер винилхлорида с винилацетатом было установлено, что в макромолекуле звенья винилхлорида являются более активными переносчиками цепи, чем звенья винилацетата  [c.372]

    Проводя суспензионную полимеризацию нерастворимого в воде мономера в водном растворе другого мономера, можно получить блок-сополимеры [29]. По мере протекания полимеризации в одной из фаз растущие полимерные радикалы могут диффундировать через границу раздела и инициировать рост цепи в другой фазе, что приведет к образованию блок-сополимера. Таким методом можно получать сополимеры акриловой или метакриловой кислоты — эти оба мономера растворимы в воде и образуют растворимые в воде полимеры — со стиролом или винилацетатом, которые не смешиваются с водой, так же как и их полимеры. К сожалению, сложная взаимная растворимость компонентов в подобных системах препятствует выделению чистых блок-сополимеров. Так, например, растворимость акриловой кислоты в стироле довольно велика, поэтому в лучшем случае продуктом реакции будет блок полистирола, соединенный с блоком статистического сополимера стирола и акриловой кислоты. Фактически в результате полимеризации такой системы получаются блоки неопределенного состава с низким выходом [30] их растворимость отличается от растворимости соответствующих гомополимеров и статистических сополимеров этих компонентов. [c.89]


Смотреть страницы где упоминается термин Винилацетат реакция роста цепи: [c.254]    [c.218]    [c.218]    [c.222]    [c.99]    [c.348]    [c.172]    [c.87]    [c.347]    [c.456]   
Волокна из синтетических полимеров (1957) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Винилацетат

Рост цепи



© 2025 chem21.info Реклама на сайте