Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь параметров реакции со свойствами ее компонентов

    Связь параметров реакции со свойствами ее компонентов fia [c.53]

    Классификация химических реакций до сих пор проводилась на основе внешних характерных черт [8]. Это положение распространяется и на гомогенные газовые реакции [9]. Реакции различных порядков, протекающие между атомами и молекулами, обычно классифицируются по числу реагирующих компонентов и их свойствам. Кроме того, простые или сложные реакции различают по их механизму. Однако основой для таких классификаций служат внешние характеристики, полученные при исследовании формальной кинетики,которые не связаны или слабо связаны с поведением атомов, с ролью миграции электронов в ходе реакции. В то же время, поскольку кинетические параметры реакции связаны с образованием переходных комплексов, классификация должна основываться на сущности химического процесса, на внутренних характеристиках реакции. С точки зрения логики такая классификация рассматривается как естественная систематизация. Для того чтобы провести естественную систематизацию в гомогенных газовых реакциях и установить как можно большее число соотношений, целесообразно подробно рассмотреть некоторые законы классификации. [c.51]


    С помощью кнудсеновской масс-спектрометрии и интегрального варианта эффузионного метода исследованы состав пара и термодинамические свойства жидких сплавов Ре- 1-В в температурном интервале 1423-1894 К и диапазоне концентраций 9-88.8 ат. % Ре 2.6-81.4 ат. % 51 7.5-50 ат. % В. Получены сведения об активностях всех компонентов и энергии Гиббса образования расплава Ре-81-В для широкого температурно-концентрационного диапазона. Установлено, что жидкость Ре-81-В является идеальным ассоциированным раствором, в котором образуются тройные комплексы вида Ре ВЗ . Показана связь между термодинамическими параметрами реакций ассоциации и склонностью расплава к превращению в аморфное состояние. Отмечена особая роль тройных ассоциативных группировок. [c.24]

    Контакт воды с металлической поверхностью приводит к коррозии металлов, протекающей по электрохимическому механизму. Величина водонефтяного соотношения, характерного для конкретного месторождения, при котором система нефть — вода становится неустойчивой, может быть использована в качестве параметра для прогнозирования скорости коррозионного разрушения оборудования. Углеводороды практически не вызывают коррозию металлов. Однако неполярная фаза в системе нефть — вода оказывает значительное влияние на коррозионную активность водонефтяной системы в целом, повышая или понижая ее. Повышение защитного действия углеводородной составляющей в эмульсионной системе вода — нефть связано в основном с ингибирующими свойствами ПАВ, входящими в природную нефть. Наиболее активные ПАВ — нафтеновые н алифатические кислоты и асфальтосмолистые вещества. Содержание ПАВ в нефтях различных месторождений колеблется в широких пределах. Молекулы нафтеновых и алифатических кислот состоят из неполярной части — углеводородного радикала и полярной части карбоксильной группы, что обусловливает их способность адсорбироваться на границе раздела фаз. Соли нафтеновых кислог более полярны, чем сами кислоты, и более поверхностно-активны. Величина поверхностного натяжения на границе раздела вода — очищенная фракция нефти (например, вазелиновое масло или очищенный керосин) составляет 50—55 мН/м, в то время как поверхностное натяжение на границе раздела вода — сырая нефть не превышает 20—25 мН/м. Это свидетельствует об адсорбции поверхностно-активных компонентов нефти на границе раздела сырая нефть—вода. В щелочной пластовой воде происходит реакция взаимодействия нафтеновой кислоты с ионом щелочного металла. Образующееся соединение более поверхностно-активно, чем нафтеновые кислоты. [c.122]


    Разложение аммиака часто применяется для изучения механизма обратной ей важной промышленной реакции синтеза аммиака на металлах. Как известно, синтез аммиака происходит на железном катализаторе (электронная структура 3 i 4s ). Возникает вопрос, сохраняются ли особые свойства конфигурации в бинарных соединениях. Фосфиды и нитриды переходных металлов, на которых изучалось разложение NHg [432, 433], также имеют металлическую проводимость. На -уровнях металла в них обычно находится больше электронов, чем в чистом металле. Для некоторых из них, например, нитридов Ti, Сг, Мп, есть основания говорить о присутствии значительной ионной компоненты связи [408—411]. Параметры решеток этих веществ (см. Приложение) довольно близки друг к другу. [c.131]

    При увеличении длительности работы питтинга возможно появление предельного тока (например, при потенциале д) вследствие диффузионного ограничения доставки в глубокий питтинг компонентов раствора и отвода продуктов реакции, и тогда анодная кривая вырождается в кривую °д д 4 — что отмечалось при исследовании модельного питтинга [41, с. 77 71]. При потенциале коррозии к, задаваемом окислительными свойствами среды (в условиях питтингообразования ц более положительный, чем пт) происходит возникновение питтинга в результате взаимодействия адсорбированных активирующих анионов, например, хлор-ионов с пассивной пленкой в отдельных точках. Локальность процесса обусловлена негомогенностью поверхности металла и оксидной пленки и связанной с этим неравномерностью адсорбции анионов на пассивной пленке. Начальной стадии возникновения питтинга соответствует растворение структурных элементов поверхности, имеющих менее совершенную пассивацию. Несовершенство пассивной пленки может быть связано с каким-либо искажением структуры металла наличием границ зерен, различного рода включениями (металлическими и неметаллическими), выходом на поверхность кристаллов с менее благоприятной для пассивации ориентацией или же более тонкой неоднородностью, как, например, наличием дислокаций и включением в решетку инородных атомов. Местные изменения стойкости пассивной пленки могут быть вызваны также понижением концентрации основного пассивирующего компонента (например, хрома в коррозионностойких сталях), или дополнительных легирующих компонентов (51, Мо и т. п.). На этой стадии отсутствуют заметные концентрационные изменения электролита и омические падения потенциала. Питтинг еще не имеет характерной полусферической формы, определяемой этими параметрами. [c.91]

    В вышеописанных релаксационных методах равновесие смещают в результате изменения основных параметров (т, р, напряженности поля) и наблюдают затем либо за переходными, либо за стационарными свойствами раствора. В электрохимических методах [18] возмущение осуществляют удалением одного из компонентов при помощи реакции на электроде, обычно реакции восстановления на ртутном или платиновом катоде. Измеряемой величиной является либо ток, либо электродный потенциал, а наблюдения можно проводить в переходном или стационарном режиме. Техника таких измерений часто связана с использованием некоторой [c.143]

    Весь арсенал методов, которыми располагает современная наука для исследования строения молекул и природы химической связи, в принципе применим для изучения молекулярных комплексов. Исследование молекулярных комплексов, выделенных в чистом виде и находящихся в твердом или жидком состоянии, принципиально ничем не отличается от исследования любых других индивидуальных соединений. Специфические трудности физико-химического исследования молекулярных соединений появляются при изучении их в парах и особенно в растворах, т. е. в таких условиях, когда возможна диссоциация комплексов на составляющие компоненты. В таких случаях экспериментально измеряемые физико-химические свойства систем характеризуют не индивидуальный комплекс, а относятся к равновесной смеси комплекса с исходными компонентами. Для получения данных, относящихся к комплексу, необходимо знать константу равновесия реакции комплексообразования и соответствующие параметры исходных молекул. [c.38]

    Замечательным свойством термодинамически равновесных сред является то, что отношение констант скорости прямого и обратного направлений реакции в таких средах равно константе равновесия реакции, вычисленной при значениях термодинамических параметров, определяющих состояние среды. В тех случаях, когда реакцию нельзя охарактеризовать константой скорости, не зависящей от концентраций компонент среды, взаимосвязь скоростей двух направлений реакции выражается в более общей форме константе равновесия равно отношение коэффициентов скорости реакции , которые определенным образом связаны с концентрациями компонент среды и с константами скорости одноступенчатых реакций. Доказательство этого свойства дано в следующих двух разделах данного параграфа. [c.191]


    Синтез рациональной САУ может быть произведен лишь на основе длительных наблюдений за функционированием действующих очистных сооружений. Однако предпринимается немало попыток изучать структурно-функциональные свойства объекта с помощью математического моделирования. Можно отметить три основных направления, используемых в математическом моделировании технологических процессов вообще и рассматриваемых здесь процессов в частности. При аналитическом методе математическая модель строится на основании всестороннего исследования механизма процесса и составляется нз уравнений материальных и теплового балансов для каждой фазы процесса, а также из уравнений, отражающих влияние гидродинамических факторов и кинетики реакций для каждого компонента. При этом необходимо учитывать коэффициенты диффузии, теплообмена, кинетические константы реакций и т. п. Для определения этих коэффициентов и констант требуется комплекс сложных и точных лабораторных и промышленных исследований. Математическая модель может быть синтезирована также экспериментально. Методами современной математической статистики находят формальное математическое описание процесса в условиях, когда теория процесса разработана недостаточно полно и нельзя дать более или менее точное аналитическое описание. Это новый, кибернетический подход к задаче исследователь устанавливает функциональные связи между входными и выходными параметрами процесса, абстрагируясь от сложных и плохо изученных явлений, происходящих в процессе. Кроме того, существует третий метод составления математических описаний — экспериментально-аналитический, упрощающий задачу определения численных значений параметров уравнений статики и динамики процесса. В этом случае исходные уравнения составляются на основе анализа процессов, наблюдаемых в объекте, а численные значения параметров этих уравне.чий определяются по экспериментальным данным, полученным непосредственно на объекте. [c.169]

    Предположим, что обменно-десорбционные процессы на границе полимер — субстрат в присутствии низкомолекулярного компонента подчиняются закономерностям кинетики химической реакции л-го порядка с константой реакции к, а проникновение компонента через слой полимера описывается традиционными феноменологическими соотношениями теории массопереноса. Причем в начальный момент на поверхности полимерного слоя в сэндвичевой системе, контактирующего с агрессивной средой, мгновенно устанавливается некоторая равновесная концентрация низкомолекулярного вещества Со, соответствующая его растворимости в полимере. Продвижение диффузионного фронта в объем к межфазной границе либо вдоль нее происходит в однородном гомогенном материале с коэффициентом диффузии, не зависящим от концентрации низкомолекулярного компонента. Примем, что изменение параметров многослойных систем связано некоторым образом с концентрацией низкомолекулярного вещества пусть изменение а обусловлено сорбцией в объеме полимерных материалов, а Л и — адсорбцией на межфазной границе полимер — субстрат. При насыщении сорбатом системы параметры достигают равновесных значений. Тогда, очевидно, имея аналитическое выражение этих связей и уравнения, описывающие транспорт и накопление низкомолекулярного вещества в объеме адгезива и на его границе с субстратом, можно получить выражения для описания кинетики изменения свойств многослойных систем. [c.273]

    Отсюда, если Ье = Ср р/)12/ = 1, тепловой поток к поверхности — ди, не зависит от того, где протекают химические реакции, при условии, что величина не зависит от состава смеси, и решение уравнения энергии для /(т]) не связано с решением уравнения сохранения компонента смеси. Так как для большинства газовых смесей значение Ье близко к единице и к тому же переносные свойства и параметр С = рц/ре Де и, следовательно, /( р) относительно слабо зависят от состава смеси, наше заключение о том, что тепловой поток не зависит от расположения зоны химической реакции в пограничном слое, является правдоподобным, а приближение замороженного пограничного слоя оказывается допустимым. [c.146]

    Здесь параметры d и 2 описывают нуклеофильность и элект-рофильность растворителя соответственно, а i и С2 — степень чувствительности соединения к этим свойствам растворителя. Как и в рассмотренных выше уравнениях, Aq —это константа скорости реакции в стандартном растворителе — водном этаноле (80% этанола по объему). Уравнение Свэна имеет статистический характер, поскольку в отличие от двухпараметрического уравнения (7.15) (т и I) здесь имеются 4 переменных. С помощью определенных стандартных систем рассчитано множество значений параметров d, 2. i, С2, удовлетворяющих большому числу экспериментально найденных констант скорости реакций [45]. Несмотря на то что с помощью уравнения Свэна были получены удовлетворительные результаты для большого числа растворителей и субстратов, оно неоднократно подвергалось критике за отсутствие связи- между входящими в его состав параметрами и конкретными физико-химическими свойствами компонентов системы [42, 46]. В частности, параметры субстрата С и не отражают механизма реакций например, грег-бутилхлориду приписан больший параметр с, чем бром-метану, откуда следует, что бромметан (подвергающийся сольволизу по механизму Sn2) должен быть менее чувствительным к нуклеофильности растворителя, чем грег-бутилхлорид (соль-волизирующийся по механизму SnI). [c.511]

    Для выяснения механизма ФГ полисахаридов ГМЦ, оиреде-ления активности ферментных комплексов или индивидуальных высокоочииденных ферментов псиользуют ГМЦ, выделенные из растительных материалов. В этом случае на ФГ гемнцеллюлоз не влияет экранирующее действие целлюлозы, лигнина или других компонентов клеточной оболочки, т. е. образование промежуточных соединений (ES) между ферментом (Е) и субстратом (S) происходит без препятствий и кинетические параметры реакции зависят от свойств и концентрации реагирующих компонентов, значения pH, температуры, ионной силы среды и т. д. ФГ не тормозится диффузией фермента к субстрату через клеточные стенки или слой другого полимера, диффузией и удалением продуктов реакции от места их образования в среде. На гидролиз определенной связи в полисахаридах может влиять надмолекулярное строение ГМЦ, ио эта проблема почти ие исследовалась. [c.226]

    По-видимому, среди большого количества гетерогенных каталитических процессов изменения свойств оксидных катализаторов под воздействием реакционной среды изучены наиболее подробно. Это относится прежде всего к катализаторам окислительно-восстановительных реакций при вариации соотношения концентраций окисляющего и восстанавливающего компонентов в реакционной смеси. С уменьшением этого отношения снижается окисленность катализатора, и в результате наблюдается резкое уменьшение общей скорости реакции при одновременном увеличении селективности в отношении продуктов неполного окисления. Изменение этих параметров на примере реакции окисления акролеина в акриловую кислоту на оксидном ванадиймолибденовом катализаторе [11] представлено на рис. 1.4. Кривая 3 показывает, как меняется с изменением состава реакционной смеси энергия связи кислорода на поверхности катализатора, определяющая каталитические свойства. [c.12]

    В качестве моделей ферментов, как правило, используют синтетические органические молекулы, обладающие характерными особенностями ферментативных систем. Они меньше ферментов по размеру и проще по структуре. Следовательно, моделирование ферментов — это попытка воспроизвести на гораздо более простом уровне некий ключевой параметр ферментативной функции. Выявление определенного фактора, ответственного за каталитическую активность фермента в биологической системе, является трудоемкой задачей, требующей ясного представления о роли каждого компонента в катализе. Но, располагая подходящими моделями, мы можем оценить относительную важность каждого каталитического параметра в отсутствие других, не рассматриваемых в данный момент. Главное преимущество использования искусственных структур для моделирования ферментативных реакций состоит в том, что вещества можно создавать именно для изучения определенного конкретного свойства. Структура модели в дальнейшем может быть усовершенствована путем сочетания таких особенностей, которые дают наибольший вклад в катализ, и создания таких моделей, которые по своей эффективности действительно приближаются к ферментам. Таким образом, с помощью методов синтетической химии становится возможным создание миниатюрного фермента , который лишен макромоле-кулярного пептидного остова, но содержит активные химические группы, правильно ориентированные в соответствии с геометрией активного центра фермента. Этот подход называют биомимети-ческим химическим подходом к изучению биологических систем . Биомиметическая химия — это та область химии, где делается попытка имитировать такие характерные для катализируемых ферментами реакций особенности, как огромная скорость и селективность [350, 351]. Хочется надеяться, что такой подход в конце концов позволит установить связь между сложными структурами биоорганических молекул и их функциями в живом [c.263]

    В отличие от гомогенного для гетерогенного катализа нет единой теории, позволяющей описать все наблюдаемые явления. Особенность гетерогенных каталитических реакций заключается в образовании на твердой поверхности катализатора хемосорбирован-ных (на активных центрах) комплексов, которые не способны существовать индивидуально и не могут быть названы промежуточными соединениями. Хемосорбционные комплексы одного из реагентов в дальнейшем вступают во взаимодействие с компонентами реакционной смеси, образуя продукты реакции и освобождая активные центры поверхности. Характер взаимодействия в значительной мере зависит от электронной структуры твердого катализатора. С этой точки зрения активные металлы с их легкоподвижиыми электронами обычно склонны к образованию относительно прочных поверхностных комплексов и поэтому каталитически малоактивны. Диэлектрики с ничтожно малой концентрацией свободных электронов плохо образуют поверхностные комплексы и потому также не отличаются каталитической активностью. А на поверхности полупроводников и малоактивных металлов, которые характеризуются промежуточными значениями электронной концентрации, хорошо образуются метастабильные ассоциаты, чем и определяется их высокая каталитическая активность. Эти представления позволяют связать каталитические свойства полупроводников с другими их параметрами электрической проводимостью, энергией активации электрической проводимости, особым состоянием поверхности и т. и. Так, например, промотирование сульфатами щелочных [c.236]

    Обсуждая крекинг индивидуальных парафинов, мы рассмотрели различные гипотезы относительно начальной стадии процесса. В случае крекинга газойлей сложность возрастала из-за того, что это сырье содержит компоненты различной молекулярной массы. В результате основное обсуждение крекинга газойлей сосредоточилось на поверхностных характеристиках общей конверсии или суммарной селективности. Несомненно, что если бы были установлены кинетические параметры крекинга газойлей, можно было бы получить большой объем информации, изучая их изменение в зависимости от составов сырья и катализатора. Корма и Войцеховский [43] попытались объяснить влияние активных центров различных типов при каталитическом крекинге газойля, сопоставляя кинетические параметры, полученные с использованием модели ВПП, с экспериментальными данными по крекингу газойля на двух различных цеолитных катализаторах. Так как в обоих случаях применялось одно и то же сырье, ясно, что все различия в параметрах (табл. 6.1) должны быть связаны со свойствами катализаторов и, в первую очередь, с природой их активных центров. На основании данных ИК-спектроскопии и изучения крекинга кумола, как модельной реакции, обнаружено, что цеолит HY содержит больше центров Бренстеда и меньше Льюиса, чем LaY [58]. С другой стороны, исследование распределения кислотной силы методом Бенеши позволило установить, что число активных центров с рК<6,8 больше па цеолите НУ, тогда как ЬаУ содержит больше сильных кислотных центров с рК<1,5 [43]. Это те самые сильные центры, которым приписывают основную активность в ка-(галитическом крекинге парафинов [59]. В свете этих данных можно представить следующую схему крекинга обычного парафинис-froro газойля. [c.132]

    Наиболее важным кинетическим параметром, характеризующим процесс образования карбоната кальция, является константа скорости реакции, которую можно значительно уменьшить введением в реакционную систему следовых количеств-некоторых компонентов [14]. Чтобы определить, как связаны свойства некоторых ионов с их эффективностью в качестве ингибиторов кристаллизации карбоната кальция, Симкисс 1[22] использовал метод самопроизвольного осаждения. Исследования проводились при высокой ионной силе раствора (морская вода). Была установлена эффективность ингибирования некоторыми ионами, содержащими фосфор. Кайтэно [23] показал, что некоторые ионы участвуют в регулировании структуры самопроизвольно осаждающегося карбоната кальция. Фергюсон и сотр. [8], изучая оптимальные условия обработки известью для эффективного удаления фосфора, отметили важность рециркуляции твердых продуктов в качестве затравочного материала. [c.29]

    Рибосомную и вирусную РНК лучше рассматривать вместе, поскольку мы имеем здесь дело с молекулами, близкими как по своим размерам, так и по свойствам. Эти полирибонуклеотиды состоят, по-видимому, из одинаковых одноцепочечных и чрезвычайно гибких молекул, легко претерпевающих деформацию. В гидродинамическом отношении такие молекулы ведут себя как беспорядочно свернуты е клубки (особенно при низкой ионной силе и высокой температуре). Из этого вытекают следствия, о которых мы ун е говорили выше во-первых, сильная зависимость различных оптических и гидродинамических свойств этих полирибонуклеотидов от ионной силы и от некоторых других факторов и, во-вторых, близкое сходство ряда теоретических и экспериментальных параметров с соответствующими параметрами для других полиэлектролитов. Отдельные структурные компоненты в молекуле РНК связаны между собой так же, как они связаны в ДНК иными словами, молекула этого полирибопуклеотида представляет собой одиночную неразветвленную цепь, построенную из мономерных единиц, которые связаны между собой 3, 5 -фосфодиэфирным11 связями. Поскольку ОН-группа в положении 2 не замещена, полирибонуклеотиды расщепляются под действием не слишком концентрированной щелочи (что отличает их от полидезоксирибонуклеотидов) другие характерные для них реакции рассмотрены выше. Способность свободных аминогрупп вступать в реакции с такими соединениями, как НКОа и НСНО, у РНК выше, чем у ДНК (но ниже, чем у свободных нуклеотидов) однако не все остатки, по-видимому, одинаково реакционноспособны. Гипохромизм у РНК выражен слабее, а интервал денатурационного перехода у них значительно шире, чем у двухцепочечных ДНК. Кривые денатурации напоминают по форме кривые, получаемые при плавлении одпоцепочечных ДНК. Положение точки перехода у РНК, так же [c.155]

    Непрекращающийся поиск катализатора, способного выполнять заданную определенную функцию, служит примером проявления более общей и всеохватывающей проблемы выяснения природы и реакционной способности химической связи. В самом деле, возможность взаимодействия двух молекул с образованием конечного продукта определяется способностью этих реагентов претерпевать электронные и структурные перегруппировки. Этот основной вопрос химической реакционной способности следует репгать, исходя из сил взаимодействия между реагирующими молекулами. В присутствии третьего компонента, катализатора, сложность задачи значительно возрастает. При этом можно надеяться, что в лучшем случае удастся установить только связь между химической реакционной способностью и доступными в настоящее время характеристическими параметрами, описывающими электронные и геометрические свойства катализатора. Проблема катализа еще не разработана в такой стенени, чтобы можно было выбрать наилучший катализатор для ускорения превращения реагирующих веществ в конечные продукты в любой данной химической реакции. Однако, как следует из предыдущих глав, некоторые представления о роли катализатора дают возможность разработать определенные классификации, которые в ограниченном количестве случаев, отвечающих установленным схемам, позволяют разумно подойти к подбору катализатора. Несмотря па пользу, принесенную эмпирическими и теоретическими наблюдениями, редко удается подобрать катализатор таким образом, чтобы его поведение характеризовалось полной специфичностью или чтобы его поведение было уникальным. Поэтому важно рассмотреть те факторы, которые влияют на селективность катализаторов, давая тем самым возможность регулировать каталитическую реакцию с целью получения высокого выхода целевого продукта. [c.278]

    Различие температуры крупных и мелких кристаллов усиливается, если кристаллизант участвует в химических реакциях, протекающих в фазах системы или на ее стенках. Неоднородность распределения температур, напряжений и дефектов в объеме фаз приводит к неоднородности распределения энтропии, внутренней энергии и энергии Гиббса [1, с. 256 2], а следовательно, равновесного состава и скорости миграции примеси по объему твердой фазы [3, с. 20 4, с. 220]. Поэтому при анализе соосаждения необходимо учитывать неоднородность распределения любого экстенсивного свойства фаз системы и возможность появления источников этого свойства в объеме фаз, на поверхности кристаллов и на стенках системы. При таком анализе раствор (нар) следует рассматривать как дисперсионную среду, а кристаллы — как дисперсную фазу, частицы которой связаны непрерывной функцией распределения по состояниям. Состояние каждого кристалла полностью определяют его пространственные координаты и импульсы, а также внутренние обобщенные координаты (т. е. масса всех компонентов, содержание электрической, магнитной, радиационной, гравитационной, механической и тепловой энергий и параметры их распределения но объему кристалла). Внутренние обобщенные координаты каждого кристалла зависят от внешних обобщенных его координат, т. е. от концентрации компонентов и энергий среды в непосредственной близости от данного кристалла. Внутренние и внешние обобщенные координаты связаны с обобщенными силами (химическим потенциалом, напряженностью электрического и магнитного поля, мощностью радиационного поля, силой тяготения, механическим напряжением и температурой) уравнениями состояния дочерней и материнской фаз. Изменение внутренних обобщенных координат опреде.ляется законами переноса массы и энергии в объеме кристаллов и условиями массо- и энергообмена материнской и дочерней фаз. Изменение внешних координат определяется уравнением движения суспензии и законами массо-и энергопереноса в ее объеме, отражающими связь между потоками массы или энергии и градиентами обобщенных движущих сил [5]. [c.48]

    Пользуясь основным свойством равновесных реакций, можно легко показать, что константы равновесия всех обменных реакций при поликонденсации однозначно выражаются через константы равновесия реакций конденсации и деструкции. Кроме того, оказывается, что константы равновесия любых реакций поликонденсации могут быть выражены только через константы бимолекулярных реакций, в которых хотя бы одним из компонентов является мономер. Последнее обстоятельство позволяет выявить минимальное число независимых параметров, характеризу-юш,их равновесие. Концентрации всех компонентов в равновесной системе вычисляются из решения систетх алгебраических уравнений, выражающих закон действуюш их масс для всевозможных равновесных реакций между этими компонентами. Однако из вышесказанного следует, что при этом можно ограничиться только уравнениями тех реакций конденсации и деструкции, в которых принимают участие мономеры. Уравнения закона действуюш,их масс для остальных реакций при этом можно не рассматривать, так как они являются зависимыми и могут быть получены из первых с учетом соответствуюш,их связей между их константами равновесия. [c.79]


Смотреть страницы где упоминается термин Связь параметров реакции со свойствами ее компонентов: [c.47]    [c.73]    [c.22]    [c.437]    [c.148]   
Смотреть главы в:

Методы практических расчетов в термодинамике химических реакций -> Связь параметров реакции со свойствами ее компонентов




ПОИСК





Смотрите так же термины и статьи:

Параметры реакции



© 2025 chem21.info Реклама на сайте