Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностные реакции металлов

    Гидрирование и дегидрирование. Катализаторы этих реакций образуют нестойкие поверхностные гидриды. Металлы переходной и платиновой групп (Ni, Fe, Со и Pt) могут ок азаться пригодными аналогично окислам или сульфидам металлов переходной группы. Данный тип реакций является чрезвычайно важным он включает такие процессы, как синтез аммиака и метанола, реакцию Фишера—Тропша, оксо-синтез, синтол-прбцесс, а также получение спиртов, альдегидов, кетонов, аминов и пищевых жиров. [c.313]


    Образцы железа, никеля, кобальта, поверхность которых окислена, активно разлагают перекись водорода, однако под слоем перекиси разложение тотчас же резко замедляется, по-видимому, в связи с протеканием реакции восстановления поверхностного оксида металла [c.54]

    ПОВЕРХНОСТНЫЕ РЕАКЦИИ МЕТАЛЛОВ [c.55]

    Механизм взаимодействия кислорода с серебром можно описать следующими реакциями (индекс s означает поверхностный атом металла). Сначала образуется поверхностное соединение, в котором один атом О связан с двумя атомами Ag  [c.39]

    Совокупность исследований системы медь — кислород доказывает, что процесс прорастания следует рассматривать как процесс, протекающий на границе образования чрезвычайно тонких пленок (что возможно лишь при низких температурах) и окис-ных слоев значительной толщины, рост которых зависит от диффузии ионов в кристаллической решетке окисла и происходит при повышенных температурах. Таким образом, нетрудно понять, почему прорастание проявляется только при температурах, способствующих началу диффузии в пленке. Диффузия начинается на участках поверхности, находящихся в особо выгодных для этого условиях число таких участков зависит от давления, температуры и ориентации кристаллов. Изложенная интерпретация образования окислов позволяет значительно приблизиться к пониманию двух типов поверхностных реакций металлов, механизм которых еще мало изучен. [c.297]

    Если скорость окисления металла определяется скоростью поверхностной реакции (например, взаимодействие Ni с газообразной серой Sj по реакции Ni + = NiS), то скорость окисления пропорциональна корню квадратному из величины давления газа. Такая закономерность наблюдается, если газ воздействует на обнаженную поверхность металла, т. е. в отсутствие защитной пленки. [c.130]

    Молекулы других веществ также способны хемосорбироваться по диссоциативному механизму. Молекулы аммиака при хемосорбции распадаются в некоторых случаях на атомы водорода и радикалы ЫНг, которые раздельно адсорбируются на поверхности металла. Иногда диссоциация проходит даже дальше. При этом типе поверхностных реакций метан другие углеводороды могут расщепляться на атомы водорода и углеводородные радикалы, которые связываются с поверхностью хемосорбционными силами. [c.49]

    Все указанные на стр. 52 металлы, за исключением платины, восстанавливаются из оксидов под действием активного угля, выделяясь в виде мелких кристаллов. У платины Же поверхностная реакция восстановления идет лишь до образования Р1 (II), которая затем поглощается углем с образованием поверхностной соли. Последняя стадия реакции, вероятно, идет путем ионного обмена, продуктом которого является поверхностное соединение типа  [c.54]


    Большое сходство с поверхностными соединениями угля обнаруживают сорбционные соединения металлов — поверхностные оксиды, гидриды, нитриды и т. д. Точно так же реакции поверхностных соединений металлов очень напоминают поверхностные реакции угля. Например, поверхностный оксид платины легко взаимодействует с водородом [c.54]

    Начальное значение этого потенциала отвечает определенной скорости анодного процесса ионизации водорода, растворенного в никеле. С течением времени скорость анодной реакции должна постепенно уменьшаться за счет понижения концентрации растворенного водорода в поверхностном слое металла. В результате потенциал электрода будет постепенно смещаться в электроположительную сторону, что видно из данных рис. 133. При этом сдвиге потенциала на поверхности никелевого электрода возникает новая анодная реакция N -26-)-->N 2+, которая в сочетании с катодной реакцией восстановления кисло рода дает суммарную реакцию [c.297]

    Согласно определению, величина ф-потенциала служит приближенной мерой заряда металла по отношению к среде в выбранных условиях. Хотя между ф-потенциалом и зарядом металла не всегда существует строгий параллелизм (в силу поверхностных реакций, адсорбции с частичным переносом заряда и т. д.), тем не менее эта шкала впервые дала возможность сопоставить различные металлы и оказалась полезной при качественном подходе к выбору ингибиторов коррозии при нахождении оптимальных условий электросинтеза и т. д. [c.29]

    Непосредственное возникновение оксида по реакции (11) на исследованных металлах при нормальной температуре маловероятно, поскольку этот процесс сопровождался бы увеличением сопротивления пленки металла. Диссоциация воды по реакции (10) протекает за счет кинетической энергии молекул воды и энергии поверхностных атомов металла. Эти величины в исследованной области температур (от 253 до 293 К) существенно не изменяются, поэтому вероятность запол- [c.57]

    При взаимодействии поверхностного слоя металла с гидроокисью лития наблюдается протекание реакции [c.88]

    Помимо катионов с переменной валентностью в указанных реакциях могут участвовать также и поверхностные атомы металлов, поскольку электроны в металлах связаны относительно свободно. [c.183]

    Физико-химические процессы, происходящие вблизи поверхности при химико-термической обработке, заключаются в образовании диффундирующего вещества в атомарном состоянии вследствие химических реакций в насыщенной среде или на границе раздела среды с поверхностью металла (при насыщении из газовой или жидкой фазы), сублимации диффундирующего элемента (насыщение из паровой фазы), последующей сорбции атомов элемента поверхностью металла и их диффузии в поверхностные слои металла. Концентрация диффундирующего вещества на поверхности металла возрастает с повышением температуры (по экспоненциальному закону) и с увеличением продолжительности процесса (по параболическому закону). Диффузионный слой, образующийся при химикотермической обработке деталей, изменяя i тpyктypнo-энepгeтичe кoe состояние поверхности, оказывает положительное влияние не только на физико-химические свойства поверхности, но и на объемные свойства деталей. Химико-термическая обработка позволяет придать изделиям повышенную износостойкость, жаростойкость, коррозионную стойкость, усталостную прочность и т. д. [c.42]

    В. И. Кузнецов [122] рассматривает иониты как органические реагенты, у которых вследствие их высокого молекулярного веса соли стали нерастворимыми и реакции превратились в поверхностные реакции обмена. Взаимодействие солеобразующих группировок ионитов с ионами раствора ведет к образованию продуктов двух видов 1) нормальных солей с ионным характером связи между остатком группировки ионита и ионом металла и 2) соединений с неионизованной связью. [c.325]

    Адсорбционная теория пассивности объясняет наступление пассивного состояния и торможение анодной реакции растворения изменением электрохимического состояния поверхности во времени и с потенциале в результате ее взаимодействия с кислородом и анионами электролита [283]. Адсорбционно-химическое взаимодействие поверхностных атомов металла с атомарным кислородом приводит к возникновению дополнительных прочных химических связей, в результате чего снижается свободная энергия поверхностных атомов металла и резко увеличивается потенциальный барьер для выхода катиона металла в раствор. [c.73]

    Прилипание к поверхности часто сопровождается химической реакцией. На этом, в частности, основан метод плазменной пассивации поверхности металлов, когда металл при взаимодействии с атомами азота покрывается пленкой инертного нитрида металла. При взаимодействии Н с поверхностью металлов — катализаторов гидрирования — N1, Р1, <1 происходит разрыв Н—Н-связи и образование поверхностных гидридов металлов. Прилипание к поверхности жидкости сопровождается растворением в ней и возможными химическими реакциями в объеме жидкой фазы. [c.117]


    Хемосорбция углеводородов на металлах зависит от электронного строения металла [88] . в зависимости от числа незаполненных -орбиталей изменяется энергия связи адсорбированных молекул (теплота адсорбции). Однако природа поверхностных соединений металл — углеводород не установлена, и имеются разные мнения об их структуре (радикалы, комплексы). Дальнейшее изучение хемосорбции углеводородов, особенно в области температур, близких к началу целевой реакции окисления (область предкатализа), позволило установить наличие и состав образующихся поверхностных соединений, которые при повышении температуры становятся промежуточными активными формами каталитического процесса. Для механизма катализа особенно важны данные по адсорбции не индивидуальных углеводородов, а их смесей с кислородом. [c.47]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]

    Если поверхностное соединение металла является полупроводником р-типа с недостатком металла, например uaO, NiO, FeO, СоО и др., то при окислении таких металлов должна, по Вагнеру, наблюдаться определенная зависимость от величины давления кислорода (см. рис. 90). В идеальном случае к реакции окисления приложим закон действующих масс. В случае окисления никеля по реакции (54) [c.131]

    Так, Сидоровым [32] было показано образование эфирных связей при адсорбции метанола на силикагеле. Хироте, Фуэки и Сакаи [33] установили наличие поверхностных координационных алюминиевых комплексов при адсорбции метиламина на окиси алюминия, Захтлер с сотрудниками [34] показали, что первой стадией процесса окисления бензальдегида на окисных катализаторах является образование несимметричного бензоата металла. Эти данные свидетельствуют о том, что химические свойства веш,еств, участву-юш,их в каталитических процессах, в значительной степени сохраняются и в ходе поверхностных реакций, что может служить хорошей основой для раскрытия их механизма. [c.30]

    Большая часть смазок, принадлежащих к ПАВ, теряет эффективность при температуре около 200 °С. Выше этой температуры механизм смазывающего действия присадок, по-видимому, связан не с физической адсорбцией, а с хемосорбцией. При хемосорбции образуются химические связи между молекулами присадки и металлом, однако атомы металла не покидают свою кристаллическую решетку, т. е. происходит насыщение свободных связей поверхностных атомов металла без нарушения их связей с кр стал-лической решеткой. Хемосорбция возможна в случаях, когда для реакции требуется значительная энергия активации. [c.130]

    При анодной реакции поверхностные атомы металла, теряя электроны, переходят в раствор в виде гидротированных ионов и оставляют в металле эквивалентное количество свободных электронов, что можно выразить следующей реакцией  [c.7]

    Н2(г), при котором в поверхностном слое металла образуется твердый раствор углерода. В этом случае, учитывая наличие газовой фазы, используем уравнение (V. ). Так как Ф—2, а /С=3 (Ре, С, Н), то С=3. Переменными, определяющими состояние этой системы, являются температура, давление, состав газовой фазы н концентрация углерода в твердом растворе. Это означает, например, что если задать значения первых трех переменных, то четвертая определится автоматически. Это следует из з.д.м., так как при постоянных р и Т и заданном отношении 1Рси концентрация углерода определится из уравнения - р=Рн/(Рсн,[ ])- Если при рассматриваемой реакции образуется карбид железа, число фаз увеличится на единицу, а число степеней свободы соответственно уменьшится также иа единицу — задание двух параметров полностью определит состояние системы. Выбрав р и 7, мы фиксируем и состав газовой фазы, и концентрацию твердого раствора. [c.81]

    Наличие напряженного состояния в поверхностных слоях металла облегчает разупрочнение границ зерен и ускоряет процесс коррозионного растрескивания. Доступ молекулярного водорода к развитой поверхности цементитных участков облегчает протекание химической реакции обезуглероживания, а также отвод продуктов реакции. Это подтверждается экспериментальными и расчетными данными, приведенными на рис, 25 [74]. При одинаковых условиях проведения опытов, с уменьшением толщины стенки критическое давление должно бы быть одинаковым, что соответствовало бы меньшим глубинам обезуглероживания. Однако уменьшение толщины стенки приводит к увеличению тангенциальных растягивающих напряжений и равновесие реакции в данных условиях сдвигается в сторону более низких критических давлений, что увеличивает глубину обезуглероживания (рис, 25). [c.152]

    Контактные аппараты поверхностного контак-т а применяются реже, чем аппараты с фильтрующим или взвешенным слоем катализатора. При поверхностном контакте активная поверхность катализатора невелика. Поэтому aппaJ)aты такого типа целесообразно применять лишь для быстрых экзотермических реакций на высокоактивном катализаторе, обеспечивающем выход, близкий к теоретическому. При этих условиях в контактном аппарате не требуется размещать большие количества катализатора. Принципиальная схема контактного аппарата с катализатором в виде сеток показана на рис. 102. В корпусе аппарата горизонтально укреплены одна над другой несколько сеток (пакет сеток), изготовленных из активного для данной реакции металла или сплава. Подогрев газа до температуры зажигания производится главным образом в самом аппарате за счет теплоты излучения раскаленных сеток. Время соприкосновения газа с поверхностью сеток составляет тысячные — десятитысячные доли секунды. Такие аппараты просты по устройству и высокопроизводительны. Они применяются для окисления аммиака на платино-палладиево-родиевых сетках, для синтеза ацетона из изопропилового спирта на серебряных сетках, для конверсии метанола на медных или серебряных сетках и т. п. Эти же процессы с применением других менее активных, но более дешевых катализаторов проводят в аппаратах с фильтрующим или взвешенным слоем катализатора. В некоторых случаях, чтобы совместить катализ и нагрев газовой смеси, катализатор наносят на стенки теплообменных труб. [c.236]

    Кенни [593] показал ценность водных оксидных коллоидных систем для смачивания гидрофобных поверхностей водой. Он заявил, что некоторые такие системы могут смачивать любую из известных гидрофобных поверхностей без каких-либо химических реакций. Однако Айлер нашел, что смачивание с использованием золя кремнезема происходит на некоторых гидрофобных поверхностях только при низких значениях pH и при оптимальном размере частиц кремнезема. После того как изучаемую поверхность смачивали золем, промывали и высушивали, эта поверхность смачивалась повторно только потому, что на ней оставался адсорбированный монослой кремнеземных частиц, связанных с поверхностью. Вид связи зависит от разновидности гидрофобной поверхности. Например, металлическая поверхность, являющаяся гидрофобной вследствие адсорбированной пленки, состоящей из жирных кислот (смазки), становится гидрофильной в результате того, что кремнезем замещает некоторую долю жирной кислоты и оказывается связанным с оксидной поверхностной пленкой металла. Поверхность будет оставаться гидрофильной до тех пор, пока на ней в достаточной степени размещены частицы кремнезема. Такое явление имеет место главным образом при нейтральном или низких значениях pH и ускоряется в присутствии способных смешиваться с водой органических растворителей (например, спирта), которые помогают удалять жирную кислоту. [c.592]

    Активизационная поляризация т)а. Замедление реакции связывается с преодолением зарядами достаточно высоких энергетических барьеров (высокая энергия активации). Основные составляющие поляризации определяются процессами адсорбции реагентов на поверхности электрода, переносом электронов и поверхностными реакциями. Большое влияние на кинетику оказывает двойной слой, образующийся на границе электрод (металл) — электролит. [c.47]

    В случае истинных поверхностных реакций сопротивление массопередаче люжет быть срсредоточено по любую сторону или по обе стороны от границы раздела фаз. К таким процессам относятся сжигание газообразного аммиака на платиновой сетке, растворение окислов металлов кислотами и др. В этих случаях реакция происходит только на поверхности твердого тела, но сопротивление массопередаче сосредоточено в прилегающих к ней слоях жидкости или газа. Истинные поверхностные реакции протекают только тогда, когда участвующие в реакции вещества абсолютно нерастворимы друг в друге. [c.357]

    При синтезе на кобальтовом катализаторе принимается, что первично образующиеся а-олефины могут гидрироваться в парафины, изомеризоваться в олефины со средним положением двойной связи, сочетаться в большие молекулы или расщепляться иа меньшие. Такой механизм был предложен в начале 70-х годов, однако, как показали более поздние исследования (Ха-нус и др.), эта точка зрения имеет ряд существенных недостатков. Во-первых, предусмотренный этим механизмом комплекс (А) представляет собой как бы особую форму гидрида карбонила металла, образование которой характерно для железа [РеН2(СО)4] и кобальта [СоН(СО)4]. Эти соединения чрезвычайно нестабильны и разлагаются при температурах ниже 0°С. Кроме того, образование карбонилов металлов при аналогичных карбонильных структурах со многими молекулами СО на поверхностных атомах металла-катализатора мало вероятно из-за их нестабильности в условиях ФТ-синтеза. Во-вторых, метильная группа, связанная в реакционном комплексе(III) с поверхностным атомом металла, при ослаблении этой связи, видимо, будет реагировать с активным водородом, образуя метан, причем в результате должно было бы регенерироваться исходное соединение (А). Адсорбция метильной группы идет путем, ведущим к образованию метана, в то время как по конденсаци-онно-полимеризационному механизму образование метана является побочной реакцией. [c.279]

    Изложенные в предыдущих разделах вопросы механизма коррозионных процессов относились к случаям, когда скорости собственно анодных реакций растворения металлов не зависели от состава раствора. В действительности же нередко на скорости процессов растворения, явно лимитирующимися электрохимическими стадиями, влияет не только потенциал, но (при постоянном потенциале) и концентрации некоторых компонентов раствора, чаще всего анионов электролита. Эти эффекты нашли объяснения на основе развитого Я.М. Колотыркиным учения, согласно которому электрохимичес1сие реакции ионизации атомов металла, как правило, включают стадии химического или адсорбционно-химического взаимодействия поверхностных атомов металла с компонентами среды. Такое взаимодействие приводит к образованию устойчивых или промежуточных комплексов металла с компонентами раствора непосредственно в электрохимической стадии. При хемосорбции компонента, участвующего в реакции растворения металла, реализуется определенная прочность связи между адсорбированной частицей и электродом и определенная степень заполнения поверхности, возрастающие по мере смещения потенциала в положительном направлении и определяющие скорость растворения металла. [c.95]

    Представление о том, что в гетерогенно-каталитической реакции взаимодействие происходит на границе раздела фаз, в пограничном слое, и заключается в образовании двумерного конгломерата из реагирующих молекул и участка поверхности твердого тела (катализатора) столь же естественно, как и представление о том, что молекулы, прежде чем прореагировать, должны столкнуться. Поэтому естественно, что как только началось систематическое изучение гетерогенно-каталитических реакций в начале XIX в., возникло высказываемое в той или иной форме предположение о решающей роли промежуточных соединений, а возникновение теории промежуточных соединений трудно приурочить к какой-либо дате или работе. Во всяком случае уже Доберейнер [5], а еще более определенно де ля Рив и Марсе [6] стояли на точке зрения прохождения реакции через образование промежуточного соединения между катализатором и реагирующими молекулами. Генри [7] дает механизм катализа гремучего газа через последовательное окисление и восстановление поверхностных атомов металла. Бертло [8] распространяет представление о промежуточных соединениях на случай разложения перекиси водорода на металлах. Эта точка зрения подтверждается работами Габера [9] и Бредига и Антропова [10]. Наконец, Сабатье [11], правильно отмечая органический недостаток физических теорий того времени, заключающийся в том, что они не могли объяснить ни специфичности катализаторов, ни замечательного разнообразия их действия, систематически рассматривает весь накопленный к тому времени экспериментальный материал с точки зрения теории промежуточных соединений. [c.66]

    Природа продуктов реакции изотопного обмена этана или пропана с дейтерием на пленках никеля, полученных в условиях СВВ, зависит от поверхностной структуры катализатора грани с низким индексом благоприятствуют образованию двойной связи углерод—металл [46]. В реакциях гидрогенолиза или скелетной изомеризации насыщенных углеводородов на платиновых катализаторах возможны превращения по нескольким направлениям и в зависимости от типа реакций возрастает важность низкокоординированных (например, угловых) поверхностных атомов металла (концепция, напоминающая теорию активных центров Тейлора )или низкоиндексных граней [47, 48]. Реакция бензола с водородом или дейтерием на никелевых катализаторах также чувствительна к структуре катализатора [49—51], хотя результаты разных работ согласуются не полностью [52]. Мы не ставим себе целью глубоко обсудить эти химические превращения, а хотим только подчеркнуть, что проводить экспериментальные исследования необходимо с такими катализаторами, структура которых охарактеризована в максимальной степени. [c.36]

    Хотя прочно адсорбированные частицы уменьшают исходную металлическую поверхность, доступную для реактантов, это не обязательно ухудшает свойства катализатора. Объясняется это следующим. Адсорбированные вещества могут изменять (обычно снижать) теплоту адсорбции реактанта и таким путем повышать его реакционную способность. По-видимому, именно такая ситуация наблюдается при промотнровании окисью калия железного катализатора синтеза аммиака. Кроме того, промотор может подавлять самоотравление катализатора необратимо адсорбированными молекулами реактанта, способствуя тем самым увеличению концентрации промежуточных соединений, определяющих скорость реакции. Наконец, функция нереакционноспособных адсорбированных частиц может заключаться в создании активных центров особой конфигурации, способных адсорбировать реактанты. Поэтому, если путь превращения адсорбированного реактанта зависит от структуры центра, направление суммарной реакции изменится. Происходить это может несколькими путями. Каталитическая реакция может идти лишь на небольших группах поверхностных атомов металла, оставшихся не занятыми прочно адсорбированными частицами, или же прочно связанный адсорбат и поверхностные атомы металла могут составлять единый активный центр. Приведенные замечания вновь подчеркивают важность детальной характеристики катализатора при выяснении механизмов реакции. [c.37]

    Лэнгмюровская концепция монослойной хемосорбцни молекул или атомов [1] привела к выводу простых изотерм, связывающих заполненную долю поверхности с давлением адсорбируемого газа. Считая, что скорость гетерогенной реакции определяется скоростью взаимодействия адсорбированных молекул и что процессы адсорбции и десорбции находятся в равновесии, можно предположить, что скорость пропорциональна доле заполненной поверхности. Следовательно, эти скорости можно связать с давлениями газов. Таким путем были выведены выражения для скоростей реакций разложения и простых бимолекулярных реакций на поверхностях металлов, стекла, фарфора и силикагеля. Эти выражения весьма успешно применялись для объяснения скоростей довольно сложных процессов. Некоторые из многочисленных выражений, полученных для законов скоростей поверхностных реакций, сведены в табл. 23—27. Были обнаружены случаи ингибирования скоростей продуктами реакций и даже реагирующими веществами, а также дробные порядки реакций и порядки, изменяющиеся в зависимости от интервалов давления. Эти механизмы называют механизмами Лэнгмюра — Хиншельвуда (ЛХ) [2—4]. [c.241]

    В связи с изложенным можно заключить, что ни одна из предложенных до сих пор теорий не способна объяснить кинетику обеих реакций — гидрирования и обмена и что спектроскопические данные могут помочь в создании более адекватных теорий. Однако очевидно, что все поверхностные реакции относятся к числу быстрых (как того требует механизм Твигга) и, вероятно, стадии адсорбции или десорбции являются скорость-определяющими. Дополнительные сведения о тенлотах адсорбции этилена и этана на почти заполненных поверхностях представляются чрезвычайно ценными, но, но-видимому, получить их достаточно трудно. Возможно, что кинетика реакции обмена у этилена и этана слишком упрощена как уже упоминалось выше, другие реакции обмена имеют дробные порядки [38]. Поэтому дальнейшие исследования кинетики обмена у этилена с применением ИК-спектроскопии для идентификации поверхностных частиц, вероятно, окажутся плодотворными. Возможно, что обмен протекает через ацетиленовые комплексы. Должно представлять интерес также определение пропорций ацетиленовых комплексов, образующихся на различных металлах. Например, не много ли меньше его на родии и можно ли этим объяснить большие скорости на нем Или этот комплекс на родии легче восстанавливается  [c.285]

    Другую точку зрения [62], состоящую в том, что металлы или их окислы присутствуют в виде коллоидных частиц, которые действуют как гетерогенные ингибиторы, вновь выдвинули Уолш с сотр. [48, 49]. Их концепция основывается отчасти на опытах по влиянию тетраэтилсвинца на медленное окисление простого эфира и метана, а частично — на прямых наблюдениях, связанных с двигателями. Они полагают, что появление во всех случаях тумана, образованного частицами окиси металла, в сочетании с наблюдающимся ингибирующим влиянием поверхностей окислов на кинетику медленного окисления указывает на то, что антидетонатор действует за счет поверхностных реакций радикалов тина НО и других промежуточных продуктов окисления, например Н2О2. [c.474]

    Обычно в классическо понятие хемосорбции включают хемосорбцию газов на металлах и окислах металлов, однако существует, целый класс поверхностных реакций, протекающих в таких системах, как кремнезем—вода, кремнезем—спирты, кремнезем— аммиак и т. д. Изучение этих систем может привести к решению ряда интересных теоретических вопросов, а также имеет большое практическое значение (в частности, в вопросах гидрофобизации поверхности, активации катализаторов добавкой воды). [c.38]

    Сведений об адсорбированном состоянии ацетилена и других алкинов при их реакциях с водородом в литературе мало. Изучение хемосорбции дает возможность предположить [9], что адсорбат связывается с двумя поверхностными атомами металла с помощью двух 0-связей, образуя этиленоподобную структуру [структура (I)]. [c.413]


Смотреть страницы где упоминается термин Поверхностные реакции металлов: [c.65]    [c.9]    [c.116]    [c.12]    [c.6]    [c.6]    [c.119]    [c.283]    [c.440]   
Смотреть главы в:

Химия твердых веществ -> Поверхностные реакции металлов




ПОИСК





Смотрите так же термины и статьи:

Поверхностная реакция



© 2025 chem21.info Реклама на сайте