Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Чувствительность метода и источники ошибок

    Недостаток метода — необходимость тяжелой свинцовой защиты. Для упрощения защиты от у-излучения часто прибегают к использованию у-источников с небольшой активностью (1 — 20 мкюри) [540, 548]. При использовании незначительного количества пробы н правильном выборе геометрической формы кювет чувствительность метода анализа бериллиевых руд практически достаточна. Например, при применении источника с активностью 1—3 мкюри и пробы весом 25 г измерение в течение 1—2 час. позволяет определить 0,1% БеО с ошибкой 0,01 — 0,03% [548]., [c.117]


    Чувствительность метода определения лития в рудах была повышена описанным приемом примерно на два порядка. Чувствительность и надежность метода определения возрастают с увеличением подачи пробы в разряд. Вместе с тем сгорание одной частицы пробы должно заканчиваться к моменту поступления в разряд следующей частицы. В противном случае соответствующие вспышки аналитической линии будут зарегистрированы как одна вспышка и возникнет обусловленная этим фактом ошибка анализа. Поэтому целесообразно пользоваться источниками, дающими наиболее короткие вспышки с крутым фронтом. По-видимому, перспективно применение плазменных источников спектра. С помощью этого приема может быть раздельно определено содержание различных минералов одного и того же элемента в пробе и дана количественная характеристика неоднородности распределения интересующего элемента по объему пробы. Если анализируемый элемент входит в два или несколько минералов в различных концентрациях, то каждому из минералов будет соответствовать характерная амплитуда и форма световых вспышек. При неоднородном распределении элемента по объему число вспышек, регистрируемых за время экспозиции, будет функцией места, из которого взята проба. [c.24]

    Анализируя ошибки, возникающие при применении колориметрических методов, можно сказать следующее. Применение метода стандартных серий, связанного с чувствительностью человеческого глаза к близким окраскам, дает ошибки порядка 15— 20%. При применении метода дублирования ошибка связана с точностью отсчета по бюретке (1—3%) и той же величиной ошибки сравнения окрасок (15—20%). В методе уравнивания сравнение окрасок значительно облегчается и ошибка составляет около 4—8%. Таким образом, во всех колориметрических методах одним из основных источников ошибок является ошибка, возникающая при уравнивании окрасок. Поэтому особое внимание следует уделить условиям работы и предупреждению утомляемости глаза. Как упоминалось выше, значительные ошибки может дать неправильная подготовка проб к колориметрическому анализу. Отступления от метода подготовки пробы могут вызвать значительные изменения окраски и, следовательно, ошибку определения. Эта категория ошибок одинаково влияет на определение при всех колориметрических методах. В большинстве случаев ошибка при отборе проб и взятии навесок значительно меньше ошибок при всех последующих операциях и ею можно пренебрегать. [c.58]

    Пламенно-фотометрический метод является одним из методов эмиссионного спектрального анализа. Он имеет ряд существенных преимуществ по сравнению с другими методами. Так, относитель-(л ная ошибка метода благодаря высокой стабильности источника составляет величину 1—5%, а в некоторых случаях и менее 1%. Количество необходимого для анализа раствора измеряется несколькими миллилитрами. Чувствительность метода высока и, например, для щелочных элементов она порядка 10 —10 г. Время, затрачиваемое на проведение анализа подготовленного раствора, измеряется минутами. [c.17]


    Другим возможным источником ошибки в спектрографических определениях является дискриминация, возникающая вследствие различных траекторий движения ионов разных масс. Ошибка может быть внесена и при калибровке фотопластинки. Воздействие света или рентгеновских лучей на пластинки отличается от воздействия положительных ионов [76]. Поэтому при калибровке обычно используется образец с известным изотопным составом, и линии эталонного и изучаемых образцов возникают на пластинке одновременно. Например, медь (которая обладает изотопами с массами 63 и 65) изучали в присутствии цинка. Относительная распространенность изотопов цинка была определена ранее на масс-спектрометре, и эти данные использовали для калибровки каждой экспозиции в интересующем диапазоне шкалы масс. Точность, достигаемая при подобных измерениях, равна 0,3%. Относительное содержание нескольких изотопов в элементе, используемом в качестве калибровочного, как это у называлось выше, может быть установлено непосредственно при помощи большого числа экспозиций различной продолжительности. Для линии данного изотопа строится кривая почернения, и путем сопоставления времени, необходимого для получения определенной плотности линий различных изотопов, устанавливается их относительная распространенность. Боль- шинство элементов впервые было исследовано этими двумя методами. Ошибки возникают из-за нелинейной зависимости между почернением и экспозицией, а также из-за неравномерной плотности линий на пластинке. Это связано с трудностью оценки интегральной экспозиции, когда почернение не является ее линейной функцией. Чувствительность фотопластинок, используемых в масс-спектрографии, изменяется даже по длине данной пластинки. Для того чтобы, обнаружить и исключить ошибки, вызываемые этим фактором, для каждого спектра обычно несколько раз повторяют экспозиции. [c.73]

    Средняя квадратичная ошибка составляет 8—10%. Главные источники ошибок — погрешность изотопного анализа и определения начального количества дейтерия. При малых содержаниях водорода начинает играть значительную роль ошибка, связанная с выделением водорода стенками вакуумной установки. Чувствительность метода при использовании навески циркония в 1 г составляет 1 10" %. [c.213]

    При малых количествах анализируемого вещества ошибка за счет поглощений фотонейтронов наполнителем резко уменьшается, однако одновременно падает чувствительность метода. При больших количествах анализируемого вещества чувствительность метода повышается, но одновременно возрастает ошибка за счет понижения энергии у-излучения источника в веществе анализируемой пробы. Это особенно заметно, когда материал эталона и анализируемого препарата значительно различается по плотности и [c.575]

    Этот метод основан на измерении отношения интенсивности данной линии определяемого компонента к интенсивности какой-либо линии другого компонента пробы, который присутствует в известном (или по крайней мере постоянном) количестве. Стандартом может быть элемент, входящий в состав пробы, например железо в стали, или посторонний элемент, добавленный в известном количестве ко всем пробам. Такой прием позволяет устранить ошибки, связанные с различиями в качестве фотопластинок и в условиях их проявления. Длина волны и интенсивность линий, выбранных в качестве стандартных, должны быть как можно ближе к длине волны и интенсивности линий определяемого элемента с тем, чтобы какое-либо нарушение линейной зависимости чувствительности фотоэмульсии от этих параметров не стало серьезным источником ошибки. Две линии, выбранные с этой целью, называются гомологической парой. [c.194]

    Излагается простой и быстрый метод анализа на приборе I ИСП-51 с ФЭП-1 непосредственно из р-ра, содержащего основное 1 вещество. Гасящее действие V на интенсивность излучения Са устра- няется введением в пробу р-ра 8-оксихинолина. Источник возбужде-I ния спектра — воздушно-ацетиленовое пламя. Определение проводят по резонансным линиям (А) Ма — 5889,97 — 5895,93 К —7664,899 и I Са — 4226,73, Интервал определяемых концентраций 0,002—0,02%. I Чувствительность метода для Са и К — 0,1 мкг/мл, для Ыа — 0,05 мкг/мл. Относит, ошибка определения составляет 10—12% по отдельным элементам. Библ. 3 назв. [c.207]

    В то же время доверительный интервал может быть использован для выяснения наличия (или отсутствия) систематической ошибки в данном методе анализа — попадание истинной величины х в доверительный интервал указывает на отсутствие систематической ошибки, и наоборот, если истинная величина х находится вне доверительного интервала, то имеется систематическая ошибка. В последнем случае работа над методикой не может считаться законченной ее следует продолжать до тех пор, пока не будет выяснен и устранен источник систематической ошибки (в большинстве случаев постоянная систематическая ошибка исключается путем калибровки прибора). Для выяснения наличия переменной (и постоянной) систематической ошибки при разработке новых методик, по-видимому, целесообразно проводить расчет количественного состава контрольных смесей по методу внутреннего стандарта (как наиболее чувствительного к систематической ошибке). [c.164]


    Для сознательного выполнения указаний, даваемых в методиках анализов, аналитик должен уметь разбираться в чувствительностях метода и в источниках его погрешностей. Чем точнее соблюдаются условия, при отклонении от которых могла бы проявиться вредная чувствительность, например при отклонениях от рекомендуемых скорости нагревания или скорости прибавления реагентов и т. д., т. е. чем тщательнее и вдумчивее работает химик-аналитик, тем меньшими будут ошибки и тем лучше воспроизводимость результатов анализов. [c.9]

    Здесь м общ — результирующая ошибка, и 1 — ошибки отдельных операций. При этом безразлично, какие из случайных ошибок суммируются формула (118) написана для коэффициента вариации йУ, совершенно так н<е суммируются средние квадратичные ошибки а пли средние арифметические ошибки г. Из закона сложения ошибок следует важное правило существенный вклад вносят только те ошибки, которые близки к наибольшей из ошибок. Поясним сказанное численным примером. Допустим, что ошибка измерения интенсивности составляет 1%, ошибка, вносимая источником возбуждения, 3% и ошибка, вносимая неоднородностью проб, 0,5%. Тогда суммарная ошибка будет н, общ = V 9 1 0,25 = = 3,2%. Практически эта величина не отличается от 3%. Поэтому нет никакого смысла для повышения точности стараться уменьшить ошибку измерения интенсивности или неоднородности проб, пока не уменьшена ошибка, вносимая генератором. В разных случаях анализа ошибки различных звеньев процесса играют определяющую роль. При анализе руд обычно так велики неоднородности проб, что нет смысла прибегать к точным методам регистрации спектров. При анализе сплавов именно измерительное звено часто играет решающую роль. Воспроизводимость и точность тех или иных методов анализа будут приведены в соответствующих разделах. Здесь ограничимся только указанием, что лучшие методы количественного анализа позволяют делать определения с коэффициентом вариации до 0,1%. Обычно нри количественных анализах его значение лежит в пределах 1—10%. При определениях вблизи границы чувствительности метода ю быстро возрастает. [c.164]

    Подводя итоги, следует подчеркнуть, что данные по транспирации отдельных растений или отдельных листьев характеризуют лишь тот материал, на котором проводились измерения, и те условия среды, которые наблюдались во время опыта. Простейший метод измерения для целого растения (к нему также относится сказанное выше) — это, по-видимому, измерение потерь веса всей системы в целом. Если требуется большая точность, то для измерений на отдельных листьях наиболее чувствительными являются метод потока пара или метод компенсации, смотря по обстоятельствам. Экстраполяция, если в ней есть необходимость, должна всегда проводиться с осторожностью энергетический баланс листа и скорость ветра следует по возможности контролировать. В опытах с листьями, отделенными от растения, пределы экстраполяции особенно ограничены, потому что водоснабжение такого листа нарушается даже при измерениях в потометре. Что касается метода срезанного побега, то от его применения лучше вообще отказаться. Данные, показывающие, что ошибка уменьшается, когда г, велико, не оправдывают использования этого метода, равно как и экстраполяцию данных, получаемых другими методами, поскольку основные источники ошибки сохраняются. Во всех случаях, когда это возможно, следует проводить наблюдения в поле с помощью методов, описанных в гл. П. [c.288]

    Из других источников ошибок следует отметить колебания в расходе газов, при которых меняется чувствительность детектора. Возможны также ошибки, связанные с неточностью приготовления растворов для анализа и с тем, что взятые для приготовления растворов вещества (стандарты или антиоксиданты) были недостаточно чистыми. Поэтому чистоту взятых реактивов следует проверить хотя бы некоторыми простейшими методами (определить температуру плавления для кристаллических или показатель преломления для жидких веществ) в сочетании с хроматографией. [c.78]

    Активационный анализ с лабораторными Ка—Ве-, Ро—Ве-или 5Ь—Ве-источниками малой мощности, эквивалентными 25— 500 мг Ка (потоки нейтронов на расстоянии 5 сж от источника от 10 до 2-10 нейтрон сек-см ) [60, 934, 1013, 1099, 1429, 1430], проводится редко. Однако результаты показывают, что некоторые элементы определяются в смеси более легко, чем, например, при помощи спектрофотометрического метода. Точность определений, обусловленная влиянием других рад и качеством регистрации радиоизотопов, характеризуется относительными ошибками 5%, что даже несколько выше по сравнению с точностью определения при спектральных методах. Таким образом, и точность, и чувствительность гарантируют успешную применимость лабораторных источ- [c.213]

    Пламя как источник света для эмиссионного спектрального анализа, еще десять лет назад использовавшееся для определения лишь щелочных металлов, в настоящее время превратилось в один из наиболее эффективных источников при анализе растворов. Одним из существенных преимуществ метода фотометрии пламени является использование эталонных растворов, приготовление которых значительно проще, чем эталонов металлов, сплавов и порошков. Пламя дает также значительные преимущества по сравнению с электрическими источниками в воспроизводимости результатов определений, позволяя снизить случайную ошибку измерения абсолютной интенсивности спектральных линий до десятых долей процента при оптимальном выборе параметров, определяющих режим работы горелки и распылителя. Это позволяет вести количественный анализ по измерению абсолютной интенсивности линий методом пламенной фотометрии точнее, чем при использовании электрических источников света, даже если в последнем случае анализ ведут по относительной интенсивности линий с использованием внутреннего стандарта. Отрицательным свойством пламени, однако, является малая чувствительность определения трудновозбудимых элементов, связанная с относительной низкой температурой (3000—3500° С). Несмотря на это, возможно определение фосфора пламенно-фотометрическим методом с чувствительностью 5—10 мкг мл [206, 207, 337, 567, 643, 992, 1027, 1059, 1097, 1110]. [c.78]

    Если определение удельной поверхности осуществляется с помощью этих процессов, возможны два источника ошибок неполнота протекания реакции слева направо и недостаточная точность определения количества атомов металла, связывающих или Ня при монослойном покрытии. При комнатной температуре реакция (12) протекает на платине, возможно, и не полностью об этом уже кратко говорилось выше, однако возможная ошибка, по-видимому, не больше чем неопределенность стехиометрии хемосорбции О,,. На палладии реакции идут значительно легче, чем на платине другие благородные металлы по своей реакционной способности, вероятно, близки к платине. Стехиометрия хемосорбции Н., на очень маленьких частицах металла однозначно не установлена, но на больших частицах каждый поверхностный атом платины, вероятно, связывается с одним атомом Н (т. е. Хт=2). Однако, как было показано выше, стехиометрия хемосорбции кислорода довольно неопределенна, и поэтому, несмотря на потенциально возможное увеличение чувствительности (в три раза), метод титрования [c.314]

    Однако имеется и другой источник ошибок в анализе, обусловленный чувствительностью некоторых компонентов реакционных смесей к свету, т. е. ошибок, зависящих от освещения помещения во время выполнения анализа. Наиболее часто ошибки такого рода возможны в иодометрических, аргентометрических и других методах анализа, где применяются вещества или образуются продукты, высокочувствительные к свету. Эти ошибки зависят не только от интенсивности освещения, но и от продолжительности воздействия света на реакционную смесь. В ряде случаев чувствительность к свету компонентов реакционных смесей неизвестна, и поэтому возможность ошибок не учитывается, что часто является причиной плохой воспроизводимости результатов анализа или получения неверных результатов. Например, при определении малых количеств плутония(1У) фотометри- [c.14]

    Как было упомянуто в гл. 2, расхождение между вычисленными физическими и измеренными химическими атомными весами элементен вызвано трудностью точного измерения изотопных отношений для элементов,содержащих распространенные изотопы. Трудности, присущие измерению отношения двух изотопических пиков, сильно отличающихся по интенсивности, увеличиваются, если последние образуются не одним соединением. В этом случае ограничиваются получением воспроизводимых отношений. Абсолютные отношения измеряются редко чаще всего необходимо добиться лишь высокой чувствительности, даже при измерении разницы в распространенностях изотопов. Имеется много факторов, вызывающих случайные и систематические ошибки в определении распространенности. Вначале рассматриваются ошибки, имеющие место при масс-спектрографических определениях 11334], а затем возможные ошибки в масс-спектрометрии. Масс-спектрограф не может конкурировать с масс-спектрометром в измерении относительной распространенности. В самом деле, образцы, изученные на масс-спектрометре, использовались для калибровки масс-спектрографов при исследовании распространенности изотопов. Так как масс-спектрографы широко применялись в прошлом для измерений распространенности изотопов и используются сейчас при элементарном анализе нелетучих твердых тел в искровых ионных источниках, то имеет смысл прежде всего рассмотреть ошибки, возникающие при фотографическом методе регистрации. [c.72]

    В реальных методах спектрального анализа чистых веществ и определения следов элементов доминирующими являются часто флуктуации аналитического сигнала, возникающие вследствие нестабильности поступления и возбуждения пробы, неоднородности и неполной идентичности одинаковых анализируемых проб данного материала, а также из-за случайных загрязнений. Для достижения наименьших пределов обнаружения элементов основные усилия должны быть направлены на повышение чувствительности и снижение случайных флуктуаций именно в этих звеньях метода анализа с тем, чтобы общая случайная ошибка лимитировалась уже только статистическими свойствами приемника излучения. Если такое положение достигнуто, то величина предела обнаружения будет (при некоторых дополнительных условиях — СМ. гл. 2) наименьшей возможной для данного метода анализа. Связь предела обнаружения спектральной линии с параметрами источника света, спектрального прибора и приемника излучения для случая анализа, когда общая случайная ошибка метода определяется только статистическими флуктуациями светочувствительного слоя приемника излучения, исследовалась в работах [245, 606, 748] и в некоторых других. Рассмотрим этот важный случай анализа, следуя схеме, предложенной в работах [245, 74 ]. [c.39]

    Уменьшение отрицательного влияния дрейфа чувствительности фотоэлектрических приемников на точность регистрации может до стигаться различными способами. Так, например, при измерении разности или отношения двух сигналов (измеряемого и сравнения) с помощью двух приемников используется освещение обоих фотоумножителей модулированным светом от вспомогательного источника. Полученный на частоте модуляции разностный сигнал служит сигналом отрицательной обратной связи, управляющим питанием одного из фотоумножителей [748]. Это приводит к существенному снижению ошибки регистрации. Однако при измерении сигналов от очень слабой спектральной линии в присутствии значительного флуктуирующего фона такие приемы подавления дрейфа чувствительности фотоумножителей являются уже недостаточными и не обеспечивают достижения теоретической границы обнаружения линии. Поэтому в последние годы разрабатываются методы фотоэлектрической регистрации спектров, основанные на применяемых в радиотехнике принципах выделения слабого периодического сигнала из шума [551, 750, 52, 31, 30]. [c.63]

    Такой метод регистрации позволяет не только уменьшить отрицательное влияние дрейфа чувствительности приемника и погрешностей измерительного устройства, но также снижает ошибку регистрации, связанную с флуктуациями излучения в источнике света. [c.64]

    Работа с препаратом трития в проточном счетчике без окошка дает хорошие результаты только при относительно высокой удельной активности препараты с низкой удельной активностью из-за малой чувствительности можно использовать только для ориентировочных измерений. Преимуществом метода являются быстрота определения, отсутствие эффекта удержания и возможность дальнейшего использования анализируемых образцов, которые не должны изменяться химически, чтобы быть пригодными для измерений. Измерениям могут значительно мешать электростатические заряды образцов кроме того, часто значительные ошибки являются следствием необходимости вносить большое число поправок и иметь дело с очень точно приготовленными препаратами. Все это делает метод применимым только для сравнительных измерений. Для оценки источников ошибок этого метода необходимо определять абсолютную активность и находить значения отдельных поправочных коэффициентов (см. работу 6.1) в уравнении  [c.428]

    Помимо метода вакуум-плавления для определения газов в железе и стали применяется ряд других методов в частности, за последние годы получили развитие спектральные методы анализа, основанные как на непосредственном возбуждении водорода, кислорода и азота [33—35], так и на предварительном плавлении анализируемого образца и последующем возбуждении выделившихся газов в одном и том же источнике — в полом катоде [36] или дуге постоянного тока [37, 38]. Несмотря на то, что в методах прямого возбуждения газов в анализируемом образце исключается ошибка за счет поглощения газов реакционноспособными металлами, точность и чувствительность этих методов еще очень мала и необходимо продолжать исследования по их повышению. [c.88]

    Иногда приходится полагаться на имеющиеся в распоряжении стандарты, приготовленные для других целей, наряду с немногими, предназначенными для масс-спектрометрии. Если отсутствуют стандартные образцы с необходимыми комбинациями основы и примесей, ошибка в определении абсолютных содержаний увеличивается. С этой точки зрения полезно знать, как ведут себя эти примеси в других основах. Получены некоторые эмпирические формулы для оценки чувствительности определения примесей при анализе различных соединений методом масс-спектрометрии с искровым источником ионов. [c.247]

    Основное преимущество метода изотопного разбавления перед другими методами анализа — относительно высокая точность и очень высокая чувствительность. Чувствительность масс-спектрометра с термоионным источником сильно зависит от природы элемента, но следы (от нескольких микрограмм до 10 г) обычно можно определять с ошибкой от 0,5 до 3% (1а — критерий). Газы и элементы с низкими потенциалами ионизации также хорошо анализируются этим методом. Для метода искровой масс-спектрометрии с фотографической регистрацией обычно требуется 0,1 мгк, чтобы обеспечить точность 3—5%, но его преимущество — в равной чувствительности почти для всех элементов. Фотографическая регистрация в последнее время ограничивает точность метода искровой масс-спектрометрии до -3%. [c.294]

    Содержание натрия в катализаторе определяют пламенно-фотометрическим мeтoдoм . Этот метод является одной из разновидностей эмиссионного спектрального анализа и имеет существенные преимущества по сравнению с другими методами. Так, относительная ощибка метода, вследствие высокой стабильности источника излучения, составляет 1—5%, а в некоторых случаях и менее 1% при содержании окиси натрия более 0,01%. Относительная ошибка определения увеличивается с дальнейшим уменьшением содержания окиси натрия и достигает 10—20 отн.%. Количество необходимого для анализа раствора измеряют несколькими миллилитрами. Чувствительность метода высока и, например, для щелочных элементов она находится в пределах Ю-" —10 г. Время, затрачиваемое на проведение анализа подготовленного раствора, измеряется минутами. [c.108]

    Анализ уравнения (4), предполагающий совместное рассмотрение как систематических, так и случайных помех, в бо.льшинстве случаев основывается на схеме аддитивных помех, что имеет место, в частности, в современных инфракрасных спектрометрах, где случайные ошибки определяются флуктуационными процессами в приемниках радиации. В этом случае функция (i) имеет смысл шума приемника, представленного отрезком стационарного случайного процесса с нулевым средним значением и спектром мощности Git). В то же время прогресс в области создания все более чувствительных методов измерения наталкивается на тот факт [15, 18, 27—29], что принципиальные ограничения на пути совершенствования спектральной аппаратуры, в конечном итоге, связаны с флуктуационными процессами в источнике, искажающими непосредственно регистрируемый спектр, с чем, например, экспериментатор имеет дело при фотоэлектрической регистрации излучения в коротковолновой области спектра. Шумы, обусловленные низкочастотными колебаниями интенсивности, в ряде случаев могут оказаться доминирующими и в длинноволновой области спектра [30]. Истинное распределение при этом следует рассматривать как среднестатистическое, а текущее значение ошибки — как разницу между усредненным и текущим значениями сигнала, снимаемого с приемника [31, 32]. [c.131]

    Методика и техника микрохимических определений доведена до такой степени совершенства, что точность микрохимического анализа в ряде случаев не уступает точности макрохими-ческого анализа. Во многих случаях следует считаться с тем, что относительное влияние источников ошибок увеличивается при понижении количества анализируемого вещества. Поэтому при определении очень малых количеств иногда допускают относительную ошибку до 5—10%. Правда, при определении малых количеств или очень невысоких концентраций сравнительно большая относительная ошибка мало отражается на практической ценности полученного результата. Если в исследуемом объекте найдено, например, 0,019% некоторой составной части вместо действительных 0,020%, то относительная ошибка определения здесь равна 5%, но абсолютное отклонение от действительного содержания составляет всего 0,001%. Для практических целей обе величины (0,019% и 0,020%) равноценны. Учитывая влияние некоторых источников ошибок, применяя возможно более чувствительные методы и совершенствуя аппаратуру, удается значительно уменьшить относительные ошибки микрохимических определений. [c.8]

    Излагается простой, быстрый, пламенно-фотометрич. метод определения Li в MgO на пламенном фотометре Цейсса модель П1 с интерференц. светофильтром на Li. Определение проводят по красной резонансной линии Li 670,8 нм. Источником возбуждения спектра служит воздушно-ацетиленовое пламя. Анализ ведут в присутствии основного вещества с примененне.ч эталонных р-ров на основе MgO. Интервал определяемых концентраций 0,05—0,08%. Чувствительность метода 0,1 мкг/мл. Максимальная ошибка определения 10"/о. Библ. 1 назв. [c.207]

    Компенсационный метод измерения напряжений. Обсуждавишеся выше методы измерения являются методами прямого отсчета. Получаемые результаты, включающие ошибку показаний прибора, редко характеризуются ошибкой менее 0,5%. Уменьшения ошибки измерения можно достигнуть, используя компенсационные методы, когда к измеряемому напряжению в противоположном направлении подключают другое точно известное напряжение (рис. А.2.2, в). Индикатором равенства напряжений является чувствительный нуль-гальванометр. Компенсирующее напряжение снимают с образцового потенциометра, который подключается в качестве вспомогательного источника напряжения Цц-Сравнивая неизвестное напряжение Ех с напряжением нормального элемента (напри- [c.444]

    Ферросилиций измельчают в железной ступке в порошок (200 меш), последний тщательно перемешивают с медным порошком в соотношении 3 7. Из 1 г этой смеси прессуют брикеты диаметром 7 мм. Источник света — генератор ИГ-2, ток питания генератора За емкость конденсатора 0,01 мкф, индуктивность катушки 10 мкгн, промежуток в разряднике 3,7 мм, аналитический промежуток 2,7 мм. Постоянный электрод — угольный пруток диаметром 5 мм, заточенный на усеченный конус с площадкой диаметром 1 мм. Ширина щели спектрографа 0,025 мм предварительное обыскривание 60 сек., экспозиция 30 сек. Фотопластинки спек-ральные типа I или диапозитивные чувствительностью 0,5 ед. ГОСТ. Аналитическая пара линий А1 3082,16 — Си 3108, 60 А. Определяемые пределы 1,50—5,0% алюминия. Относительная ошибка метода 2,9%. [c.152]

    Ошибки из-за неравномерного распределения магния в чугуне можно уменьшить, если предварительно перевести его в раствор и в виде раствора вводить в источник возбуждения [39, 147, 148, 443а, 642, 752, 977, 1008, 1288]. Пробу чугуна растворяют в НС1 (1 1) с добавлением нескольких капель НКОз (уд. вес 1,4). Отфильтровывают нерастворимый остаток (кремнекислоту) и фильтрат в мерной колбе разбавляют до определенного объема. Полученный раствор можно вводить в источник возбуждения по-разному. В простейшем случае каплю анализируемого раствора наносят на плоский угольный электрод [642, 977]. Однако такой способ не позволяет получить высокую чувствительность, точность и воспроизводимость. Причина неудовлетворительной воспроизводимости метода с накапыванием раствора на угольный электрод — неоднородная плотность углей, из-за чего электроды неодинаково абсорбируют анализируемый раствор. [c.170]

    N1. Разрешающая способность авторадиограмм (т. е. способность эмульсионного слоя воспроизводить раздельно изображения от источников излучения) зависит от дисперсности кристаллов бромистого серебра, толщины эмульсионного слоя, типа и энергии излучения, толщины образца и плотности контакта между ним и фотоэмульсией. Если используются образцы произвольной толщины, удовлетворительная четкость авторадиограмм достигается лишь с радиоактивными изотопами, максимальная энергия спектра к-рых не превышает 0,3—0,4 Мэе. А. а. дает количественную оценку структурной неоднородности материала в тех случаях, когда др. общепринятые методы анализа не могут быть использованы. По характеру получаемой информации А. а. близок к рентгеновскому микроанализу, превосходя его по чувствительности и уступая в разрешающей способности. А. а. несложен, результаты его, как правило, наглядны и однозначны. Строгое соблюдение постоянства всех условий исследования обеспечивает хорошую воспроизводимость результатов, ошибка при этом не превышает 10%. С помощью А. а. исследуют распределение легирующих элементов и примесей в литых материалах, изучают перераспределение легирующих элементов в сплавах под влия-иием деформации и термической обработки, определяют диффузионную подвижность по границам зерен и в объеме металлов и сплавов. Электронномикроскопический А. а. дает возможность определить локализа- [c.21]

    Для увеличения чувствительности прибор был модифицирован применением радиочастотного режима работы [1875, 1877—1879, 1881]. Из источника выходит непрерывный пучок ионов, а радиочастота прилагается к импульсным щелям при прохождении через эти щели ионы каждый раз изменяют свою кинетическую энергию. Для дальнейшего увеличения интенсивности пучка ионы регистрируются только после трех оборотов в магнитном поле. Коллектора (расположенного на одной оси с источником, но ближе к центру) достигают только те ионы, которые получают одно и то же замедление при каждом прохождении импульсных щелей, что позволяет им пройти через две щели, расположенные между коллектором и ионным источником. Траектории ионов, попавших на коллектор, показаны схематически на рис. 13. Собранные ионы являются теми ионами, которые делают полный оборот за целое число циклов N радиочастотного поля. Таким образом, максимум тока для любого числа масс получается при последовательных значениях N. При малых значениях массовых чисел и величине N, равной приблизительно 150, было получено разрешение по полуширине до 2,5 000 и разрешающая сила 7500 при массе 130. Используемый метод измерения масс сходен с методом Квисенберри, Сколмэна и Нира [1645]. Эти исследователи применили пилообразную развертку радиочастоты, что позволило им регистрировать пики масс на катодном осциллографе. При этом, изменяя частоту, можно совмещать пики соседних масс, что при пиках, обладающих одинаковой формой, дает возможность осуществить регистрацию частоты, а следовательно, и разности масс. Вероятная ошибка одного измерения равна 0,1% полуширины пика, что соответствует чувствительности измерения масс около Ы0" %. [c.35]

    Определение малых отклонений в относительной распространенности изотопов для разных образцов облегчается использованием стандартного образца. Измерение распространенности изотопов в эталонном образце до и после анализа исследуемого образца позволяет оценить случайные ошибки последовательных измерений и величину медленного дрейфа в показаниях прибора. Еще одним методом повышения чувствительности прибора пррс измерении малых изменений относительной распространенности изотопов служит применение двухколлекторной системы, в которой изучаемые изотопные ионы одновременно собираются на отдельных электродах. Этот метод был впервые предложен Астоном [78] и применен Штраусом [1960] для измерения относительных распространенностей изотопов никеля. Измерение распространенности производилось непосредственно нуль-методом. Один из коллекторов ионов находился в фиксированном положении, а другой мог перемещаться при помощи сильфонного микрометрического винта. Такая система может быть использована в широком диапазоне отношений масс изотопов. Разделение при измерении никеля устанавливается в диапазоне двух массовых чисел (измерение изотопов с четным массовым числом) либо трех массовых чисел (измерение отнопкния N1 Применение двойного коллектора позволило Штраусу использовать искровой источник быстрые колебания в интенсивности не оказывали влияния на регистрацию отношения ионных токов. Горман, Джонс и Хиппл [776] распространили этот метод на получение полного масс-спектра в их масс-спектрометре измерялось отношение интенсивности пиков данных ионов к полному ионному току. Суммарная интенсивность ионных токов регистрировалась при помощи электрода, помещенного у входа в магнитный анализатор. Аналогичную [c.96]

    Подсчет, произведенный по формуле (24) для лучших образцов ФЭУ и обычного времени регистрации (т = 100 сек) с учетом того обстоятельства, что темновой ток фотокатода обычно на несколько порядков ниже тока, вызванного излучением фона в регистрируемом спектре, дает значения величины Oijia порядка десятых и сотых долей процента [748]. На практике, однако, относительная стандартная ошибка фотоэлектрического измерения излучения фона составляет около одного или даже несколько процентов. Такой разрыв между практической и теоретической точностью объясняется несовершенством методов устранения влияния флуктуаций в источнике света на результаты фотоэлектрического измерения сигнала, а главное дрейфом чувствительности самих фотоэлектрн ческих приемников, который в процессе измерения может быть весьма значительным. [c.62]


Смотреть страницы где упоминается термин Чувствительность метода и источники ошибок: [c.19]    [c.180]    [c.86]    [c.19]    [c.380]    [c.95]   
Смотреть главы в:

Новейшие методы исследования полимеров -> Чувствительность метода и источники ошибок




ПОИСК





Смотрите так же термины и статьи:

ошибки



© 2025 chem21.info Реклама на сайте