Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбиталь низшая свободна

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]


    Величина азиридина (7,98) свидетельствует о том, что это более слабое основание, чем его четырехчленный аналог — азетидин (11,29), для которого эта величина представляет собой нормальную величину для ациклических аминов. Низкая основность наблюдается и в ряду кислородсодержащих гетероциклов, что было показано измерением их способности к образованию водородных связей. Вероятно, это объясняется напряжением, возникающим в трехчленных циклах, главным образом благодаря тому, что орбиталь их свободных пар носит в меньшей степени / -характер, чем нормальная л/Р-орбиталь атомов азота или кислорода и, следовательно, удерживается более прочно. Скорость пирамидальной инверсии для насыщенного атома азота в азиридинах гораздо меньше, чем для простейших аминов. Это обусловлено тем, что происходит дальнейшее повышение углового напряжения при регибридизации (-> 5р ) атома азота в переходном состоянии при инверсии. [c.656]

    Приближенные формы некоторых из этих орбиталей изображены на рис. 6 наряду с энергиями орбиталей. Показаны только более высокие занятые и более низкие свободные МО, поскольку только они представляют химический интерес. Здесь есть низколежащее возбужденное состояние от перехода [а 2Ъ . Это поднимает вопрос о дальнейшем искажении О3 до симметрии с неравными [c.196]

    В табл. V.1 приведены значения интегралов перекрывания орбиталей атомов доноров и акцепторов в комплексах типа пи. В качестве п-доноров рассмотрены амины, сульфиды, эфиры, кетоны и другие оксосоединения, в качестве акцепторов — галогены (1а), галогениды металлов и металлоорганические соединения олова, титана, галлия, алюминия, бора, а также соединения с водородной связью. В скобках у каждого атома указана орбиталь, предоставляемая молекулой для образования межмолекулярной связи. Принимается, что именно эти орбитали являются соответственно наиболее высокими заполненными молекулярными орбиталями доноров и наиболее низкими свободными молекулярными орбиталями акцеп- [c.340]

    Высшей занятой МО оказывается орбиталь симметрии Ей, а низкая свободная МО имеет симметрию A2g. При этом (Ей) (A2g) = Ей, что соответствует симметрии нормального колебания, переводящего молекулу воды из группы Осок в группу Сг . [c.83]

    У водорода и гелия (порядковый номер 1 и 2) на орбитали с наименьшей энергией находятся 1 и 2 электрона соответственно, их электронную структуру условно записывают 15 и 15 . В литии и бериллии (порядковые номера 3 и 4) занят также следующий уровень 25 (одним электроном у Ы и двумя у Ве). Электронную структуру этих элементов условно записывают 15 25 и 15 252. Непрерывность этого процесса дает возможность изобразить электронную конфигурацию каждого элемента в его самом низком энергетическом состоянии. Если расположить элементы в порядке возрастания их атомных номеров, так чтобы в вертикальных столбцах находились элементы с одинаковой электронной конфигурацией наружных оболочек, то мы получим периодическую систему, показанную в табл. 2. Из табл. 2 видно, что каждому значению главного квантового числа соответствует три р-, пять с1- и семь /-орбиталей. В свободном атоме каждая орбиталь в пределах любой [c.56]


    Кристаллы неметаллических элементов с каркасной структурой, подобные углероду или кремнию, обладают свойствами диэлектриков (изоляторов), т.е. не проводят электрический ток. Применение теории молекулярных орбиталей к обсуждению химической связи в неметаллических каркасных кристаллах сталкивается со значительными трудностями. Достаточно сказать, что в ковалентных каркасных кристаллах обычно удается вести подсчет валентных электронов вокруг каждого атома, подобно тому как это делается при составлении льюисовых структур, и оказывается, что при этом выполняется правило октета. Это объясняется тем, что атомы в неметаллических каркасных кристаллах обычно имеют по крайней мере столько валентных электронов, сколько у них есть валентных орбиталей. Следовательно, в таких кристаллах предпочтительны низкие координационные числа, и между каждым атомом и его ближайшими соседями могут образовываться простые двухэлектронные связи. Низкие координационные числа являются причиной того, что потенциальная энергия электрона внутри таких кристаллов не постоянна она значительно понижается в межъядерных областях, и поэтому электроны не могут свободно перемещаться по кристаллу, подобно тому как это происходит в металлах. [c.629]

    В металле число атомных орбиталей, участвующих в образовании отдельной молекулярной орбитали, чрезвычайно велико, поскольку каждая атомная орбиталь перекрывается сразу с несколькими другими. Поэтому число возникающих молекулярных орбиталей тоже оказывается очень большим. На рис. 22.20 схематически показано, что происходит при увеличении числа атомных орбиталей, перекрыванием которых создаются молекулярные орбитали. Разность энергий между самой высокой и самой низкой по энергии молекулярными орбиталями не превышает величины, характерной для обычной ковалентной связи, но число молекулярных орбиталей с энергиями, попадающими в этот диапазон, оказывается очень большим. Таким образом, взаимодействие всех валентных орбиталей атомов металла с валентными орбиталями соседних атомов приводит к образованию огромного числа чрезвычайно близко расположенных друг к другу по энергии молекулярных орбиталей, делокализованных по всей кристаллической решетке металла. Различия в энергии между отдельными орбиталями атомов металла настолько незначительны, что для всех практических целей можно считать, будто соответствующие уровни энергии образуют непрерывную зону разрешенных энергетических состояний, как показано на рис. 22.20. Валентные электроны металла неполностью заполняют эту зону. Можно упрощенно представить себе энергетическую зону металла как сосуд, частично наполненный электронами. Такое неполное заселение разрешенных уровней энергии электронами как раз и обусловливает характерные свойства металлов. Электронам, заселяющим орбитали самых верхних заполненных уровней, требуется очень небольшая избыточная энергия, чтобы возбудиться и перейти на орбитали более высоких незанятых уровней. При наличии любого источника возбуждения, как, например, внешнее электрическое поле или приток тепловой энергии, электроны возбуждаются и переходят на прежде незанятые энергетические уровни и таким образом могут свободно перемещаться по всей кристаллической решетке, что и обусловливает высокие электропроводность и теплопроводность металла. [c.361]

    И все же действительно тройные связи, как правило, более подвержены нуклеофильным и менее — электрофильным атакам, чем двойные связи, несмотря на более высокую электронную плотность в алкинах. Одно из объяснений этого заключается в том, что электроны тройной связи удерживаются более прочно из-за меньшего расстояния между атомами углерода поэтому атакующему электрофилу труднее оторвать пару электронов от такой связи. Данные спектроскопии в дальней УФ-области свидетельствуют в пользу этого вывода [71]. Другое возможное объяснение базируется на доступности свободной орбитали алкина. Показано, что я "-орбиталь изогнутых алкинов (таких, как циклооктин) имеет более низкую энергию, чем л -орбиталь алкенов, и предполагается [72], что линейные алкины могут принимать изогнутые конфигурации в переходных состояниях при взаимодействии с электрофилами. В тех случаях, когда электрофильное присоединение включает образова- [c.150]

    Каждый электрон в атоме занимает свободную орбиталь с наиболее низкой энергией, отвечающей его прочной связи с ядром,— принцип наименьшей энергии. С ростом порядкового номера элемента электроны заполняют орбитали и уровни в порядке возрастания их энергий уровни заполняются от первого к седьмому, а подуровни — в последовательности 5 — р — Последовательность возрастания энергии определена опытным путем. Она называется шкалой энергии. В соответствии с ней составляется ряд последовательного заполнения электронами орбиталей атомов элементов периодической системы. Этот ряд, в котором вертикальными линейками отделены периоды, обозначенные сверху римскими цифрами, имеет вид [c.48]


    В качестве примера в табл. 3 приведены основное и низкие возбужденные состояния свободного радикала Сг в соответствии с порядком расположения орбиталей на рис. 17. [c.40]

    Для молекул с сопряженными двойными связями [т. е. К(СН = СН)пН )] полосы поглощения сдвигаются в сторону более длинных волн по мере увеличения числа сопряженных двойных связей. Приближенный количественный расчет частот поглощения можно провести на основе модели свободного электрона для я-злектронов этих молекул. Энергия самого низкого электронного перехода определяется энергией, которая необходима для того, чтобы поднять электрон с высшего заполненного на низший незаполненный уровень. В системе с сопряженными двойными связями каждый атом углерода имеет три а-связи, лежащие в плоскости, а каждая 0-связь включает один внешний электрон этого атома. Сверху и снизу этой плоскости находятся я-орбитальные системы (см. рис. 14.7). Каждый атом углерода дает один электрон в такую л-сисгему эти электроны свободно движутся по всей области л-орбиталей, а не локализованы у данного атома. В модели свободного электрона допускается, что я-система является областью однородного потенциала и на концах системы потенциальная энергия резко возрастает до бесконечности (т. е. потенциальный прямоугольный ящик). Таким образом, можно вычислить уровни энергии Е я-электронов в случае одномерного движения частицы (разд. 12.12)  [c.483]

    Для образования донорно-акцепторного соединения между двумя частицами с закрытыми оболочками одна из них (акцептор электронов) должна иметь низкую свободную орбиталь, другая (донор электронов) — внешнюю несвязывающую орбиталь, заполненную двумя электро- I [c.89]

    УФ-спектры. В рамках теории переноса заряда Малликен [3. 15] отметил, что в спектре комплекса могут наблюдаться полосы поглои сния, характерные для свободных донора и акцептора, а также несколько полос переноса заряда , вызываемого переходом электрона с наиболее высокой запяаой молекупярной орбитали донора на наименее низкую свободную молекулярную орбиталь акцептора, в результате чего возникает ковалентная связь [3]. [c.63]

    В образовании связи между кислотой и основанием принимает участие наиболее высокая в энергетическом отношекии занятая молекулярная орбиталь основания и наиболее низкая свободная орбиталь кислоты. [c.417]

    Таким образом, в большинстве работ, посвященных полимеризации диенов, винильных мономеров и эфиров акриловой и метакриловой кислот в присутствии щелочных и щелочноземельных металлов, делается вывод об анионном механизме акта инициирования полимеризации, который заключается в переходе электрона от атома металла на самую низкую -свободную я-орбиталь молекулы мономера с образованием анион-радикала. Этот механизм был постулирован Шварцем [54] и подтвержден многочисленным-и косвенными данными. [c.149]

    Поскольку электроны оказываются на наиболее низкой по энергии орбпталп при взаи.модействии орбиталей происходит выигрыш в энергии. Очевидно, что аналогичный выигрыш будет и в том случае, если на одной из взаимодействующих орбиталей первоначально находятся два электрона, а вторая орбиталь является свободной (донорно-акцепторная связь). Если же взаимодействуют две занятые орбитали, то в первом приближении можно считать, что суммярная энергия электронов при этом не изме-няется. [c.18]

    Функция относится к состоянию, в котором электрон перенесен от донора к акцептору (Д" — А ). Перенос заряда в большинстве случаев происходит с наиболее высокой занятой молекулярной орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора, причем переход одного из пары внешних электронов донора, занимающих молекулярную орбиталь г()д, на незанятую молекулярную орбиталь я )д осуществляется без изменения спина электрона. Второй электрон на "фд остается спаренным с электроном, находящимся теперь па 113д. В результате образуется ковалентная связь. Коэффициенты а и Ь в уравнении (1.1) характеризуют долю структуры без связи и структуры с переносом заряда в основном состоянии комплекса. [c.9]

    Как было отмечено ранее (в разд. 1.4), электроны распределяются по квантовым ячейкам (орбиталям) в соответствии с прави-ж)м Хунда при достаточном числе ячеек в каждой из них располагается по одному электрону. Это объясняется тем, что электроны отталкиваются друг от друга и потому стремятся з анять разные орбитали. Для того чтобы перевести электрон с орбитали, где он один, на другую орбиталь, где уже имеется электрон, требуется затрата некоторого количества энергйи Р. Величина Р может быть определена квантовомеханическим расчетом. При наличии в ионе комплексообразователя большего числа электронов, чем число орбиталей с низкой энергией, возможны два варианта заполнения орбиталей электронами. При А < Я электроны центрального иона в комплексе занимают те же орбитали, что и в свободном ионе. Ион комплексообразователя находится в состоянии с высоким спином. Если же А > Я, то поле лигандов вызывает переход электронов в уже занятые ячейки с более низкой энергией. В результате спаривания электронов суммарный спин уменьшается, т. е. ион-комплексообразователь переходит в состояние с низким спином. [c.125]

    Донорно-акцепторная связь возникает также в ионе гидроксо-ния Н3О+, между донором НаО и акцептором — ионом водорода, где комбинирует свободная орбиталь (1 ) водородного иона (акцептор) с МО неподеленной пары молекулы воды (донор). Все три водорода в Н3О+ совершенно равноценны, т. е. донорно-акцепторная связь в Н3О+ неотличима от ковалентной. Прочность донорно-акцепторной связи может быть велика при образовании Н3О+ из Н+ и НаО выделяется 710 кДж/моль, комплекс ВР3 ЫНз перегоняется без разложения. Донорно-акцепторная связь может возникать и между атомами в кристаллах. Так, в кристалле 1п5Ь атом Тп предоставляет для связи вакантную низкую АО, а атом 5Ь — орбиталь неподеленной пары электронов. [c.89]

    К мягким основаниям Пирсон относит молекулы и анионы, в которых содержатся электронодонорные атомы, обладающие высокой поляризуемостьм и низкой электроотрицательностью эти атомы легко окисляются и связываются атомами со свободными орбиталями с низкой энергией. В жесткн.к основа- [c.247]

    Атомы никеля в кристаллической решетке не заряжены и являются мягкими кислотными центрами, к которым присоединяются мягкие основные молекулы СО, имеющие свободную пару электронов. Четыре а-связи между центральными атомом никеля и атомами углерода молекул СО усиливаются я-датив-ными связями, причем электроны заселенных d-орбиталей никеля принимают участие в образовании этой связи за счет незаселенных я-орбиталей атома углерода. Тем самым высокая электронная плотность нейтрального атома металла, которая особенно велика для атомов с низкой степенью окисления, перераспределяется на лиганды, в результате чего достигается более равномерное распределение электронной плотности по всей молекуле. [c.398]

    В соответствии с правилом Хунда, когда число электронов превышает число d-орбиталей с низкими значениями энергии, возможны два случая размещения электронов по и dg-орбиталям. Если имеются лиганды, которые характеризуются слабым расщепляющим воздействием на центральный ион d-элемента (например, F ), то электроны после заполнения de-орбиталей будут занимать d -орбитали без спаривания спинов — по одному на каждой свободной орбитали (ячейке), как и в свободном ионе. В этом случае образуются высокоспиновые комплексы [FeFol , [ oFel и им подобные. В комплексах, содержащих лиганды с большим расщепляющим воздействием (подобно N ), происходит переход электронов в уже занятые ячейки с более низкой энергией на de-орбитали, электроны спариваются, спин электронов уменьшается, образуются устойчивые низкоспиновые комплексы lFe( N)r,] , [Fe( N),i]- , [ o( N)ol , [ o(NH3),i] и т. п. Энергия, необходимая для спаривания (перевода) электронов, компенсируется достаточно высоким кристаллическим полем лигандов. [c.230]

    Особенно характерно образование соединений между молекулами, одна из которых имеет низко лежащую свободную МО, а другая — 1есвязывающую орбиталь атомного типа, заполненную двумя электронами.. Перекрывание этих дв>т( МО приводит к образованию новых двух МО, общих для всей системы, и возникновению прочного химического соединения (рис. 53). Возникающая таким образом связь по своему происхождению называется донорно-акцепторной связью. Молекула с низколежащей свободной орбиталью называется акцептором электронов, а имеющая пару электронов на несвязывающей МО — донором. Примером донорно-акцепторного механизма образования химической связи в двухатомных молекулах может служить образование молекулярного иона НеН из атома Не и иона Н . Атом гелия имеет два электрона ка ] -орбитали с энергией —24,6 эВ (ПИ = = 24,6 эВ). Его рассматривают как типичный инертный атом с заполненной оболочкой. У иона имеется свободная 15-орбиталь с энергией —13,6 эВ. При контакте Не и Н возникает НеН -ион, а-МО которого можно представить как линейную комбинацию 15-орбиталей атома Не и иона Н  [c.140]

    Продемонстрируем метод на наиболее симметричных конфигурациях и простейших системах. Рассмотрим сушность эффекта расщепления терма. В качестве центрального иона возьмем ион переходного металла, внешняя оболочка которого содержит один -электрон, терм /). В свободном ионе -состояние вырождено пятикратно, т. е. имеется пять /-орбиталей, эквивалентных по энергии, на которых может находиться рассматриваемый э.тектрон (см. 7). Если поместить ион в центр поля лигандов, имеющего сферическую симметрию, энергия внешних электронов иона повысится из-за дополнительного отталкивания от отрицательных лигандов, создающих цоле, но в поле любой другой симметрии вдобавок произойдет расщепление -уровня на подуровни. Последнее зависит от симметрии поля. В октаэдрическом поле шести отрицательных лигандов (симметрия Он) две из пяти -орбиталей направлены в сторону расположения лигандов, именно -орбитали (рис. 100). Отталкивание электронов на этих орбиталях от отрицательных лигандов значительнее, чем на трех оставшихся орбиталях (1 у, ,.. и ,, лепестки которых направлены к ребрам октаэдра, т. е. между лигандами. Поэтому энергия электрона на первых двух орбиталях оказывается вьипе, чем на трех последних. Таким образом, первоначальный -уровень ( О терм) расщепляется на два подуровня — более низкий,трижды вырожденный, и более высокий, дважды вырожденный (е ). При заполнении электронами более низких уровней (здесь г ) система стабилизируется по сравнению с произвольным заполнением -орбиталей. Достигаемый за счет этого выигрыш энергии, называемый энергией стабилизации кристаллическим полем (ЭСКП), упрочняет химическую связь. [c.238]

    Атом титана обладает достаточно высокой поляризующей силой, он способен акцептировать неподеленные пары электронов у поляризованных ионов, атомов и молекул на свободные орбитали, образуя донорно-акцепторные связи. В образовании таких связей у него могут участвовать пять Зй-, одна 45- и три очень близких к ним по энергии 4р-орбитали. Согласно модифицированной теории кристаллического поля (МТКП), в поле шести точечных зарядов (октаэдрическая координация) энергетически эквивалентные 3 -орбитали претерпевают рас щепление на две орбитали с высокой энергией (3 г= и Зй с -уг ) и три орбитали с более низкой энергией (3 , Зй я Зй г)- Первые две на правлены вдоль осей, поэтому они наряду с 45,, 4ру и 4р -орбиталями участвуют в образовании ст-связей (МО), а орбитали Зйху, 3(1уг  [c.209]

    Гипотеза Григоровича. По мнению В. К. Григоровича, расположение атомов в твердых и жидких простых веществах определяется, в основном, их электронным строением [8]. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р оболочек ионов, не перекрывающихся при низких температурах ([8], стр. 202). Так, например, объемноцентрированная кубическая структура натрия, область существования которой простирается от 30 К до температуры плавления, по Григоровичу, может быть объяснена с помощью следующих соображений. Из экспериментальных данных (об оптических свойствах, эффекте Холла и т. д.) известно, что натрий в твердом и жидком состоянии имеет один электрон проводимости на атом. Это означает, что его валентный электрон с Зз уровня переходит в электронный газ. Атомы натрия в конденсированном состоянии имеют внешнюю 25 2р оболочку. Взаимодействие ионов с электронным газом приводит к сближению и перекрыванию р-орбиталей внешних р оболочек ионов, в результате чего возникают обменные / вухэлектронные о-связи, направленные по трем осям прямоугольных координат. Образование шести связей каждым атомом со своими соседями приводит к простой кубической ячейке со свободным объемом в центре, который может быть заполнен таким же ионом. Так, из двух простых кубических под-решеток, энергетически невыгодных, а потому редко реализующихся в металлах, образуется ОЦК структура, одна из трех типичных металлических структур. Гипотеза Григоровича иллюстрируется рис. 43. Точно так же обосновывается возникновение ОЦК структур и у других щелочных металлов. Для лития, ионы которого имеют 15 оболочку, возникновение ОЦК структуры связывается с предположением о переходе 8 электронов на р уровни. [c.175]

    Без внешних воздействий, например в свободном ионе металла, все орбитали являются вырожденными, т. е. они энергетически равноценны. Однако под влиянием зарядов лигандов вырождение снимается, и электроны, занимающие различные -орбитали, становятся в энергетическом отношении неравноценными. Одни из них занимают более высокие энергетические уровни, другие — более низкие. Комплекс железа с шестью ионами фтора имеет октаэдрическую конфигурацию. Шесть лигандов занимают места в вершинах октаэдра, т. е. на осях координат у и 2, вдоль которых вытянуты электронные облака йх--у - и г . Энергия электронов, находящихся на этих орбиталях, возрастает по сравнению с энергией, которую имели бы эти электроны в комплексе, если бы их заряд был распределен равномерно на поверхности сферы (уровень Б, см. рис. 13.3). Наоборот, энергия С1ху, С1гх и гу электронов уменьшается по сравнению с энергией, показанной на рис. 13.3, уровнем Б, так как и. электронные облака находятся в пространстве между осями координат и испытывают меньшее отталкивание под влиянием отрицательно заряженных лигандов [c.252]

    Негидриды. Чтобы вывести электронные конфигурации линейных трехатомных молекул или радикалов, не содержащих атомов водорода, следует рассмотреть корреляцию с разделенными атомами подобно тому, как это делалось для двухатомных молекул (рис. 16 и 17). На рис. 70 изображена корреляционная диаграмма орбитальных энергий для линейных молекул типа ХУг, показывающая изменение энергии при переходе от больших межъядерных расстояний к малым. Действительному расположению орбиталей, которым следует пользоваться при определении электронных конфигураций этих молекул, соответствует примерно середина диаграммы. В табл. 11 даны электронные конфигурации основных и первых возбужденных состояний ряда важных линейных трехатомных свободных радикалов, а также соответствующие типы симметрии. Наблюдавшиеся состояния подчеркнуты. Из таблицы видно, что обнаружены многие из предсказанных состояний и что наблюдавшиеся основные состояния находятся в согласии с предсказанными. В табл. 12 приведены вращательные постоянные и частоты деформационных колебаний в основных состояниях указанных радикалов. В тех случаях, где это возможно, приводятся также межъядерные расстояния. Интересно отметить, что частота деформационного колебания возрастает от крайне низкого значения 63 см для основного состояния радикала Сз до значения 667 см для молекулы СО2. По-видимому, это возрастание связано с заполнением орбитали 1л . [c.116]

    Питцер отмечал, что между р-орбиталями насыщенной азотной системы а) существует отталкивание, которое делает связь N—N более длинной (1,40А), чем сумма радиусов двух атомов азота (0,53 А). Однако в элементарном азоте в) р-орбитали взаимно притягиваются, что дополнительно стабилизирует связь между атомами. Вследствие этого химические реакции гидразина (а), приводящие к азоту (б), протекают легко. Высокая устойч 1вость элементарного азота оказывает большое влияние на ход реакций, затрагивающих связь азот — азот. Поскольку азот — вещество со столь низкой энергией, его образование в реакции почти всегда приводит к уменьшению свободной энергии реакционной системы. Важно также отметить, что газообразный азот уже в момент образования покидает сферу реакции. Таким образом, равновесие в реакции с образованием элементарного азота невозможно, и вследствие этого исходное соединение можно полностью превратить в конечные продукты. [c.12]

    Когда двойная связь содержит гетероатом (т. е. атом, отличный от углерода), молекулярные орбитали меняются в зависимости от присущей данному гетероатому способности притягивать электроны, т.е. от относительной электроотрицательности (ср. орбитали фтороводорода и воды). Простейшим соединением с гетероатомом и двойной связью является формальдегид (рис. 2.11). Отметим, что одна несвязывающая свободная пара кислорода занимает ВЗМО. Вторая пара несвязывающих электронов занимает орбиталь (не показана) с более низкой энергией, чем тг-орбиталь. [c.24]

    В методе МО химическую стабильность характеризуют также энергии наивысшей заполненной (НЗ) и наинизшей незаполненной (НН) молекулярных орбиталей, обычно называемые энергиями НЗМО и ННМО. Если энергия НЗМО высока, то с этой орбитали легко удаляется электрон, и молекула легко окисляется. Если энергия ННМО низка, то эта орбиталь охотно принимает электроны от других соединений, и молекула легко восстанавливается. В свободных радикалах высшая заполненная орбиталь занята лишь наполовину и поэтому представляет собой как НЗМО, так и ННМО. При этом обязательно выполняется один из указанных выше критериев нестабильности. [c.127]

    УЛЬТРАФИОЛЕТОВЫЕ СПЕКТРЫ. Длинноволновая полоса (с самой низкой энергией) 1,3-бутадиена находится при 217 нм. Она обусловлена переходом электрона с на л -уровень. Этилен, с другой стороны, поглощает при 187 нм. Причина такого различия в спектрах ясна из рис. 13-2. Мы видим, что сопряжение в 1,3-бутадиене уменьшает расстояние между высшей занятой молекулярной орбиталью (ВЗМО) я и низшей свободной молекулярной орбиталью (НСМО) я, а следовательно, уменьшает энергию, необходимую для возбуждения. Это уменьшение энергии, необходимой для возбуждения, продолжается по мере возрастания сопряжения. В самом деле, разность энергий между ВЗМО и НСМО высокосопряженных молекул настолько мала, что эти молекулы поглощают в видимой области спектра. Другими словами, высокосопряженные молекулы часто окрашены (табл. 13-2). [c.501]

    Способность мономеров к полимеризации обусловлена термодинамическими и кинетическими факторами. Термодинамические факторы определяются количеством свободной энергии, выделяющейся при полимеризации (вследствие перехода напряженных хр -гибридизованных орбиталей атомов углерода в насыщенные ненапряженные хр -гибридизоваиные орбитали) и энтропиен, кинетические — природой активных центров и условиями процесса. Термодинамические и кинетические факторы не взаимосвязаны напри.мер, этилен имеет наибольшую теплоту полимеризации, однако до открытия катализаторов Циглера — Натта он считался инертным мономером наоборот, изобутилен, теплота полимеризации которого значительно ниже, чем у этилена, быстро полнмеризуется даже при очень низкой температуре (93 К). [c.109]

    Рассмотрим в качестве примера два октаэдрических комплекса двухвалентного железа — Ре(Н20)й и Ге(СК)й . У свободного иона Ре " имеется шесть -электронов, другими словами, он представляет собой ион с -конфигурацией. В основном состоянии октаэдрического комплекса эти электроны можно разместить по имеющимся молекулярным орбиталям двумя различными способами, как это показано на рис. 23.15. Если энергетический интервал Л между несвязывающим и первым разрыхляющим энергетическими уровнями невелик, электроны распределятся по ним подобно тому, как это было в свободном катионе. Это означает, что электроны займут все пять орбиталей, располагаясь на них, насколько это возможно, поодиночке (см. рис. 23.15,й). При таком распределении электронов возникает всего одна электронная пара, которая занимает более низкий энергетический подуровень. В рассматриваемом случае энергия, необходимая для образования дополнительных электронных пар (т. е. для локализации двух электронов в одной и той же области пространства) на орбиталях нижнего электронного подуровня, превышает величину Д, и по этой причине образующийся комплекс чаще всего оказывается спин-свободным, или, что то же самое, высокоспиновым. Если же энергетический интервал Д превышает энергию спаривания электронов, минимальной энергии комплекса соответствует такое распределение электронов ио орбиталям, при котором они оказываются спаренными на нижнем энергетическом подуровне, что приводит к воз- [c.416]


Смотреть страницы где упоминается термин Орбиталь низшая свободна: [c.16]    [c.55]    [c.18]    [c.19]    [c.171]    [c.8]    [c.21]    [c.371]    [c.222]    [c.248]    [c.90]    [c.134]    [c.50]    [c.128]   
Органическая химия (1990) -- [ c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Орбитали низшие свободные молекулярны



© 2025 chem21.info Реклама на сайте