Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексны с переносом заряда

    При выделении металла из комплексных электролитов состав разряжающихся ионов (Ох) часто отличается от состава преобладающих в растворе комплексных частиц Ох. Точно так же в результате элементарного акта переноса заряда при процессах электро- [c.347]

    Скорость протекания всего процесса в целом контролируется стадией, сопровождающейся наибольшими торможениями. Причинами торможения могут быть замедленная доставка разряжающихся ионов к катоду — концентрационное перенапряжение (1-я стадия) замедленный разряд ионов, который обусловлен медленным переносом заряда через двойной электрический слой и связанным с этим изменением физико-химического и энергетического состояния ионов (дегидратация, десольватация, распад комплексных ионов и др.) — электрохимическое перенапряжение (2-я стадия) трудности, связанные с построением кристаллической решетки замедленная диффузия ад-атомов (ад-ионов) по поверхности катода к местам роста кристаллов, задержка при вхождении атомов в кристаллическую решетку или при образовании двух- или трехмерных кристаллических зародышей, т. е. то, что характеризует так называемое кристаллизационное перенапряжение (3-я стадия). Величина последнего сравнительно невелика и зависит от природы металла и от состояния поверхности катода, которое в ходе электролиза меняется в результате адсорбции посторонних ионов, молекул и органических веществ. [c.335]


    Образование на промежуточной стадии комплексного иона [Fe(NO) (НгО)5]2+ сопровождается появлением бурого окрашивания раствора, обусловленного переходами с переносом заряда в системе Fe—N—О. [c.640]

    Рассмотрение спектров поглощения в ультрафиолетовой области как спектров переноса зарядов дает возможность понять существующую зависимость между валентным состоянием центрального атома и положением максимума на кривой поглощения. В табл. 85 приведены значения длин волн, при которых наблюдается максимум поглощения у однотипных комплексных соеди- [c.318]

    Силы отталкивания способствуют обмену кинетической и потенциальной энергий между молекулами, установлению термодинамического равновесия. Межмолекулярные химические связи возникают в результате перераспределения электронной плотности в пространстве между молекулами, частичного переноса заряда от молекулы донора к молекуле акцептора. Такой перенос электронного заряда понижает энергию системы и приводит к образованию молекулярных ассоциатов в чистых жидкостях и комплексных соединений в растворах. Разновидностью межмолекулярных химических взаимодействий является водородная связь, осуществляемая с участием водорода. Атом водорода, ковалентно связанный с атомом фтора, кислорода, азота, хлора, серы, фосфора, углерода, может образовать вторую связь с одним из таких же атомов другой молекулы. В воде, спиртах и кислотах энергия водородной связи составляет 20,9 —33,4 кДж/моль в бензоле, растворе ацетон — вода — около 4,2 кДж/моль. [c.247]

    Симметрия всего комплекса имеет важное зна чение для исследования явлений переноса з ряда и оптической активности комплексов. Перенос заряда между ионом металла и лигандом зависит.от симметрии комбинации центрального иона металла и я-электронной системы лигандов, участвующих в обмене электрона. При рассмотрении симметрии можно пренебречь влиянием тех заместителей в молекуле лиганда, которые не участвуют в системе я-сопряжения молекулы. Перенос заряда оказывается достаточно интенсивным и, следовательно, применимым в аналитической химии, если отсутствует общий центр симметрии для центрального иона и для всех атомов системы сопряжения (ср. разд. 2.5.2). При изучении оптической активности комплексных соединений необходимо детальное знание их стереохимии, потому что комплексные соединения проявляют оптическую активность только тогда, когда у них нет ни центра симметрии, ни плоскостей симметрии, ни зеркально-поворотных осей симметрии. Отсюда следует, что оптически активные соединения либо вообще не обладают никакими элементами симметрии, кроме тождественного преобразования (асимметричные соединения), либо им свойственны только оси симметрии (диссимметричные соединения). [c.54]


    Что касается интенсивных полос в ультрафиолетовой области спектра, то они обусловлены перераспределением заряда между частицами, образующими комплексный ион, и носят название полос переноса заряда . Эти полосы обсуждаются в разделе П1, В. [c.322]

    Теория переходов с переносом заряда находится в зачаточном состоянии, и для достижения сколько-нибудь серьезного успеха в ее развитии прежде всего необходимо накопить большое количество экспериментальных данных. Однако некоторые качественные результаты, основанные на применении модели МО ЛКАО, и в настоящее время дают представление о механизме возникновения спектров комплексных ионов. Ниже приводится краткое изложение этих результатов. Схема уровней энергии молекулярных орбит для октаэдрического комплекса с одноатомными лигандами показана на рис. 10. Молекулярные орбиты, полученные из атомных s- и р-орбит лигандов, и nd-, ( -bl)s- и ( +1)р-орбит центрального атома металла с учетом симметрии, показаны на рис. 11 и 12. [c.355]

    Между двумя рассмотренными механизмами катализа существуют, по-видимому, и промежуточные, когда образовавшиеся комплексные соединения между катализатором и реагентом имеют некоторые свойства, характерные для комплексов с переносом заряда (например, наличие в спектре поглощения полосы переноса заряда). [c.76]

    Соотношения энергий дублетных и квартетных состояний определяются электронным взаимодействием и электронодонорной способностью лигандов. Для большинства октаэдрических комплексов Сг(П1) получают представленную на рис. 3.4 последовательность энергетических уровней. Можно видеть, что между основным состоянием M2g и первым разрешенным по спину возбужденным состоянием T2g находятся два запрещенных состояния Eg и T g) [1]. В комплексах Сг(П1) возбуждение перехода с переносом заряда требует большой энергии (см. рис. 3.3, б), соответствующей коротковолновому УФ-свету ( 200 нм), и поэтому для фотохимии оно мало интересно. Однако во многих других комплексных соединениях, например производных Со(П1), Си(П), Ре(П1), возбужденные состояния ПЗ можно получить уже при облучении длинноволновым УФ- или видимым светом. [c.67]

    Окислительно-восстановительные фотореакции в случае комплексных соединений могут происходить либо внутримолекулярно — между центральным ионом и координированными лигандами, либо межмолекулярно — между комплексной молекулой и молекулой растворителя или другой частицей, присутствующей в растворе. Внутримолекулярные окислительно-восстановительные фотореакции— это процессы электронных переходов между центральным ионом и лигандами их можно рассматривать как перенос заряда от центрального иона к лигандам или наоборот. Таким образом, [c.338]

    Одной из наиболее валшых проблем в области нeopгaничe кoii химии является установление причин прочности связей, в комплексных попах. Так, и Со обычно очень медленно обменивают связанные с ними группы атомов (лиганды). С другой стороны, АР и Ре обменивают лиганды, такие, как Н2О и СГ, очень быстро. Как мы уже видели, такое поведение тесно связано с вопросом о скоростях окислительно-восстановительных реакций и с переносом заряда. Однако эта связь не одинакова во всех случаях, так как такие комплексы, как Ре (СХ)2 и Ре ( N) ", в которых лиганды очень инертны, легко вступают в реакции с передачей заряда. Таубе [163] дал решение этих вопросов на основании орбитальной модели валентно11 оболочки ионов. Недавно была сделана попытка более количественного решения этих проблем на основании рассмотрения влияния электрических полей лиганд на относительную энергию орбит центрального иона, которые в отсутствие этих электрических полей эквиваленты. (Эта теория получила название теории кристаллического ноля [164] в применении к неорганической химии эта теория была подробно исследована в монографии [165].) [c.524]

    Одним из имеющих большое значение видов межмолекулярного взаимодействия являются электронодонорно-акцепторные (ЭДА) взаимодействия, приводящие к образованию ЭДА-ком-плексов. Комплексы с переносом заряда (КПЗ) образуются в хемосорбционных процессах, а также при взаимодействии ПАВ-доноров, роль которых могут играть молекулы с неподе-ленными парами, т. е. с а- или л-связями, и веществ-акцепторов электронов с дефицитом электронов в каком-нибудь звене молекулы, например за счет сильных отрицательных (—Es) и (—Ed) эффектов, создающих дефицит электронов по кратной связи. В качестве таких акцепторов известны малеиновый ангидрид, сульфоны, ароматические нитросоединения, цианистые соединения и др. К комплексным соединениям относятся также сэндвичеобразные структуры. [c.204]

    Аналогично были исследованы комплексные соединения двухвалентной меди с бис-8-гидроксихинолином, 3-фенил-р-аланином и диэтилдитиокарбаминовой кислотой. Спектрофотометрическим методом изучалось воздействие высокого давления до 12 ГПа на эти соединения Найдено смещение полос электронных спектров погло щения, что свидетельствует о переходе электрона с переносом заряда типа Си+-(-лиганд. Определены характеры переходов с переносом заряда, и на основании этого сделана оценка процент1Юго содержания Си+ в системе. Было доказано, что процесс восстановления Си-+- Си -обратим при снижении давления до атмосферного. [c.167]


    Кроме полос интраконфигурационных (й —d,f—f) переходов в спектрах комплексных соединений могут наблюдаться также интенсивные полосы так называемых интермолекулярных переходов, которые лежат в УФ-области и примыкающей к ней части области видимого спектра. Это — полосы переноса заряда. Они возникают при поглощении квантов света, вызывающих переход электрона с МО, локализованной на лиганде, на МО, локализованную на центральном атоме, или наоборот, т. е. при внутримолекулярном окислительно-восстановительном процессе. К интермолекулярным относятся также так называемые Ридберговы полосы в УФ-спектре, связанные с возбуждением электронов центрального атома (изменение квантовых чисел п или I). [c.246]

    Спектры неорганических и комплексных соединений. Различают полосы поля лигандов d—d-иереходы центрального атома), полосы переноса заряда (внутри молекулы эти переходы обладают большими силами осциллятора, чем d— /-переходы), собственные полосы лигандов (вереходы внутри самих лигандов). [c.237]

    Синонимами термина комплекс ДЭП/АЭП являются электронный до-норно-акцепторный (ЭДА) комплекс [50], молекулярный комплекс [57,58] и комплексе переносом заряда (ПЗ) [51]. Здесь будет использоваться предложенное Гутманном [53] более общее выражение комплекс ДЭП/АЭП , поскольку молекулярными комплексами обычно называют непрочные комплексные соединения нейтральных молекул, а обусловленное переносом заряда появление специфической полосы поглощения не доказывает существования устойчивого комплекса. Следовательно, к числу комплексов ДЭП/АЭП будут относиться все комплексные соединения, образующиеся при взаимодействии донора электронной пары (льюисова основания) и акцептора электронной пары (льюисовой кислоты) независимо от устойч ивости комплексов и от зарядов его составляющих. [c.41]

    Прн экспоннрованнн слоев комплексных галогенидов этих я-до-норов, нанесенных вакуумной сублимацией, наблюдается изменение строения субстрата и резкая дифференциация физических свойств участков слоя в результате обратного переноса заряда и удаления галогена в экспонированных участках остается только я-донор  [c.264]

    ПОЛОС относительно низкой интенсивности (молярный коэффициент поглощения - экстинкция е - в интервале 1-1СЮ0 л м моль ). Эти полосы обусловлены - -переходами электронов центрального атома. В ультрафиолетовой области спектр содержит несколько интенсивных полос с экстинкцией от 10 ООО до 100 ООО л м моль . Они соответствуют электронным переходам в лигандах и переносу заряда с центрального иона металла на лиганды и наоборот (полосы переноса заряда). Видимая область и ближняя область ультрафиолетового спектра комплексного соединения обусловлены электронными переходами из основного состояния в некоторые возбужденные состояния. Правило отбора говорит, что разрешены только переходы с равной спиновой мультиплетностью, а все другие являются запрещенными. Спиновая мультиплетность определяется уравнением (23 + 1), где Я- суммарный спин электронов центрального атома, который есть произведение спинового квантового числа, равного /2, на число неспаренных электронов центрального атома. Различают триплетное и синглетное спиновые состояния. Так, триплетное состояние характеризуется мультиплетностью 3, т. е. у атома есть два неспаренных электрона, а синглетное состояние - мультиплетностью 1, т. е. у атома нет неспаренных электронов. В комплексном соединении число неспа-ренных электронов зависит от поля лиганда. [c.529]

    В работах [164, 165] исследовано электроосаждение меди на вращающемся дисковом медном электроде из растворов бензолсульфоната меди в диметилформамиде в присутствии бензолсульфокислоты (БСК). Катодный процесс выделения меди протекает с высоким перенапряжением, так как медный электрод в диметилформамиде пассивируется. Выделение меди происходит при перенапряжении 400—500 мВ. При добавлении БСК на начально.м участке поляризационной кривой скорость процесса контролируется скоростью переноса заряда, так как ток не зав5у ит от скорости вращения электрода. Авторы считают, что в этом случае разряжаются комплексные ионы меди состава [Си(СбН550з)4]2 , скорость-разряда которых значительно выще, чем сольватированных ионов Си . При наличии свободной БСК разряжаются комплексные ионы с участием адсорбированных на электроде анионов БСК- Наличие адсорбционного слоя снижает энергию активации разряда в результате облегчения процесса переноса иона меди из комплекса в адсорбционный слой. [c.48]

    В УФ-спектрах комплексов появляются полосы, новые для обонх компонентов. Этн полосы относят к переносу заряда. Поглощенная энергия света, соответствующая этим полосам, и сродство к электрону молекулы-акцептора связаны между собой известным уравнением, по которому можно рассчитать величину сродства к электрону. Таким способом было определено сродство к электрону у некоторых акцепторов по УФ-спектрам тг-комплексов, где в качестве доноров использовались 8 оксихинолины и их комплексные соли двухвалентных металлов [484]  [c.361]

    Нитрилы могут давать комплексные соединения, в образовании которых нитрильная группа не принимает непосредственного участия. Так, например, тетрацианэтилен, являющийся очень сильной я-кислотой образует окрашенные молекулярные я-комплексы с ароматическими углеводородами. Наиболее вероятная модель этих комплексов отвечает сэндвичеобразной структуре, где оба компонента расположены параллельно друг другу В этих комплексах тетрацианэтилен является акцептором электронов, а ароматические углеводороды — донорами электронов. Окрашивание появляется в результате переноса заряда — частичного перехода я-электрона от ароматического углеводорода к тетрацианэтилену. Однако комплексы с переносом заряда могут быть получены и из других циануглеродов, а также таких соединений, как трициан-этилен, трициановинилхлорид и др. [c.33]

    Измерения порядка реакций разряда комплексных ионов металлов оказались особенно полезными при разрешении давно возникшего вопроса, предшествует ли переносу заряда диссоциация. Механизм разряда таких ионов обсуждался в течение многих лет и был наконец расшифрован. Чтобы получить детальное представление об истории вопроса, следует обратиться к статье Парри и Лайонса [44]. Прекрасным примером приложения этого метода являются исследовэния разряда иона кадмия [c.202]

    Чтобы не прибегать к предположению о независимости от наличия реагента, надо провести полный векторный анализ измерен ного импеданса ячейки в зависимости от частоты. С этой целью Слюй терс и сотр. [479, 480, 529, 531, 533, 536, 538] использовали особен но удобный подход, основанный на построении графика зависимости емкостной составляющей импеданса от его омической составляющей, что соответствует анализу на комплексной плоскости. Если замед ленной стадией является лишь перенос заряда, то взаимная зависи мость емкостной и омической составляющих описывается полуок ружностью (рис, 21, а). Нефарадеевскую емкостную составляющую можно определить по частоте со , соответствующей верхней точке [c.246]

    Таким образом, прежде всего появилось требование о возможности учета переноса заряда между лигандами и центральным ионом, которому удовлетворяют различные методы теории молекулярных орбиталей. По существу, особым вариантом этих методов, приспособленным к рассмотрению свойств комплексных соединений, и является теория поля лигандов, которая исходит из основных предположений теории молекулярных орбита-лей, а в предельном случае, когда перенос заряда отсутствует, сводится к электростатической модели. Общая формулировка проблемы приводится, например, в работе Джаррета [82]. [c.281]

    Впервые метод был применен Ван Флеком [191] в 1935 г. к теоретическому исследованию магнитных свойств ферроцианида калия и затем в 1939 г. Финкелыптейном и Ван Флеком [48] для объяснения очень узких линий в спектре хромовых квасцов. Недавно он был возрожден для обсуждения спектров переноса заряда в неорганических комплексных соединениях, а также спектров тетраэдрических молекул типа СЮ , МпО , [СоС14]2-и т. д. [71, 121, 202]. [c.247]

    Можно отметить, что описываемая реакция имеет черты, сближаюш,ие ее с реакциями ферментативного катализа мягкие условия (90—100°С), высокая селективность, весьма малые концентрации катализатора. Катализаторы этой реакции представляют собой соединения металлов переменной валентности (Мо, УУ, V и др.), способные к координационному взаимодействию (образованию комплексных соединений) за счет неподелеп-ных электронных пар кислорода гидроперекиси и вакантных й-орбит металла-катализатора. Известно, что каталитическое действие ферментов связано с образованием промежуточного комплекса фермент — субстрат, который далее превращается в продукт реакции [10]. Все это позволило объяснить роль молибденовых соединений образованием промежуточного комплекса с переносом заряда между катализатором и сильным электро-нодонорным реагентом — органической гидроперекисью — и применить для описания кинетики реакции уравнение, аналогичное уравнению Михаэлиса [10, 11]. [c.269]

    Рабинович [6] исследовал спектры переноса заряда и их фотохимические эффекты. Полосы поглощения в этих спектрах связаны с восстановлением катиона и окисле 1ием аниона, как, например, в случае галогенидных комплексов железа. При исследовании спектров поглощения комплексных ионов в дальней ультрафиолетовой области наблюдались полосы, которые по интенсивности и положению можно интерпретировать как полосы переноса заряда. Несмотря на то что этот тип электронного переноса не является безизлучательным, эти процессы включают перенос. электронов внутри комплекса, а не между частицами, которые находятся в благоприятной для реакции конфигурации весьма короткое время. Такие процессы возможны и между двумя одноименно заряженными частицами. [c.80]

    Еще не вполне выяснены точные структуры этих аддуктов и природа участвующих связей. Например, при взаимодействии антрацена и тетрациано-этилена образуется голубое комплексное соединение. Тетрацианоэтилен — это особый тип кислоты Льюиса, потому что все четыре цианогруппы оттягивают электроны от центральной углерод-углеродной двойной связи, и эти два атома углерода становятся относительно бедными электронами. я-Электроны антрацена восполняют этот недостаток путем частичного переноса зарядов, и образующееся вещество существует в силу взаимопритяжения противоположных зарядов. В каждой части комплекса заряд стабилизуется посредством [c.184]

    Процессы переноса заряда в ионах переходных металлов зассматривались Йоргенсеном [26], Макклюром [23] и другими 27, 98]. Некоторые диаграммы уровней энергии молекулярных орбит для типичных комплексных ионов даны Лиром [41, 99]. Теория молекулярных орбит для тетраэдрических ионов развивалась с разных позиций Бальхаузеном и Лиром [54], Вольфс-бергом и Гельмгольцем [100]. Полученные ими результаты при- [c.354]

    В последнее время все чаще механизм реакций разложения гидроиероксидов при их координации на молекулах комплексных катализаторов связывают с возможностью переноса избыточной электронной ггяотности с центрального иона на гидропероксид. При изучении влияния донорно-акцепторных добавок к гетерогенному катализатору на скорость окисления кумола показано [53], что уменьшение электронной плотности на активном центре катализатора за счет адсорбции акцепторов электронов затрудняет процесс переноса заряда на молекулу гидропероксида и препятствует ее распаду на радикалы. Увеличение электронной плотности на активном центре способствует радикальному распаду кумилгидропероксида. [c.30]

    При выделении металла из- комплексных электролитов состав разряжающихся ионов (Ох) часто отличается от состава преобладающих в растворе комплексных частиц Ох. Точно так же в результате элементарного акта переноса заряда при процессах злектрокристаллизации возникают адатомы, которые лишь затем образуют компактный металл. Необходимо, однако, учитывать, что при чисто электрохимическом перенапряжении, когда именно ему обязано все смещение потенциала от обратимого значения при прохождении тока, т. е. когда  [c.362]

    Однако в нескольких случаях наблюдали присоединение к боразиновому кольцу ряда соединений в соотношении 1 1. Имеются определенные доказательства того, что такое присоединение требует образования комплекса с переносом заряда, как в случае с тетрацианзтиленом (см. также гл. 1П,В, 5) возникновение такого переходного комплекса может происходить и при присоединении иода [88] и брома [3] к боразину. В этой связи интересно отметить, что в литературе приведен ряд сообщений о том, что некоторые боразины кристаллизуются в виде аддуктов из ароматических растворителей [59—61, 66, 124]. Однако необходимы дополнительные данные для того, чтобы сделать какие-то определенные выводы. Детально изучен только аддукт 1 1 триметиламина и боразина. Считают, что образование такого аддукта является следствием возникновения донорно-акцепторной комплексной связи между одним атомом бора Б боразиновом кольце и азотом триметиламина (XV). [c.162]

    Высказывалось предположение [5] о том, что наличие интенсивной полосы в спектре циркулярного дихроизма иона (+)-[Со епз] объясняется не тригональным расщеплением компонент (Од), а тем, что комплексный ион имеет преимущественно конформацию ккк слабые отрицательные полосы обусловлены некоторыми другими конформациями ккк, кк к или к к к ). Однако конформация комплекса 0-(+)-[Со (+рп)з] жестко фиксируется тремя экваториальными метильными группами, а спектр циркулярного дихроизма этого комплекса очень похож на спектр (+)-[Со еПд] с двумя эффектами Коттона [97а] противоположного знака в видимой области. Эти эффекты нельзя объяснить различными конформациями комплексного иона как полагают, они обусловлены двумя электронными переходами иона. Аналогичные доводы были использованы [98 ] и в более поздней работе, в которой пределы измерений были расширены на ультрафиолетовую область здесь также предполагалось, что знак эффекта Коттона для полосы переноса заряда при 200нм зависит от конформации к или/г ) диамина. [c.189]

    Фотозамещение часто наблюдается одновременно с окислительно-восстановительной фотореакцией при возбуждении переноса заряда в комплексе (см. раздел 11.3). Как с1 — -возбуждение, так и возбуждение переноса заряда ослабляет связь металл-лиганд в возбужденном состоянии молекул комплексного соединения. Реакции фотозамещения имеет смысл изучать только у кинетически стабильных комплексов, таких, как октаэдрические комплексы Сг(П1), Со(П1), Р1(1У) или плоскостные квадратные комплексы Р1(П), потому что они инертны при попытках термического обмена лигандов [57]. Если предполагать, что фотореакции протекают по механизмам, сходным с таковыми для темновых реакций, то обмен лиганда может происходить по 5л 1- или 5л 2-механизму. В действительности обычно механизм является промежуточным между этими предельными случаями. Будет ли реакция проходить преимущественно но механизму 5д-1 или 5л-2, в значительной мере зависит от геометрии комплексного соединения. У октаэдрических комплексов известны реакции как 5л-1 (переходное состояние с координационным числом 5), так и 5л-2 (переходное состояние с координационным числом 7). 5дт1-Реакции встречаются чаще. У плоскостных квадратных комплексов главным образом наблюдаются реакции 5л 2, так как присоединение приближающегося лиганда X в переходном состоянии более вероятно, чем образование промежуточной ступени с координационным числом 3. [c.223]

    Окислительно-восстановительный тип реакций и реакции типа замещения обычно связывают с возбуждением комплексного иона в разных по природе полосах поглощения. В реакциях первого типа рассматриваются возбуждения в области слаборазрешенных с1 — -полос (1д е 2), в других — возбуждения в области полос с высоким значением е, относящиеся по существующей классификации к электронно-переходным (ППЗ — полосы переноса заряда). [c.93]


Смотреть страницы где упоминается термин Комплексны с переносом заряда: [c.50]    [c.303]    [c.369]    [c.30]    [c.90]    [c.125]    [c.26]    [c.226]    [c.343]    [c.124]    [c.114]    [c.186]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.348 ]




ПОИСК





Смотрите так же термины и статьи:

Направление переноса заряда при л-комплексной адсорбции

Перенос заряда

Перенос заряда в комплексных соединения

Титан III комплексные соединения спектры переноса заряда



© 2025 chem21.info Реклама на сайте