Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод в присутствии азота

    Недостатки процесса — необходимость регенерации адсорбентов, их механическое разрушение, невозможность, как правило, наряду с диоксидом серы извлекать оксиды азота и углерода, присутствующие в газе. [c.63]

    Правильный выбор конструкции горелок для трубчатых печей и организация рационального способа сжигания топливного газа определенного состава позволяют свести к минимуму образование вредных составляющих дымовых газов, выделяемых в окружающую среду. В продуктах сгорания топлива в основном могут присутствовать следующие вредные примеси оксид углерода, оксиды азота и минимальное количество канцерогенных веществ. Оксид углерода образуется при неполном сгорании всех видов топлива. Он является отравляющим газом, так как нарушает питание организма кислородом. [c.292]


    Основной примесью в техническом водороде является метан. В водороде, полученном в процессе каталитического риформинга, присутствуют также этан и пропан, а в водороде, полученном методом паровой каталитической конверсии и паро-кислородной газификации углеводородов, — окислы углерода и азот. К метану, поступившему с техническим водородом, прибавляется и метан, образовавшийся при гидрогенизации. [c.20]

    В зависимости от месторождений и методов добычи углеводородные газы подразделяются на природные, попутные и газы газоконденсатных месторождений. Природные газы добываются с чисто газовых месторождений и сог гоя г в основном из метана с небольшой примесью этана, пропана, бутанов, пентанов, а также азота, сероводорода и двуокиси азота (табл. 6.2). Эти газы относятся к группе сухих. Содержание метана в них в основном 93— 99%, этана и пропана — незначительно. Более высокомолекулярные углеводороды, как правило, присутствуют в виде следов, хотя некоторые газы характеризуются повышенным их содержанием. В газах наблюдается небольшая примесь двуокиси углерода и азота. [c.102]

    Углерод органического соединения в присутствии азота восстанавливается натрием до иона N . Последний реагирует с Fe +, образуя Ре[(СН)б] , который в кислой среде с Fe + дает берлинскую лазурь . [c.570]

    В зависимости от поставленной задачи, свойств анализируемого вещества и других условий состав веществ выражается по-разному. Химический состав вещества может быть охарактеризован массовой долей элементов или их оксидов или других соединений, а также содержанием реально присутствующих в пробе индивидуальных химических соедииений или фаз, содержанием изотопов и т. д. Состав сплавов обычно выражают массовой долей (%) составляющих элементов состав горных пород, руд, минералов и т. д. — содержанием элементов в пересчете на какие-либо их соединения, чаще всего оксиды. Наиболее сложен так называемый фазовый или вещественный анализ, целью которого является определение содержания в пробе индивидуальных химических соединений, форм, в виде которых присутствует тот или иной элемент в анализируемом образце. При анализе органических соединений наряду с определением отдельных элементов (углерода, водорода, азота и т. д.) нередко выполняется молекулярный и функциональный анализ (устанавливаются индивидуальные химические соединения, функциональные группировки и т. д.). [c.5]

    Определяют качественный состав, т. е. делают пробы на присутствие углерода, водорода, азота, галогенов, серы. Отсутствие того или иного из перечисленных элементов дает возможность не делать качественных реакций на содержащие их функциональные группы. [c.121]


    Рассмотренные выше загрязнения, прежде всего оксиды углерода, серы, азота и углеводороды, называются первичными. При определенных условиях совместно с такими загрязнениями, как сажа п другие частицы, они образуют смог. К таким условиям относятся следующие инверсия воздушных слоев, при которой теплый слой воздуха окружен сверху и снизу более холодными слоями, что препятствует естественной циркуляции воздуха, а значит, и выносу загрязнений определенные местные географические условия и высокая концентрация загрязнений, например в больших городах. Кроме смога, состоящего из первичных загрязнений, образуется еще вторичный, или фотохимический, смог. Дело в том, что под действием ультрафиолетовой составляющей солнечного излучения происходит разложение оксидов азота и кислорода и тем самым инициируется цепная радикальная реакция продуктов этого разложения с присутствующими в атмосфере углеводородами. Эта реакция приводит к опасным вторичным загрязнениям ат- [c.334]

    Установление наличия кислорода. Открытие углерода, водорода, азота, серы и галоидов не представляет каких-либо затруднений. Открытие кислорода значительно сложнее, и о его присутствии чаще всего судят по данным количественного анализа. [c.29]

    Бактериальная коррозия может происходить при 6...40 °С, рН= = 1...10,5 в присутствии органических и неорганических веществ, включающих элементы углерод, серу, азот, фосфор, калий, железо, водород, кислород и др. [c.24]

    Уровень обессеривания, при котором может работать установка R D, очевидно, является функцией наличия водорода. Поэтому стратегия использования ресурсов водорода для НПЗ с комплексной схемой получения бензина включает множество анализов того же типа, которые выполнялись для НПЗ с получением дизельных топлив, касающихся очистки водорода в потоке сухого газа из установки платформинга, потоках газа мгновенного испарения низкого давления установки R D и пр. Однако в дополнение к этому должна рассматриваться и возможность извлечения водорода из потока сухого газа установки R . В таблице 4 приведен состав потока сухого газа с установки R . Этот поток очень трудно очищать, поскольку он содержит низкий процент водорода и в нем присутствуют неконденсируемые инерты, такие как окислы углерода и азот, содержание которых в водороде, подаваемом в качестве подпитки на большую часть установок гидрирования, должно быть снижено. Экономические показатели извлечения водорода из потоков водорода низкой чистоты близки к наилучшим, когда оценка основана исключительно на прибавочной стоимости [c.490]

    В качестве загрязнений в хлоре могут присутствовать водород, кислород, азот, двуокись углерода, треххлористый азот, различные продукты хлорирования углеводородов и влага. Кроме того, в Газообразном хлоре могут содержаться мелкие капли серной кислоты, увлекаемой из башен сернокислотной сушки, а также частицы твердых хлорида и сульфата натрия, образуемых в башнях сушки хлора [c.316]

    Природные газы добывают с чисто газовых месторождений. Они состоят в основном из метана с небольшой примесью этана, пропана, бутанов, пентанов, а также азота, сероводорода и диоксида азота (табл. 7.2). Эти газы относятся к группе сухих. Содержание метана в них в основном 93—98 %, этана и пропана — незначительно. Более высокомолекулярные углеводороды, как правило, присутствуют в виде следов, хотя некоторые газы характеризуются их повышенным содержанием. В газах имеется небольшая примесь диоксидов углерода и азота. [c.150]

    С целью качественного элементного анализа делают пробы на присутствие в веществе углерода, водорода, азота, серы, галогенов, фосфора и других элементов. [c.32]

    Как уже отмечалось, наиболее характерным структурным дефектом синтетических кристаллов алмаза являются дисперсные замещающие углерод атомы азота (С-центры), концентрация которых обычно составляет 102 м-з. В природных же кристаллах азот присутствует чаще всего в агрегированной форме — в виде Л-центров с концентрацией до 10 м . При изучении превращения С-центров в Л-центры в результате отжига кристаллов концентрация одиночных замещающих атомов азота до (Со) и после (С() термической обработки измерялась методами ЭПР и ИК-спектроскопии путем определения коэффициента поглощения наиболее интенсивной полосы соответствующей системы. Величины Со и t усреднялись для каждого кристалла из определений двумя указанными методами. При этом методом ИК-спектроскопии контролировалось появление Л-центров после термической обработки измерением коэффициента поглощения на частоте 1282 см (а 1282) с учетом наложения системы С-центров. Общее количество образцов, обработанных при различных температурах и продолжительности выдержки и исследованных методами ЭПР и ИК, составляло 52 кристалла. [c.428]


    Для контроля содержания кислорода в аппаратуре применяют газосигнализатор ГГМК-12, предназначенный для определения содержания кислорода в бинарных и многокомпонентных газовых смесях. Газоанализатор представляет собой прибор непрерывного действия, его выпускают со следующими шкалами О—1, О—2, О—5, О—10, О—21% (об.) кислорода. В составе анализируемой смеси в качестве неизмеряемых компонентов могут присутствовать азот, двуокись углерода, гелий, аргон, окись углерода и непредельные углеводороды до С включительно. Датчик газоанализатора ДК-6М выполнен во взрывонепроницаемом исполнении, его можно устанавливать во взрывоопасных помещениях всех классов. [c.108]

    По современным гфедставлениям из 100 известных элементов незаменимыми являются 22. Углерод, водород, азот и кислород не входят в этот список - они слишком широко представлены в живой природе. Для удобства остальные элементы подразделяют на две большие группы макроэлементы, присутствующие в больших количествах, и микроэлементы, присутствующие в следовых количествах. В теле каждого взрослого человека по крайней мере 5 г каждого из мик1юэлементов. [c.277]

    Какие газы, К1юмс азота, кислорода и диоксида углерода, присутствуют в атмосфере Используя различные способы и измерения, ученые составили детальную картину химического состава атмосферы. Это и есть тема следующего раздела. [c.377]

    Присутствие тетраэтилсвинца в бензине не оказывает существенного влияния на количество окиси углерода, окислов азота и альдегидов-в отработавших газах [45]. По вопросу о влиянии ТЭС на количество углеводородов в отработавших газах данные несколько противоречивы. Так, исследования фирмы Форд показали, что добавление 0,78 мл1л ТЭС приводит к повышению содержания углеводородов в отработавших газах на 35% [45]. В другой работе [46] отмечено увеличение углеводородов лишь на 7%. Исследованиями на одноцилиндровом двигателе [47] показано, что ТЭС вызывает увеличение количества углеводородов в отработавших газах только при сгорании парафиновых углеводородов. В присутствии ароматических углеводородов (до 40%) такого увеличения не происходит. [c.347]

    Наличие перехода в метастабильное состояние Р явствует непосредственно из наблюдений связанного с переходом (ззбр Р поглощения ртутным паром лпнин X = 4046,6 А при возбуждении резонансного свечения ртути (Л = 2536,5 Л) в присутствии азота, окиси углерода или паров воды (см. [66], 231). [c.163]

    Источники газообразных углеводородов — в первую очередь, природные и нефтяные попутные газы, а также некоторые синтетические газы, полученные при переработке горючих ископаемых (например, термическая и термокаталитическая переработка нефти и нефтепродуктов, термическое разложение — газификация — твердого и жидкого топлив, а также коксование твердого топлива — коксовый газ). В отличие от природных, синтетические газы наряду с алканами содержат также и ненасыщенные углеводороды, значительные количества водорода и др. Природные газы содержат в основном метан и менее 20 % в сумме этана, пропана и бутана, примеси легкокипящих жидких углеводородов — пентана, гексаиа и др. Кроме того, присутствуют малые количества оксида углерода (IV), азота, сероводорода и благородных газов. Многие горючие природные газы, залегающие на глубине не более 1,5 км, состоят почти из одного метана. С увеличением глубины отбора содержание гомологов метана обычно растет. Образование горючих природных газов — в основном результат катагенетического преобразования органических веществ осадочных горных пород. Залежи горючих газов формируются в природных ловушках на путях его миграции. Миграция происходит при статической или динамической нагрузке пород, выжимающих газ, а также свободной диффузии газа из областей высокого давления в зоны меньшего давления. Подземными природными резервуарами для 85 % общего числа газовых и газоконденсатных залежей являются песчаные, песча-но-алевритные и алевритные породы, нередко переслоенные глинами. В остальных 15 % случаев коллекторами газа служат карбонатные породы. Все газовые и газонефтяные месторождения приурочены к тому или иному газонефтеносному осадочному (осадочно-породному) бассейну, представляющему собой автономные области крупного и длительного погружения в современной структуре земной коры. Все больше открывается газовых месторождений в зоне шельфа и в мелководных бассейнах, например Северное море. Наиболее крупные газовые месторождения СССР—Уренгойское и Заполярное — приурочены к меловым отложениям Западно-Сибирского бассейна. [c.194]

    В кислой среде (pH < 4) диффузия кислорода перестает быть лимитирующим фактором и коррозионный процесс частично определяется скоростью выделения водорода, которая, в свою очередь, зависит от водородного перенапряжения на различных примесях и включениях, присутствующих в специальных сталях и чугунах. Скорость коррозии в этом диапазоне pH становится достаточно высокой, и анодная поляризация способствует этому (анодный контроль). Низкоуглеродистые стали корродируют в кислотах G меньшей скоростью, чем высокоуглеродистые, так как для цементита Feg характерно низкое водородное перенапряжение. Поэтому термическая обработка, влияющая на количество и размер частиц цементита, может значительно изменить скорость коррозии. Более того, холоднокатаная сталь корродирует в кислотах интенсивнее, чем отожженная или сталь со снятыми напряжениями, так как в результате механической обработки образуются участки мелкодисперсной структуры с низким водородным перенапряжением, содержащие углерод и азот. Обычно железо не используют в сильнокислой среде, поэтому для практических нужд важнее знать закономерности его коррозии в почвах и природных водах, чем в кислотах. Тем не менее существуют области [c.107]

    Аустенитные стали получили свое название по аустенитной фазе или 7-фазе, которая существует в чистом железе в виде стабильной структуры в температурном интервале от 910 до 1400 °С. Эта фаза имеет гранецентрированную кубическую решетку, немагнитна и легко деформируется. Она является основной или единственной фазой аустенитных нержавеющих сталей при комнатной температуре и в зависимости от состава имеет стабильную или метастабильную структуру. Присутствие никеля в значительной степени способствует сохранению аустенитной фазы при закалке промышленных сплавов Сг—Ре—N1 от высоких температур. Увеличение содержания никеля сопровождается повышением стабильности аустенита. Легирование марганцем, кобальтом, углеродом и азотом также способствует сохранению при закалке и стабилизации аустенита. Аустенитные нержавеющие стали могут упрочняться холодной обработкой, но не термообработкой. При холодной обработке аустенит в метастабиль-ных сплавах (например, 201, 202, 301, 302, 302В, 303, ЗЗОЗе, 304, 304Ь, 316, 316Ь, 321, 347, 348 см. табл. 18.2) частично переходит в феррит. По этой причине указанные стали и являются метастабильными. Они магнитны и имеют объемно-центрирован-ную кубическую решетку. Этим превращением объясняется значительная степень упрочнения при механической обработке. В то же время стали 305, 308, 309, 3098 при холодной обработке слабо упрочняются, и если и становятся магнитными, то в очень малой степени. Сплавы с повышенным содержанием хрома и никеля (например, 310, 3108, 314) имеют практически стабильную аустенитную структуру и при холодной обработке не превращаются в феррит и Не становятся магнитными. Аустенитные нержавеющие стали очень широко применяют в различных областях, включая строительство и автомобильное производство, а также в качестве конструкционного материала в пищевой и химической промышленности. [c.297]

    В описанных выше малоуглеродистых нержавеющих хромо-молибденистых сталях концентрация углерода в некоторых случаях превышает 0,01 %, однако они не подвержены межкристаллитной коррозии благодаря присутствию молибдена, который замедляет диффузию углерода и азота, а также влиянию титана и ниобия, которые (если они входят в состав стали) реагируют предпочтительно с углеродом и азотом. [c.310]

    Шмерлпнг [20 описал получение жидких продуктов полимеризацией этилепа в присутствии перекисей как катализаторов. Он нагревал этилен, разбавленный инертным газом, до 180 в растворе метилциклогексана в присутствии ди-трет-бутилиероксида. При парциальном давлении этилена 40 ат, давлении инертного газа 60 ат и длительности реакции во вращающемся автоклаве 4 часа в зависимости от применяемого инертного газа получают различные количества жидкого полиэтилена. В присутствии азота получают, например, 61 г, а при прочих равных условиях, но в присутствии водорода — 56 г, двуокиси углерода — 50 г, в присутствии метана — 48 г [c.577]

    В холодильнике третьей ступени собирается метан в смеси с некоторым количеством окиси углерода и азота. Конденсат из холодильника второй ступени по содержанию этилена сходен с газом высокотемпературного крекинга, а следовательно, этот конденсат является удобным источником получения этилена. Процесс разделения коксового газа проводят с целью получения чистого водорода, причем этиленовый концентрат является отходом производственных операций. Поэтому стоимость чистого этилена складывается из стоимости этилена, присутствующего в коксовом газе, с небольшой надбавкой и из стоимости его выделения в чистом виде из фракции, сконденсированной во втором холодильнике. Очевидно, такой метод получения этилена можно реализовать на заводах, на которых перерабатывают большие количества коксового газа с целью производства чистого водорода. Этот путь в течение многих лет используют континентальные европей- [c.124]

    Если при протекании реакции в решетку металла внедряются атомы других элементов, имеющие небольшие размеры, происходит образование твердых растворов внедрения, сопровождающееся лишь незначительными изменениями исходной структуры (рис. В.11,2). Особенно часто такие фазы образуют /-элементы IV, V и VI групп, атомы которых достаточно велики, чтобы в октаэдрических или тетраэдрических пустотах решетки металла могли поместиться атомы меньших размеров, например углерода или азота. По типу твердых растворов внедрения построены карбиды (Zr , ТаС, W2 ) и нитриды (ZrN, Nb2N, U2N3), которые получаются при нагревании порошкообразных металлов в атмосфере паров углеводородов, N2 или NH3. Эти фазы также не являются дальтонидами. Например, в фазе V2 o,74-i,o атомы углерода могут занимать —V2 всех октаэдрических пустот при большем содержании углерода образуется новая фаза. Хотя в этих фазах присутствуют атомы неметаллов, металлический тип связи сохраняется. Подобные соединения обладают металлической электропроводностью, отличаются чрезвычайно высокой твердостью и инертностью. Из всех [c.362]

    Химический потенциал каждого компонента и, следовательно, его активность в таких растворах определяются не только его концентрацией, но и концентрациями и свойствами всех других растворенных веществ. Это необходимо учитывать при расчетах равновесий. Например, активность серы, растворенной в жидком железе, зависит от содержания в нем углерода, кремния и т. д. Присутствие С и Si увеличивает коэ< х )ициент активности серы и, следовательно, способствует десульфурации стали, присутствие марганца уменьшает активность серы. Протекание процесса выделения (или растворения) карбидных или нитридных фаз при термической обработке стали определяется при данной температуре активностями образующих эти фазы металлов, углерода и азота, которые в свою очередь зависят от концентрации остальных компонентов твердого раствора. Для упрощения описания равновесий в подобных системах К- Вагнером и Д. Чнпманом были введены так называемые параметры взаимодействия. [c.121]

    В правой части масс-спектра регистрируются два слабых пика с т/Е 131 и 132, один из которых можно отнести к молекулярному иону. Присутствие азота в веществе исключается самим методом его получения, поэтому молекулярная масса должна быть четной, т. е. 132 (ионная серия 6). Из возможных формул кислородсодержащих соединений С7Н16О2 с ФН = О и СвН120з с ФН = 1 наиболее вероятна первая, поскольку сложно представить образование в изучаемой реакции продуктов, содержащих 6 атомов углерода, 3 кислорода и кратную связь. Соединения, содержащие гидроксильные группы (диолы и моноэфиры диолов), исключаются самим характером реакции, поэтому вещество может относиться лишь к диэфирам диолов, в частности геминальных (ацетали и кетали), что подтверждается гомологическими сериями главных осколочных ионов  [c.191]

    В системах, в состав которых входят два неметалла (кроме систем с углеродом и азотом), вследствие значительной разницы в атомных размерах и электронной структуре большей частью наблюдается ограниченная растворимость Ti — С — В, Ti — Si — С и др. Большое практическое значение имеют системы, в которых один из атомов неметалла — кислород, так как он в том или ином виде присутствует либо при осуществлении технологических процессов, либо в атмосфере, в которой эксплуатируются изделия. Так, при углетермическом восстановлении TiOz образуются оксикарбидные фазы Ti Oy, в которых кислород занимает места углерода, а j и г/ изменяются в широких пределах. При постоянном давлении СО содержание кислорода в окси-карбиде уменьшается с повышением температуры. Оксикарбиды титана образуются также от воздействия на карбид Н2О, СО2, СО и окислов металлов при высокой температуре. При углетермическом восстановлении Т10г в присутствии воздуха образуются еще более сложные фазы — оксикарбонитриды Ti .Ny О [9—11, 18, 20]. [c.237]

    С молекулярным азотом графит практически не взаимодействует. Однако взаимодействие с атомарным азотом проходит достаточно легко с образованием цианогена (С Мз), причем константа равновесия уменьшается с повышением температуры. В присутствии добавок водорода продуктом реакции углерода и азота при 800 °С является синильная кислота. При взаимодействии графита с азотом в условиях тлеющего разряда образуется парацианоген хС+ l2xHi = (СМ) . причем реакция проходит лишь в том случае, если образец графита помещен непосредственно в разряд. При наличии а реакционном пространстве следов кислорода или водорода могут образовываться соединения СвМвН4 и ( NO)x. [c.125]

    Значительно труднее восстанаиливаются иитрилы и другие соединения с ненасыщенными связями между атомами углерода н азота. Гидрирование нитрилов ре комендуется проводить в присутствии никеля Ренея Прн этой реакции часто образуются большие количества вторичных ч третичных аминов там, где следовало бы ожидать образования исключительно первичных аминов Это является результатом вторичных реакции, которые Можио предотвратить путем прибавления к смеси амми ака [419] или превращением аминов в ацетилпроизвод-ные [420] или формилпроизводные [421] Лучшие выходы первичных аминов получают, применяя в качестве ката- [c.340]

    Таким образом, присутствие углерода и азота в стали способствует Деформационномуупрочнению и тем самым повышает химический потенциал дислокаций и атомов металла, т. е. создает необходимые условия для механохимического растворения. Кроме того, адсорбция атомов углерода и азота на полигональных субграницах в некоторой мере способствует также увеличению химической активности. Этим, в частности, обусловлено некоторое увеличение [97, 98] скорости коррозии металла, прошедшего низкотемпературный отпуск, по сравнению с неотпущенным полигонизация приводит к увелич ению общей протяженности субграниц с сегрегированными на них атомами примеси (процессы диффузии примесей к субграницам облегчаются нагревом), которые повышают химическую активность этих границ. Однако следует иметь в виду, что сегрегация углерода и азота на субгра- [c.115]

    Таким образом, присутствие углерода и азота в стали способствует деформационному упрочнению и тем самым повышает химический потенциал дислокаций и атомов металла, т. е. создает необходимые условия для механохимического растворения. Кроме того, адсорбция атомов углерода и азота на полигональных субграницах в некоторой мере способствует также увеличению химической активности. Этим, в частности, обусловлено некоторое увеличение [105, 106] скорости коррозии металла, прошедшего низкотемпературный отпуск, по сравнению с неотпущенным полигонизация приводит к увеличению общей протяженности субграниц с сегрегированными на них атомами примеси (процессы диффузии примесей к субграницам облегчаются нагревом), которые повышают химическую активность этих границ. Однако следует иметь в виду, что сегрегация углерода и азота на субграницах повышает скорость коррозии в кислых растворах вследствие снижения перенапряжения водорода на выделениях [107], а не вследствие облегчения анодной реакции. Последняя замедляется из-за понижения энергии, связанной с дислокациями, адсорбировавшими примеси старые дислокации травятся труднее, чем свежие . [c.116]

    Как уже отмечалось выше, присутствие азота в сталях, стабилизированных титаном или ниобием, может ухудшать их стойкость против МКК. Связывая титан и ниобий в малорастворимые нитриды, азот тем самым выводит эти элементы из взаимодействия с углеродом, что требует введения избыточного количества титана или ниобия. Количество свяванного в нитриды титана определяется соотношением Ti/N = 3,3, а ниобия — Nb/N 6,64. [c.55]

    Соединения связанного азота играют огромную роль в жизни растений, жииотных и человека. Для развития растений необходимы углерод, кислород, водород и азот, а также фосфор и калий. Диоксид углерода, присутствующий в атмосфере, и вода удовлетворяют потребности растительного мира в углероде, кислороде и водороде. Атмосферный азот, ресурсы которого огромны, растениями непосредственно не усваивается, а ност> пает из почвы в виде нитратов, аммонийных и амидных солей и перерабатывается растениями в высокомолекулярные азотсодержащие органические соединения — белки. [c.59]

    На рис. 7,3 представлены изотермы адсорбции метана и водорода на угле / -23 при их поглощении из технического водорода, содержащего 15% (об.) примеси — метана [5]. Из графика видно, что адсорбционная способность по метану возрастает с повышением давления, достигая 40 см /г при давлении 2-10 Па (20 кгс/см ). Однако сравнение точек изотермы чистого метана (пунктирная линия) и изотермы метана в присутствии водорода при равном парциальном давлении показывает, что присутствие даже такого плохо сорбирующегося газа как водород значительно (в 2 раза) снижает адсорбционную способность но примеси. Аналогичные выводы сделаны при анализе изотерм адсорбции окиси углерода и азота. [c.170]

    Адсорбируемость двуокиси углерода и серии- 2 стого ангидрида на цеолитах намного превосходит = адсорбируемость кислорода и азота. На рис. 17,22 I представлены изотермы адсорбции сернистого ангидрида на Г-мордеиите [54]. Присутствие азота незначительно сказывается на адсорбционной способности по сернистому ангидриду. В то же время ири наличии двуокиси углерода в газе адсорбционная способность значительно снижается. [c.365]

    Прежде полагали, что многие биополимеры, например из эритроцитов крови человека или слизистых выделений, являются белками, а обнаруживаемые вместе с ними углеводы являются примесью. Однако в 1865 г. при элементном анализе очищенного муцина [3] было установлено, что содержание в нем углерода и азота значительно меньше, чем должно быть в случае белка. При кислотном гидролизе муцина был выделен продукт, который оказался глюкозой. Постепенно стало ясно, что существует ряд природных макромолекул (гликопротеинов), в которых углеводы составляют часть общей структуры. Трудность отделения углеводных молекул от белка без их разрушения (за исключением гликоз-аминогликанов) и тот факт, что гетерополисахариды, присутствующие в одном образце гликопротеина, часто неидентичны, но [c.214]

    В связи с большим сродством титана ко многим элементам получение этого металла представляет значительные трудности. Особенно существенно то, что в металлической фазе растворяются кислород, азот и углерод, присутствие которых даже в незначительных количествах вызывает хрупкость металла в холодном состоянии. Удалить их не удается ни химическим путем, ни посредством спекания или плавления в высоком вакууме. Так, сравнительно легко осуществляемая реакция TiOj с кальцием даже при самом тщательном соблюдении условий ее проведения приводит к получению лишь 98%-ного металла. Поэтому чистый, пластичный на холоду металл может быть получен только с помощью методов, основанных на переработке галогенидов. [c.1414]

    Изотермы адсорбции двухкомноиентных смесей Oj + N и S0-2 + N2 получены для водородной формы морденита для температур от О до 100 °С. На изотерме адсорбции чистой SO2 имеется широкая петля гистерезиса, в то время как адсорбция других газов полностью обратима. В бинарной системе SO3 -f N2 присутствие азота лишь незначительно влияет на адсорбцию очень сильно адсорбирующейся SOj. Изотермы адсорбции азота и двуокиси углерода описываются уравнением Фрейндлиха, а изотерма адсорбции SO2 — уравнением Ленгмюра. Применив эти уравнения, удалось найти корреляцию между изотермами адсорбции смесей и отдельных компонентов. [c.709]

    Значительно большая ясность внесена в область изучения вязкости, вызываемой примесями в ферромагнетике. В этом случае наблюдается зависимость потерь от частоты и напряженности поля. Природа этого вида потерь достаточно хорошо вскрыта Споеком [143], который показал тесную связь магнитной вязкости с присутствием примесей углерода и азота в железе. Он высказал предположение, что в кристаллической решетке железа атомы углерода находятся в центре граней или ребер куба, занимая между атомами железа промежуточное положение. Под действием магнитного поля в кристаллической решетке возникают вызванные магнитострикцией напряжения, которые приводят к перераспределению атомов примесей, сопровождаемому магнитной вязкостью. Зависимость вязкости от содержания примесей определяет релаксационный характер соответствующих потерь. [c.178]

    По схеме, изображенной на рис. 14.7, исходный газ с высоким содержанием водорода, обычно под давлением 10,5—12 ат, поело предварительного охлаждения обратными газами поступает в низкотемпературную секцию. Здесь газ обезвоживается и дополнительно ох.г[а-ждается до —46 С прп помощи обычного аммиачного холодильного цикла. Азот высокой чистоты, получаемый на установке ректификации воздуха, сжимают приблизительно до 210 ат и вместе с исходным газом охлаждают до —46° С. Из схемы рис. 14.7 видно, что охлажденный до —46° С газ проходит сначала через три теплообменника, в которых охлаждается выходящими с установки потоками, а именно испаряющимся метаном, окисью углерода и азотом с низа колонны промывки жидким азотом и азото-водородной смесью, отбираемой с верха колонны. В первом теплообменнике, где температура газа снижается приблизительно до —101° С, конденсируются небольшие количества жидких углеводородов, которые периодически выводятся из системы. Во втором теплообменнике температура газа донолнительно снижается до —146° С. Это приводит к конденсации так называемой этиленовой фракции, в которой присутствуют большая часть этилена, содержавшегося в исходном газе, остаточные количества более тяжелых углеводородов и небольшое количество метана. Этиленовую фракцию испаряют и используют для охлаждения части поступающего азота. В третьем теплообменпике газ охлаждается приблизительно до —179° С в результате испарения метана и смеси окиси углерода с азотом. При этом конденсируются дополнительные количества метана и этилена. [c.363]

    Под цементацией понимают различные процессы. В одном случае цементацией называют процесс насыщения углеродом и азотом поверхностного слоя металла. Его ведут, нагревая металлические изделия в присутствии угля или газообразного монооксида углерода и азотсодержащих веществ. В результате поверхностный слой металла толщиной 0,2—2,0 мм приобретает повышенную твердость. В цветной металлургии термин цементация применяют к процессам выделения (восстановления) металлов из растворов их солей цинком, например кадмия из раствора сульфата кадмия или золота из раствора дицианоаурата(Т) натрия  [c.263]

    Хорнер и Юргенс предложили способ анализа продуктов, содержащих сложные (двух-и многокомпонентные) смеси кислот, надкислот, диацилперекисей, алкилгидроперекисей и диалкилперекисей. Методика анализа основана на том, что дифенил-сульфид разлагает только надкислоты, а триэтиларсин разлагает надкислоты и диацилперекиси до кислот, а алкилгидроперекиси— до спиртов. Если присутствуют все указанные типы перекисных соединений, анализ проводится следующим образом 1) находят общее содержание перекисей нагреванием пробы в течение 30 мин в атмосфере двуокиси углерода или азота с насыщенным раствором иодистого калия и концентрированной соляной кислоты в уксусной кислоте, смесь разбавляют и титруют тиосульфатом натрия 2) обработкой триэтиларсином с последующим титрованием иодом устанавливают суммарное содержание надкислот, диацилперекисей и алкилгидроперекисей 3) действием дифенилсульфида и затем раствором иодистого калия в уксусной кислоте иа холоду в течение 10— 5 мин в атмосфере углекислого газа, с последующим разбавлением и титрованием определяют количество диацилперекисей и алкилгндро-перекисей 4) прямым титрованием 0,1 н. щелочью определяют суммарное содержание надкислот и кислот и 5) обработкой триэтиларсином в течение 15 мин в атмосфере азота и последующим титрованием щелочью получают суммарное содержание кислот, надкислот и диацилперекисей. [c.434]


Смотреть страницы где упоминается термин Углерод в присутствии азота: [c.319]    [c.559]    [c.393]    [c.405]    [c.318]    [c.648]   
Практическое руководство по неорганическому анализу (1966) -- [ c.851 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.779 , c.782 ]




ПОИСК







© 2024 chem21.info Реклама на сайте