Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты эффекта

    В дизельном топливе, содержащем нестабильные фракции вторичного происхождения, при действии растворенного кислорода в условиях хранения и эксплуатации накапливаются низкомолекулярные продукты окисления (гидропероксиды, карбоновые кислоты, альдегиды и т. д.), вступающие в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых медленно коагулирует в нерастворимые соединения. Катализаторами реакций уплотнения являются кислотные продукты, поэтому введение в топливо веществ основного характера (третичных аминов), нейтрализующих кислоты и способных эффективно ингибировать радикально-цепное окисление, оказывает стабилизирующий эффект [11, 43, 46]. Анализ результатов [83-86, 99] свидетельствует, что этим требованиям отвечает основание Манниха ионола (Агидол-3). [c.183]


    Индуктивный эффект быстро уменьшается ири передаче по цепи ординарных углерод-углеродных связей, что можно проиллюстрировать изменением iK соответствующих aj.w.uj-Tpn-фторзамещенных карбоновых кислот  [c.115]

    Из карбоновых кислот самой сильной является муравьиная кислота остальные члены гомологического ряда—довольно слабые кислоты (см. табл. 10). Известно, что алкильные радикалы обладают электронодонорными свойствами (-Ь/-эффект) и тем самым понижают положительный заряд на углероде карбонила. Это и приводит к уменьщению перемещения электронной плотности со стороны гидроксильной группы  [c.145]

    Хорошо иллюстрируют действие / -эффекта замещенные карбоновые кислоты. Если в уксусной кислоте заменить водород метильной группы на галоид, то атом галоида в результате — /-эффекта оттянет на себя облако электронов и сделает более подвижным, лабильным карбоксильный водород, что приведет к усилению кислых свойств молекулы [c.64]

    Падение основности амидов карбоновых кислот вызывается мезомерным сдвигом, поскольку свободная пара амидного азота оттянута на углерод за счет — -эффекта кислорода [c.72]

    Для эталонной реакционной серии — диссоциации ароматических карбоновых КИСЛОТ Гаммет положил значение р = 1. Как видно ИЗ табл. 13, в различных реакционных сериях р варьирует в широких пределах как по знаку, так и по, абсолютной величине. По физическому смыслу константа р характеризует относительную (в сравнении с эталонной серией) чувствительность данного равновесия или реакционного превраш,ения к структурным изменениям в реагирующих соединениях. Изменения констант реакции при переходе от одной реакционной серии к другой обусловливаются рядом факторов типом реакционного превращения, т. е. механизмом реакции степенью передачи электронных эффектов заместителей на реакционный центр условиями протекания реакции. [c.171]

    Водородная связь между кислотой и основанием, например растворителем, двояко влияет на силу кислот. С одной стороны, образование продуктов присоединения поляризует молекулу кислоты и как бы подготовляет ее к дальнейшей диссоциации, но, с другой стороны, образование прочного продукта присоединения уменьшает активную массу диссоциирующей кислоты и тем самым уменьшает ее способность к диссоциации. Энергия, выделенная при образовании продукта присоединения, является результатом выделения энергии при образовании собственно водородной связи и поглощения энергии, затрачиваемой на деформацию связей между водородом и остальными атомами в молекуле, например, затратой энергии на деформацию связи ОН в молекулах фенолов и карбоновых кислот. Выделенная свободная энергия является результатом суммарного эффекта. Так как энергия выделяется, образование водородной связи уменьшает способность кислоты к диссоциации. Большая способность кислот к диссоциации в растворителях, образующих более прочные соединения, является результатом того, что, как правило, эти растворители более основные и характеризуются большей энергией сольватации ионов, и в первую очередь протонов. Большая энергия сольватации компенсирует уменьшение свободной энергии раствора при образовании водородной связи. В результате этого кислоты в таких растворителях диссоциируют сильнее. [c.294]


    Резонансные эффекты. Резонанс, который стабилизирует основание, но не его сопряженную кислоту, повышает кислотность, и наоборот. Примером служит более высокая кислотность карбоновых кислот по сравнению со спиртами  [c.342]

    Положительные величины а указывают на электроноакцепторные группы, а отрицательные — на электронодонорные. Константа р служит мерой восприимчивости реакции к электронным эффектам. Протеканию реакций с положительным значением р способствуют электроноакцепторные заместители, и наоборот. Следующие примеры величин р для ионизации некоторых карбоновых кислот [27 [c.368]

    Карбоновые кислоты являются слабыми кислотами. Наиболее сильной в гомологическом ряду насыщенных кислот является муравьиная кислота, в которой группа СООН связана с атомом водорода. Алкильные радикалы в молекулах следующих членов гомологического ряда обладают положительным индукционным эффектом ( + 1) и уменьшают положительный заряд на атоме. углерода карбоксильной группы. Это в свою очередь [c.579]

    Соединения летия по сравнению с органическими соединениями других щелочных металлов обладают наибольшим антидетонационным эффектом, что ранее в литературе не описывалось. При этом литиевые соли высших изомерных карбоновых кислот обладают антидетонационным эффектом, превосходящим известные литературные данные по соединениям лития. [c.104]

    Наиболее важным нитрозосоединением является азотистая кислота. Аналогичные ей карбонильные соединения — карбоновые кислоты. Как можно ожидать на основании этой аналогии, карбонильная активность азотистой кислоты мала, поскольку частичный положительный заряд атома азота нитрозогруппы в значительной степени компенсируется + -эффектом гидроксильной группы (см. разд. Г, 7). [c.227]

    В неполярной среде (бензол) каталитический эффект добавок карбоновых кислот на реакцию ангидридов с гидропероксидами подавляется [43,44] вследствие слабой ионизации карбоновой кислоты. Влияние [c.301]

    Термодинамика реакций этерификации. Взаимодействие спиртов с карбоновыми кислотами в жидкой фазе протекает практически без какого-либо поглощения или выделения тепла (АЯ = 0). Соответствеино, алкоголиз, ацидолиз и переэтерификация также имею тепловой эффект, близкий к нулю. Следовательно, константы равновесия этих реакций ие зависят от температуры. В отличие от этого, этерификация спиртов хлораигидрндами кислот, а также первая стадия этерификации спиртов ангидридами являются экютермическими процессами. [c.205]

    Как видно из этих данных, тепловой эффект возрастает с повышением глубины окисления, особенно при образовании карбоновых кпслот из углеводородов (реакция 4), при деструктивном окислении парафинов (реакция 6) н ароматических систем (реакция 7). Л1енее экзотермичны процессы образования карбонильных соединений из углеводородов (реакции 2, 3 и 8) и карбоновых кислот пз альдегидов (реакция 5). Тепловой эффект еще заметнее снижается при получении спиртов из углеводородов (реакция 1) и а-оксидов из олефинов (реакция 9), но остается довольно высоким. [c.356]

    Как уже отмечалось выше, уходящие группы X по легкости замещения их на нуклеофильные реагенты можно расположить в следующий ряд Hal > ОН > NH2. Казалось бы, этот ряд можно было бы продолжить влево и дополнить группами, имеющими еще больший отрицательный индуктивный эффект, например NOj и N. В самом деле, имея на атоме, непосредственно связанном с остальной частью молекулы, шачительный положительный заряд, эти группы могли бы в еще большей степени увеличить дефицит электронной плотности на атакуемом атоме углерода и тем самым облегчить протекание реакции нуклеофильного замещения по механизму 5 2. Однако в действительности ни для нитрилов карбоновых кислот, ни для первичных и вторичных алифатических нитросоединений неизвестны случаи вытеснения анионов N или NO2, хотя вытеснение этих групп в виде анионов в условиях проведения реакций нуклеофильного замещения энергетически выгодно. [c.119]

    Реакции с производными карбоновых кислот. Аналогично карбонильной группе в альдегидах и кетонах, в производных карбоновых кислот R OY группа OY (Y = Hal, O OR, OR, NR2. ОМ) способна к присоединению реактивов Гриньяра, Реакционная способность производных карбоновых кислот зависит от величины частичного положительного заряда на атоме углерода карбонильной группы (которая в свою очередь зависит от М- и /-эффектов группы У) и уменьшается в ряду  [c.293]

    Карбоновые кислоты. Строение карбоксильной группы. Одноосновные предельные кислоты. Изомерия и номенклатура. Физические и химические свойства. Индуктивный эффект. Функциональные пройзводные карбоновых кислот галогенангидриды, ангидриды, эфиры, амиды, гидропероксиды и пероксиды. Высшие жирные кислоты (ВЖК). Мыла. Одноосновные непредельные кислоты и их свойства. Двухосновные предельные и непредельные кислоты. Отдельные представители карбоновых кислот. УФ и ИК спектры карбоновых кислот. [c.170]


    Уравнение (4.27) означает, что величина специфического эффекта в скорости ферментативной реакции линейно возрастает с увеличением показателя гидрофобности я субстратной группы R. Это находится в резком диссонансе с данными по модельной реакции щелочного гидролиза этиловых [107—109] или л-нитрофениловых [110—112] эфиров тех же карбоновых кислот, где константа скорости второго порядка практически не зависит от длины алифатической цепи. В ферментативной же реакции с увеличением углеводородного фрагмента в субстратном остатке понижается свободная энергия активации примерно на —600 кал/моль (—2,5 кДж/моль) на каждую СНа-группу [что следует из (4.27)], если учёсть, что значение я для СНа-группы равно 0,5. Найденное значениеЛЛ <7 согласуется с величиной свободной энергии сорбции на активном центре алифатических соединений (см. 4 этой главы). [c.149]

    Отсутствие индукционного эффекта объясняется тем, что в данном ряду соединений при вариации заместителя R слабо изменяется как скорость щелочного гидролиза (в пределах фактора два ), так и величина рТСа соответствующих карбоновых кислот, или же, наконец, значение сг -фактора по Тафту — Ингольду для а-ациламидного заместителя (см. литературу к [129]). Отсутствие стерического эффекта, возможно, обусловлено тем, что химически инертный остов субстратной молекулы, будучи сорбированным и тем самым закрепленным в полости активного центра, либо вообще не вызывает затруднений для атаки ферментным нуклеофилом, либо дает стерический эффект, примерно одинаковый во всем ряду исследуемых соединений  [c.159]

    Успехи органической химии привели к синтезу многих но-еых органических растворителей с большим диапазоном разнообразных свойств, а с развитием лабораторной техники появилась возможность работать с новыми неорганическими растворителями при повышенных и пониженных температурах и без-Доступа влаги. Все это позволило в некоторых случаях замедлить воду, являющуюся до сих пор универсальным растворителем. Особенно часто воду заменяют другими растворителями при кислотно-основноМ титровании. Причинами служат плохая растворимость некоторых веществ в воде, что особенно характерно для многих органических соединений мешающее влияние гидролиза, например, при титровании кислот в присутствии хлоридов или соответственно ангидридов кислот нивелирующий эффект растворителя, из-за которого невозможно Проводить дифференцированное титрование сильных кислот или оснований в их смеся х высокая полярность воды, что-исключает возможность диффренцированного титрования карбоновых кислот в их смесях. Применению неводных растворителей способствовало также создание чувствительных и надежных инструментальных методов индикации точки эквивалентности. [c.337]

    В присутствии солюбилизата раствор ПАВ сохраняет коллоидно-мицеллярную структуру и обладает всеми признаками лиофильных дисперсных систем. Это отличает солюбилизацию от внешне сходного с ней явления гидротроп и и — эффекта повышения растворимости олеофильных веществ в воде в присутствии некоторых добавок (гид-ротропных агентов), которыми могут служить водорастворимые полярные органические вещества (например, соли низкомолекулярных карбоновых кислот, фенолы, пиридин, алкилбензолсульфонаты с короткой алкильной цепью). Гид- [c.69]

    Студентам, изучающим курс органической химии по сокращенному варианту, известны в конечном результате не вое типы функциональных групп и дазке не все функциональные производные карбонильных соединений и карбоновых кислот. Для незнакомых функциональных групп важно уметь быстро находить аналогии с главными классами органических соединений. Для оценки изменения электронного состояния атомов углеродов, входящих в состав сложных функциональных групп, главную роль, конечно, играет анализ электронных эффектов окружающих элементов. Однако для быстрой аналогии с главными типами углеродсодержащих функциональных групп полезно оценивать степени окисления атомов углерода. Соединения с атомами углерода в одинаковой степени окисления, как правило, или относятся к одному и тому же классу органических соединений, или являются функциональными производными одного и того же класса органических соединений. [c.6]

    Этот факт объясняется высокой поляризуемостью пероксидного звена —О—О—. Пероксид водорода — более сильная кислота, чем водя (р/Сд= 12), однако пероксикислоты как кислоты более чем на три порядка елабее соответствующих карбоновых кислот. Этот факт объясняется тем, что в надкислоте неподеленные пары электронов связанных атомов кислорода стремятся выйти из заслоненного положения (гош-эффект), в связи с чем ослабевает мезомерное влияние карбонильной группы на гидроксильную. [c.115]

    Известно немало реакций, скорость (или положение равновесия) которых зависит не только от индукционного взаимодействия реакционного центра с заместителем, но и от их пространственных взаимоотношений. Поэтому возникает необходимость выбора стандартной реакционной серии для вычисления стерических констант заместителей. Удобно в этих целях рассмотреть реакцию кислотного гидролиза эфиров карбоновых кислот. Эта реакция крайне нечувствительна к индукционным эффектам заместителей, что выражается в очень низких значениях реакционной константы р, варьирующих в пределах от —0,2 до +0,5 в зависимости от условий ее проведения. Отсюда можно заклю- [c.178]

    То очень сильно. Очевидно, эффект заключается не столько в размерах радиусов анионов, сколько в характере сольватации анионов кислот различной природы. У ароматических карбоновых кислот заряд в анионе менее локализован, чем у алифатических кислот, а у фенола локализация еще меньше. Следовательно, энергия переноса анионов зависит от характера распределения зарядов в анионах и от величины непо.иярных радикалов ионов. [c.204]

    Их этих данных можно сделать интересные выводы. Незамещенные карбоновые кислоты имеюг порядка 10 ..10 т.е. являются слабыми (рК - между 4-5). Правда муравьиная кислота на порядок сильнес, очевидно, из-за отсутствия алкильных заместителей, обладающих положительным индуктивным эффектом  [c.105]

    Взаимное влияние атомов и групп атомов в молекуле, вызывающее перераспределение электронной плотности, называют индукционным эффектом (обозначается /-эффект). За1лестители, обладающие + /-эффектом, отталкивают связывающую их электронную пару к водороду, что понижает способность иона Н+ к отщеплению. Так, для карбоновых кислот смещение электронной плотности под создействием заместителя X, обладающего Н- /-эффектом, можно представить записью [c.231]

    Даже М (II), Са (II), 5г (II) образуют с комплексонами хелатные комплексы высокой устойчивости Ве (II) — исключение. Координация комплексона осуществляется только через кислород, как с обычной карбоновой кислотой. Азот не координируется, поэтому вклад хелатного эффекта в химическую связь отсутствует и комплекс оказывается непрочным, легко гидролизуется, превращаясь в полимерный малорастворимый гидроксокомплексонат. Причиной аномального поведения Ве (II) по отношению к комплексонам, по-видимому, является малый размер иона Ве2+ и вызываемый им высокий эффект поляризации. Ион Ве2+ слишком сильно стягивает на себя атомы кислорода комплексона это вызывает существенные искажения в пятичленных хелатных циклах и делает их замыкание энергетически невыгодным. [c.44]

    Декарбоксилирование ароматических кислот чаще всего проводят, нагревая их с медью и хинолином. Однако для некоторых субстратов можно использовать и два других метода. В одном из методов нагревают соль кислоты (АгСОО ), а в другом — карбоновую кислоту нагревают в присутствии сильной, часто серной кислоты. Последней реакции способствует присутствие электронодонорных групп в орто- и пара-положениях, а также стерический эффект групп в орго-положениях в случае производных бензола реакция, как правило, ограничена субстратами, содержащими такие группы. Декарбоксилирование по этому методу протекает по механизму с участием аренониевых ионов [395], причем Н+ выступает электрофилом, а СОг — уходящей группой [396]. [c.384]

    Функциональной группой, определяющей химию карбоновых кислот, является карбоксильная группа. Ее можно рассматривать как комбинацию карбонила и гидроксигруппы, влияющих друг на друга путем передачи электронных эффектов. Взаимное влияние этих групп способствует резкому снижению карбонильной актив1юсти и увеличению подвижности водорода в гидроксигруппе. Вследствие этого карбоксил способен отщеплять ион с образованием карбоксилат-аниона. Характерной особенностью данного аниона является его устойчивость. Карбоксильная группа одноосновна. [c.350]

    Результаты исследований синергического эффекта композиции, состоящей из антиокислителя фенольного типа Агидол 12 и моющей присадки на основе амидов карбоновых кислот и полиэтиленполиамина показали, что синергический эффект при действии композиции распространяется на такие эксплуатационные характеристики бензина, как индукционный период, сумма продуктов окисления (СПО) и содержание СО в отработанных газах (ОГ), т.е, синерг изм действия композиционной присадки проявляется одновременно по нескольким показателям, что подчеркивает универсальный характер явления синергизма. [c.114]

    Значительный антидетонационный эффект проявляют соли щелочных металлов с изононилфенолом и высшими изомерными карбоновыми кислотами, причём введение последгшх в состав бензинов позволяет добиться наибольшего эффекта. [c.104]

    Самым характерным свойством фенолов является их слабая кислотность, которая обусловлена тем, что гидроксил связан с ненасыщенным атомом углерода ароматического ядра, т. е. наличием еноль-ной группировки —СН = С(ОН)—. Сам фенол —слабая кислота, (р/Ск=10,0). Он образует соли (феноляты) с едким натром, но не с карбонатом натрия. Такое поведение типично для фенолов, и этим они отличаются от карбоновых кислот, которые реагируют даже с бикарбонатами. Таким образом, если исследуемое ароматическое соединение эастворяется в едком натре лучше, чем в воде, но его растворимость а воде не повышается в присутствии карбоната натрия, то возможно, что оно принадлежит к ряду фенолов. Константы диссоциации замещенных фенолов не подчиняются какой-либо закономерности. ИсклЮ чение представляет ряд нитрофенолов все три мононитрофенола — более сильные кислоты (р/(к = 7,2—8), чем фенол еще зыше кислотность 2,4-динитрофенола (р/(1, = 4,0) и пикриновой кислоты, кислотность которой почти равна кислотности минеральной кислоты. Увеличение кислотности фенолов при введении нитрогрупп обусловлено стабилизацией анионной формы. Стабилизация анионной формы нитрогрупп аналогична подавлению основной диссоциации аминов и точно так же может быть объяснена индукционным и резонансным эффектами. [c.278]

    На стереохимию гидрирования могут оказывать влияние функ-щюнальные заместители в восстанавливаемом соединении, способные взаимодействовать непосредственно с катализатором или носителем ( якорный эффект). Так, гидрирование двойной связи в 1 -бензилоксикарбонил-4-пропилиденпирролидин-2-карбоновой кислоте на платиновом катализаторе приводит в основном к образованию г/г/с-изомера. Следовательно, эта непредельная кислота в ходе реакции адсорбируется на катализаторе большей частью таким образом, что ее карбоксильная группа обращена в сторону, противоположную поверхности катализатора. Чтобы изменить положение молекулы кислоты на катализаторе при адсорбции и тем самым стереонаправленность гидрирования, используют в качестве носителя катализатора не нейтральный пористый материал, как обычно, а основную ионообменную смолу. Благодаря солеобразованию с такой подложкой карбоксильная группа начинает играть роль своего рода якоря, ориентирующего адсорбирующуюся молекулу карбоксильной группой вниз, к поверхности катализатора. Теперь уже атом водорода, перемещаясь от катализатора к С -атому гетероцикла, образует с ним связь с той стороны, в которую обращена карбоксильная группа, т. е. занимает по отношению к ней /1/с-положение, тогда как про пильный заместитель оказывается в трапс-иоШ жении  [c.32]

    Как видно из рис. 50, введение аминов ОДА снижает наибольшую пластическую вязкость, а также статический предел текучести всех модельных систем. Это особенно ярко проявляется на моделях Ai и. Мз, имитирующих I и П1 тип дисперсной структуры. Для этих систем снижение вязкости и предела текучести наблюдается при введении малых количеств (0,3—0,5%) ОДА и далее продолжается во всем диапазоне исследуемых концентраций (до 2—2,5%). Следует отметить, что при введении около 1,5—2,0% ОДА предел текучести становится очень малым, что свидетельствует о практическом исчезновении твердообразных свойств системы. Для системы Мг (И тип дисперсной структуры) действие ОДА проявляется менее заметно и лишь при малых концентрациях добавки (0,5%). Дальнейшее увеличение ее количества практически не изменяет вязкости системы. Следовательно, при наличии коагуляционной структурной сетки из асфальтенов Му и М ) добавка, адсорбируясь на лиофоб-кых участках их поверхности с блокировкой контактов, способствует стабилизации системы. В моделях М2, где отсутствует коагуляционный каркас из асфальтенов, адсорбция добавки приводит к дезагрегации и исчезновению отдельных малочисленных образований из асфальтенов. Растворение ОДА в углеводородной среде приводит также к общей пластификации системы, сопровождающейся уменьшением числа асфальтенов в единице объема. Пластифицирующее воздействие на битумы различных структурных типов оказывает добавка высших карбоновых кислот — госсиполовая смола, снижающая пластическую вязкость и статический предел текучести. Пластифицирующий эффект увеличивается с повышением количества ПАВ в битуме, что наблюдается для всех модельных систем. Следует, однако, отметить, что в случае дисперсных структур М и Мз введение добавки ГС до 2% практически не изменяет значений пределов текучести, тогда как наибольшая пластическая вязкость при этом уменьшается. Это указывает на нарушение иространствен-ной сетки асфальтенов пластификатором без полного разрушения каркаса. Дальнейшее повышение концентрации ГС способствует превращению систем М] и ТИз в структурированную и далее истинную жидкость. [c.211]

    Прн радикальном галогенировании довольно сильное направляющее -действие оказывают функциональные группы, такие как карбонильная и эфирная. Простые эфиры обычко хлорируются в а-положенне к эфирной связи, по-виднмому, иа-за пониженной энергии а-связи С—Н. Карбонильные группы сложных эфиров н карбоновых. кислот наирав-ляют хлорирование в р- и -у-лоложения, вероятно вследствие индуктивного эффекта, из-за которого атака электрофильным атомом хлора по -положению становится неблагоприятной. Радикальное галогеннрова-ние молекул, в которых присутствуют такие функциональные группы, [c.471]

    Кислотность ароматических карбоновых кислот почти не зависит от резонансных эффектов (табл. 19-3). Это связано с тем, что нельзя нарисовать такпе резонансные структуры, в которых отрицательный заряд карбоксилат-анпона переходил бы иа ароматическое кольцо. Любая попытка сделать это приводит к разрыву связи между кольцом и карбоксильной группой  [c.109]


Смотреть страницы где упоминается термин Карбоновые кислоты эффекта: [c.318]    [c.227]    [c.96]    [c.105]    [c.196]    [c.349]    [c.391]    [c.270]    [c.57]    [c.269]    [c.1397]   
Общий практикум по органической химии (1965) -- [ c.366 ]




ПОИСК







© 2025 chem21.info Реклама на сайте