Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции в растворе влияние растворителя

    Знание дипольного момента имеет существенное значение при исследовании структуры соединений, поскольку он является мерой полярности (т. е. электрической асимметрии) молекулы. Благодаря этому облегчается возможность количественной интерпретации таких физических характеристик, как растворимость, свойства растворов, влияние растворителя на скорость химических реакций и отклонения от законов идеальных газов. [c.46]


    Следует иметь в виду, что в реакциях замещения дефицит энергии, возникающий при разрыве связей, покрывается не только за счет образования связи углерод - нуклеофил, но и в значительной степени в результате сольватации, так как все рассмотренные реакции проводятся в растворах. Влияние растворителя на скорость 5 у2-реакций зависит от того, есть ли заряд на реагирующих частицах. Самый обычный случай - реакция между анионом, выполняющим роль нуклеофила, и нейтральной молекулой (например, реакция гидролиза метилбромида щелочью). При этом заряд, первоначально сконцентрированный на анионе, в переходном состоянии (образование которого определяет скорость замещения) распределяется между анионом и уходящей группой  [c.132]

    Развитие теории кислот и оснований (главным образом в работах Бренстеда, Лоури, Измайлова и Льюиса) привело к выводу о том, что по существу все реакции, протекающие по ионному и донорно-акцепторному механизмам, являются каталитическими. Этот вывод относится к реакциям в любой фазе, но Б особенности к процессам, происходящим в растворах. Влияние растворителя на скорость реакции, в свое время подмеченное Меншуткиным, обусловливается его каталитическим участием в кислотно-основном взаимодействии по Бренстеду и Измайлову (стр. 345), а также в образовании молекулярных соедине- [c.370]

    Был установлен чрезвычайно важный факт влияния индивидуального характера растворителя на состояние ионов в растворах. Влияние растворителя также сказывается на направлении реакций. Нанример, хорошо известная химикам-аналитикам реакция взаимодействия водных растворов сероводорода с элементарным иодом, сопровождающаяся окислением сульфид-ионов в элементарную серу  [c.292]

    В табл. VII, 4 приведены данные для трех различных реакций в растворах. Влияние растворителя на скорость реакции весьма значительное для первой приведенной реакции замена бензольного раствора ацетоновым приводит к увеличению скорости в 30 раз, а для второй реакции замена нитробензола бензиловым спиртом увеличивает скорость в 270 раз. Влияние растворителя на энергию активации менее заметно, но все же максимальная разность для второй реакции составляет 1380 кал. Весьма существенны значения стерических множителей наибольший из них имеет величину порядка 10 а остальные — величины порядка 10-8. [c.177]

    Роль растворителя в реакциях протолиза. Влияние растворителя на протолитические равновесия наиболее значительно тоща, коща сам растворитель активно участвует в процессе переноса протона. Чем сильнее основные свойства растворителя, чем сильнее он акцептирует протон, тем больше значение Кк протолита. Так, очень слабая в воде кислота H N в таком растворителе, как жидкий аммиак, становится сильной кислотой H N + ЫНз(ж) NHI + N . В жидком МНз сильными кислотами будут H2S, СНзСООН и другие слабые кислоты. Кислоты, сильные в водном растворе, останутся сильными и в жидком аммиаке. В его среде различия в силе кислот исчезают из-за большого сродства к протону молекул NH3. Такое влияние на протолиз растворителей получило название выравнивающего или нивелирующего действия растворителя. [c.180]


    Очень многие химические реакции, в том числе технически и жизненно важные, протекают в жидких растворах. Растворами называются гомогенные смеси переменного состава. Растворителем называют компонент, концентрация которого выще концентрации других компонентов. Растворитель сохраняет свое фазовое состояние при образовании растворов. В последние годы все более щирокое применение находят неводные растворители, например пропиленкарбонат, тетрагидрофуран, диметилсульфоксид, ацетонитрил и уксусная кислота. Так как на равновесие и кинетику этих реакций оказывает влияние растворитель, то процессы в растворах имеют свои особенности, поэтому рассматриваются в отдельной главе. Способы выражения концентрации растворов были указаны в гл. 4 и приложении 1. Кроме растворов в настоящей главе рассматриваются дисперсные, в том числе коллоидные, системы и реакции обмена ионами между твердым телом и жидкостью (ионообменные реакции). [c.204]

    Экспериментальное измерение дипольных моментов имеет очень большое значение для понимания структуры молекул. Определение дипольных моментов в большой степени помогает интерпретировать растворимость, свойства растворов, отклонения от законов идеальных газов и идеальных растворов, влияние растворителей на скорость реакции. [c.536]

    Каталитические реакции очень разнообразны. Во многих реакциях каталитическое влияние проявляется в скрытой форме. Сюда прежде всего относятся реакции в растворах. Как мы видели, поляризация, диссоциация и ионизация веществ в растворах — виды активации веществ — происходят под действием растворителя, который, очевидно, играет в этом случае роль катализатора. Большое влияние на скорость и направление процессов оказывают ионы ОН3 и ОН.  [c.206]

    Чтобы наблюдать вполне определенное влияние растворителя, лучше всего было бы перейти к реакциям более высоких порядков. Так, для реакции третьего порядка п ----- 3, 450. Представляется довольно странным, что нельзя найти примеров реакции третьего порядка, изученных в газовой фазе и в растворе. Реакции N0 с Og, Glj или Big являются реакциями третьего порядка в газовой фазе, и их изучение в растворе могло бы оказаться очень интересным и полезным. [c.434]

    Приведенные формулы и расчеты с достаточной очевидностью свидетельствуют о неприменимости к ионным реакциям расчетов как по простой теории столкновений, так и по теории столкновений с учетом клеточного эффекта. Особенности ионных реакций стали очевидны уже давно, и соответственно были теоретически проработаны некоторые аспекты этой проблемы. Важнейшими из них являются влияние растворителей на скорость ионных реакций, а также влияние обш,ей концентрации ионов в растворе (ионной силы). Рассмотрим сначала первую задачу, следуя Скэтчарду [141. [c.35]

    В жидкой среде катализ протекает по гетерогенно-гомогенному механизму значительно чаще, чем в газовой. Это происходит по ряду причин 1) вследствие большей скорости, чем в газовых средах гомогенной некаталитической реакции, интенсивность которой часто бывает соизмерима с гетерогенной реакцией на твердых катализаторах 2) в жидких средах нередко катализатор -выступает лишь как возбудитель цепной радикальной реакции, которая продолжается гомогенно в растворе 3) вследствие влияния растворителя. [c.53]

    Влияние растворителя изучалось в работе [7], где приводятся данные по исследованию кинетики превращения глюкозы в водно-спиртовых растворах (вода — этанол и вода — изопропа-нол) в присутствии различных катализаторов. Так, например, в присутствии катализатора 5% Ни на А Оз с добавлением к воде этанола (до 40%) скорость гидрогенизации возрастает. Увеличение концентрации этанола выше 40% практически не сказывается на интенсивности процесса. Повышение скорости реакции с добавлением этанола объясняется ростом воспроизводства водорода в растворе и уменьшением растворимости глюкозы (что способствует высаливанию ее на поверхности катализатора). По мере добавления изопропанола (до 40%) скорость реакции уменьшается, а затем увеличивается, проходя через небольшой экстремум (60%). [c.71]

    При рассмотрении реакций в растворах нужно учитывать влияние растворителя на реагирующие частицы, так как при эюм изменяются энергия активации, стерический фактор и трансмиссионный коэффициент в кинетических уравнениях. [c.350]

    К наиболее сильным взаимодействиям между частицами в растворе относятся взаимодействия между ионами, между ионами и диполями, а также между диполями. Поэтому при взаимодействии полярных или заряженных частиц наблюдается наиболее резкое влияние растворителя на скорость реакции. Значение константы скорости реакции между ионами зависит от ионной силы раствора (первичный солевой эффект). С увеличением ионной силы раствора [c.350]


    Каково влияние растворителя на энергию активации, если данную реакцию можно провести и в газовой фазе и в растворе  [c.76]

    Реакции нуклеофильного замещения проводят в растворах, поэтому выбору растворителя придается большое значение. Влияние растворителя на протекание и механизм реакций нуклеофильного замещения в значительной степени зависит от его сольватирующей способности и особенно от способности к специфической сольватации, приводящей к образованию водородных связей и донорно-акцепторных комплексов. [c.95]

    О влиянии растворителей на потенциалы полуволн имеется еще мало экспериментальных данных, но и они говорят о том, что следует учитывать изменение характера восстановления и изменение состояния вещества под влиянием растворителей. Изменение потенциала полуволн в неводных растворах зависит от изменения нормального потенциала восстанавливающего вещества изменения падения потенциала в растворе с изменением сопротивления раствора изменения pH раствора изменения потенциала анода или межфазового потенциала, если полярографирование ведется с вынесенным анодом изменения характера восстановления в связи с различием в химических реакциях между восстанавливающимся веществом и фоном, в частности растворителем, а также в связи с влиянием растворителя на равновесие различных форм восстанавливающегося вещества. [c.466]

    Элементы теории катализа. Для объяснения механизма действия катализаторов обратимся к теории переходного состояния. Специфические свойства активированного комплекса определяют скорость процесса, состав продуктов, степень влияния на процесс различных факторов. Активированный комплекс находится в равновесии как с реагентами, так и с продуктами реакции. В общем случае в его состав могут входить и посторонние вещества, например растворитель при взаимодействиях в растворах. (Этим и объясняется влияние растворителя на скорость реакций). Катализаторы также могут участвовать в формировании промежуточных соединений, при распаде которых происходит образование продуктов реакции и регенерация катализатора, хотя его физическое состояние может измениться. Активированный комплекс, образовавшийся при участии катализатора, естественно, отличается по строению и свойствам от комплекса, образованного только молекулами реагентов. Вследствие различия в структуре и свойствах этих комплексов изменяется энергия и энтропия активации. Это, в свою очередь, может стать причиной того, что в присутствии катализатора образуются одни продукты, а без него другие. В-третьих, из одних и тех же реагентов могут получиться разные продукты, так как различные катализаторы с одними и теми же реагентами образуют неодинаковые активированные комплексы. [c.156]

    Практическое осуществление многих реакций в жидких растворах более удобно и эффективно, чем проведение их в газообразном или твердом состояниях. Это связано как с особенностями жидкого состояния, так и влиянием растворителя на реагирующие вещества. При обычных условиях концентрации реагирующих веществ в жидких растворах по сравнению с газообразным состоянием могут изменяться в широких пределах, определяемых их растворимостью. Для жидкого состояния по сравнению с твердим доступ реагирующих веществ друг к другу значительно легче. Влияние растворителя на реагирующие вещества связано с явлением сольватации. Причем растворитель выступает не только как среда, в которой происходит процесс, но и как активный химический реагент. С точки зрения влияния на скорость химической реакции растворитель является своеобразным катализатором активных частиц, регулятором числа столкновений и прочности связи между взаимодействующими в растворе атомно-молекулярными объектами и т. п. Таким образом, химические процессы в растворах протекают в условиях сложного влияния на них природы растворителя. [c.207]

    Влияние растворителя на тип реакции (элиминирование и замещение). С увеличением полярности растворителя возрастает доля реакций 5к2 за счет реакций Е2. Классическим примером является использование спиртового раствора КОН для осуществления элиминирования и более полярного водного раствора КОН для замещения. Рассмотрение распределения зарядов, подобное описанному в т. 2, разд. 10.14 [115], может служить только частичным объяснением этого явления. В большинстве растворителей реакции 8м1 преобладают над реакциями Е1. Последние наиболее конкурентоспособны в полярных растворителях, являющихся слабыми нуклеофилами. [c.36]

    Каталитическое влияние растворителя идет главным образом по линии расслабления связей в реагирующих молекулах, вследствие чего они и становятся более реакционноспособными. Но чем полярнее молекулы растворителя, тем сильнее их влияние на частицы растворенных веществ. Поэтому реакции в растворах протекают, как правило, тем быстрее, чем полярнее растворитель. [c.346]

    При четко определенной лимитирующей стадии процесса становится возможным надежно определять влияние природы растворителя на скорость реакций каталитического гидрирования в растворах. В зависимости от лимитирующей стадии процесса четко проявляется воздействие двух основных факторов 1) изменение энергии связи водорода с поверхностью под влиянием растворителя и 2) изменение коэффициента распределения гидрируемого вещества между раствором и поверхностью катализатора. [c.201]

    На скорость химической реакции влияют многие факторы концентрация реагирующих веществ, их природа, температура, природа растворителя (если реакция протекает в растворе), присутствие катализаторов, в случае газовых реакций оказывает влияние на скорость и давление. [c.112]

    Наиболее сложным и наименее изученным в числе рассматриваемых вопросов является, пожалуй, вопрос о влиянии давления на скорость ионных реакций. Реакция НВг HBrOg = = НВгО + НВгОз изучалась в водном растворе при давлениях до 1500 атм [68]. Оказалось, что эта реакция не ускоряется, а замедляется при повышении давления. Рассчитанная из кинетических данных величина Av положительна (от 2,3 до 3,0-см /моль при 15 и25°). Возможно, что в данном случае замедление реакции объясняется влиянием растворителя [59]. В этой реакции четыре иона образуют две молекулы слабых электролитов, так что образование переходного состояния может сопровождаться освобождением от связанного с ионами растворителя. Происходящее при этом увеличение объема может незначительно превысить ожидаемую убыль объема, что и приведет к торможению реакции при повышении давления. [c.129]

    Нойес и Ламп [93] изучили поведение К п аллилиодида А1 в растворе, содержащем ингибитор (растворенный кислород), который реагирует с атомами I и таким образом конкурирует с рекомбинацией. Они показали, что квантовый выход реакции расходования или А1, который характеризует реакцию с ингибитором, увеличивается с уменьшением молекулярного веса растворителя и с увеличением температуры в соответствии с моделью клеточного эффекта. К сожалению, такие результаты сами по себе недостаточны для однозначного выделения клеточного эффекта из других возможных видов влияния растворителя на фотолиз. [c.466]

    Особое внимание Меншуткин уделил вопросу о влиянии растворителя на скорость реакции. Он установил два факта во-первых, эти реакции сказались кинетически бимолекулярными, как это и следует из стехиометрического уравнения во-вторых, скорость каждой данной реакции в значительной мере зависит от химической природы растворителя. Применение к реакциям Меншуткина теории столкновений сразу позволило установить чрезвычайно интересный факт только небольшая доля актив ных столкновений приводит к реакции. В качестве примера рас считаем эффективный диаметр столкновения для реакции вза имодейстБИя триэтиламина с бромэтаиом в растворе ацетона Экспериментально для этой реакции получено следующее зиа чение константы скорости = 8,5 л1моль - сек. Отсюда [c.188]

    Влияние среды. Большое влияние на скорость химических процессов оказывает среда, в которой протекает процесс. Так, скорости реакций взаимодействия галоидалкилов с третичными аммониевыми основаниями в различных средах различаются на 3—4 порядка. Эти реакции получили название реакций Меншуткина, по имени автора, впервые проведшего обширные исследования влияния растворителя на скорость таких реакций. Например, скорость реакции СгН + + ( гH5)зN-i- (СгН )4М1 в нитробензоле почти в 3000 раз больше, чем в гексане. Скорости многих реакций зависят от состава смешанных растворителей, присутствия электролитов, pH растворов и др. [c.530]

    Процесс хлорирования осуществляют периодически или непрерывно, причем в обоих случаях очень важен способ отвода большого количества тепла. Раньше считалось, что хлорирование бензола следует проводить при возможно низкой температуре, и тепло отводили за счет охлаждения реакционной смеси водой, что лимитировало производительность аппарата. Затем нашли, что температура не оказывает существенного влияния на состав продуктов, и процесс стали проводить при 70—100°С, отводя теило более эффективным способом — за счет испарения избыточного бензола прн помощи обратного конденсатора. Такой же метод применяют для хлорирования более высококипящих веществ, когда процесс ведут в растворе легкокипящего растворителя (например, в растворе 1,2-дихлорэтана). В этих случаях оформление реакционного узла аналогично изображенному иа рис. 37,е (стр. 114), причем для подавления побочных реакций более глубокого х.юрирования целесообразно секционировать колонну тарелками. [c.138]

    В условиях промышленных процессов в результате химических реакций и влияния физических параметров их протекания изменяются как концеитрация асфальтенов в растворе, так и свойства растворителя, что приводит к сложному влиянию условий процесса на образование кокса. Основными являютч я следующие случаи. [c.123]

    Следует подчеркнуть, что сольволиз отрт-бутилхлорида является весьма показательной иллюстрацией отсутствия какой бы то ни было общей закономерности в зависимости константы скорости реакции в растворе от диэлектрической постоянной растворителя. Это реакция является довольно редким примером процесса, в малой степени осложненного специфическими взаимодействиями реагента с растворителем (образованием водородных связей, кислотно-основными взаимодействиями и др.). Естественно, что при наличии специфици-ческих взаимодействий неэлектростатического характера между реагентом и растворителем вообще нет оснований ожидать корреляции между влиянием растворителя на скорость реакции и его диэлектрической постоянной. [c.120]

    Таким образом, несмотря на различия в способах измерения количества продукта реакции, между отдельными методами первой группы имеется много общего в вопросах методики изучения и использования химической реакции значение произведения растворимости осадков в весовом анализе аналогично значению констант диссоциации окрашенных соединений в колориметрии много общего также в вопросах влияния кислотности раствора, неводных растворителей, посторонних реагирующих и не реагирующих веществ, постоянства состава продукта реакцип и т. д. Иногда колориметрический анализ необоснованно относят к другим группам, например к ( )изико-химиче-ским или к аппаратурным . Однако очевидно, что колориметрически анализ не более физичен по своей сущности, чем весовой (или объемный), а аппаратура колориметрического анализа обычно не более сложна или точна, чем аналитические весы. [c.24]

    Теоретическое исследование кинетики и механизма химических реакций в растворах — намного более сложная задача по сравнению с исследованием газовых реакций, поскольку р растворах реагирующие вещества могут взаимодействовать с растворителем (следует учитывать влияние диэлектрической проницаемости растворителя, степень гидратации, присутствие посторонних компонентов и т. д.). Существует много различных типов реакций в растворах для некоторых из них влиянием растворителя мож но пренебречь (особенно в тех случаях, когда используются неполярные растворители). При некоторых условиях участники реакции взаимодействуют с такой же скоростью, как и в газах, как, например, при разложении N205. Существенным фактором является число столкновений между молекулами реагирующих веществ в растворе (включая растворитель). Дебай и Рабинович провели оценку числа столкновений в растворе, согласно которой оно примерно в три раза больше, чем в газовой фазе. Это согласуется с экспериментальными данными, также подтверждающими, что фактор столкновений для реакций в растворах увеличивается примерно в три раза. Так как энергия активации практически не меняется, скорость реакций в растворе также увеличивается в три раза по сравнению с газовыми реакциями. Для реакций в растворе характерна также небольшая подвижность реагирующих частиц (по сравнению с реакциями в газовой фазе). Для цепных и других реакций, в которых появляются Б качестве промежуточных частиц радика- [c.183]

    R--t-( eH6hN- - RN( eH6)j Большое число радикальных реакций проводится в газовой фазе. При проведении радикальных реакций в растворах природа растворителей сказывается иа кинетике этих процессов в значительно меньшей степени, чем на кинетике реакций, протекающих по ионному механизму. Олнако в ряде случаев растворитель оказывает заметное влияние на селективность процесса. Так, например, при свободнорадикальном хлорировании 2,3-диметилбутана замена [c.148]

    Влияние растворителя. Сущность влияния растворителя на скорость реакции в общем случае обусловлена как ван-дер-ваальсовым, так и дисперсионным взаимодействием, электростатическим взаимодействием между ионами и диполями, а также сольватацией растворителем молекул исходных реагентов, активированных комплексов и продуктов реакции. Перемена растворителя вызывает изменение константы скорости, параметров уравнения (II.90), а в отдельных случаях и порядка реакции. Требуется установить количественную связь между характеристиками процессов образования активированного комплекса и свойствами растворителя. Задача эта весьма сложна и в общем виде далека от решения. Не представляется возможным оценить энергию каждого из видов взаимодействий в растворах — как реагентов (между собой), так и активированных комплексов и продуктов реакций с растворителем. [c.152]

    Можно было предположить, что молекулы растворителя дезактивируют активные молекулы и тем понижают число эффективных столкновений. Это связывали с тем, что молекулы реагирующих веществ, обладающие изобыточной энергией, в растворах легко передают эту энергию молекулам растворителя и становятся неактивными. Это простое и, на первый взгляд, убедительное объяснение не выдержало экспериментальной проверки. Было, установлено, что целый ряд реакций, медленно протекающих в растворах, также медленно осуществляются и в газовой фазе. Следовательно, с точки зрения эффективных столкновений растворитель влияния не оказывает. И это вполне естественно, так как среди молекул растворителя имеются активные молекулы, которые могут передавать свою энергию молекулам реагирующих веществ. Растворитель, не вступающий в химическое взаимодействие с реагирующими веществами, не может менять существенно число эффективных столкновений, и медленность реакции не объясняется влиянием растворителя, хотя растворитель и может влиять на направление соударений. [c.17]

    Полимеризация в растворе проводится при нагревании и перемешивании (вместе с растворенным инициатором или катализатором). В результате реакции пелучается полимер с малой полидисперсностью (т. е. с макромолекулами, имеющими в основном одинаковую степень полимеризации), что является значительным преимуществом полимеризации в растворе по сравнёнию с блочным методом. Однако существенный недостаток метода заключается в том, что образующиеся полимеры имеют меньший молекулярный вес, чем при блочной полимеризации, из-за возможности легкого обрыва цепи полимеризации под влиянием растворителя. Степень полимеризации в этом случае зависит от температуры, количества инициатора, характера растворителя и концентрации мономера в смеси. [c.376]

    Однако в любом случае изменяются термодинамические свойства и подвижность реагирующих веществ, когда они находятся в растворе. Поэтому в зависимости от природы растворителя одна и та же реакция имеет разные скорости. Влияние растворителя на кинетику реакций определяется различием между природой газовых смесей и растворов веществ в конденсированных фазах. Близость кинетических закономерностей в двух конденсированных фазах (твердой и жидкой) объясняется упорядоченностью частиц в кристаллах, которая в определенной степени сохраняется и в жидкостях. В противоположность газам, где реакции проходят при столкновении свободно двигающихся по всему объему молекул, в конденсированных фазах, в частности в жидкостях, свободный объем очень мал. Поэтому движение молекул реагирующих веществ ограничено объемом некоторой ячейки или клетки, в которую они заключены, и образованной молекулами растворителя. Частица растворенного вещества может вырваться из своего окружения и вступить в реакцию лищь после большого числа тепловых колебаний. Вероятность ш такого выхода зависит от частоты тепловых колебаний V и должна быть равна или больше некоторого энергетического барьера Е, т. е. l 7=ve-E/ г [c.451]

    Реакции между ионами, особенно в водных растворах, протекают с очень большими скоростями. Для того, чтобы судить о влиянии растворителя на их скорости сопоставляют такие реакции со скоростями в газовой фазе. Это является трудной экспериментальной задачей, так как необходимо обеспечить присутствие нонов в газовой фазе. В качестве примера приведем реакцию С1г+СНзВгг- -СНаС1г+ + ВГг. [c.452]

    Суммарный эффект от взаимодействия оксидата с породой определяется следующими факторами влиянием растворителя, вьщелением тепла при реакции с породой, вьщелением СО2, образованием ПАВ и, наконец, увеличением вязкости вытекающего агента. Растворы оксидата снижают также набухающую способность рассмотренных типов глин (каолинит, бентонит) по сравнению с набуханием их в пластовой и водопроводной воде. С увеличением концентрации монокарбоновых кислот набухание глин уменьшается [17], Оксидат обладает повышенной бактерицидной активностью, обеспечивающей полное подавление сульфатвосстанавли-вающих бактерий при низких концентрациях (на 80-100% при концентрациях 0,001-0,05 мас.%). [c.17]

    Продукт присоединения II протонируется присутствующей в растворе кислотой (часто это протонирование идет уже под влиянием растворителя). В молекуле имеется два центра с -основными свойствами. Протонирование В вызывает сдвиг равновесия в сторону обратной реакции [см. схему (Г.7.8)] и поэтому не представляет интереса. Протонирование же гидроксильного кислорода приводит к образованию ониевого иона III, который тут же обратимо стабилизуется путем отщепления воды и образования карбоний-оние-вого иона IV с делокализованным положительным зарядом Из этого иона, образуется, как обычно (см. разд. Г, 2 и Г, 3), путем элиминирования протона или присоединения находящегося в растворе основания нейтральный конечный продукт реакции [см., например, схемы (Г.7.10), (Г.7.12), (Г.7.21)]. [c.55]


Смотреть страницы где упоминается термин Реакции в растворе влияние растворителя: [c.681]    [c.46]    [c.52]    [c.184]    [c.117]   
Успехи общей химии (1941) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции в растворах



© 2025 chem21.info Реклама на сайте