Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление паров элементов и соединений

    Интересно, что знак эффективного заряда позволяет предсказать вид проводимости чистого бинарного соединения, приготовленного при атмосферном давлении, если известно давление паров элементов соединения при его температуре плавления. Так, в бинарных [c.169]

    Разряд обычно осуществляют в Не, так как Аг способствует более сильному распылению и поступлению в разряд бинарной основы. Навеска пробы составляет 5—10 мг. Эталоны готовят добавлением определяемого элемента к специально очищенному соединению. Пределы обнаружения избыточных элементов тем ниже, чем больше давление их пара по сравнению с давлением пара основного соединения. В селениде кадмия определяют [c.197]


    Давление пара элемента или соединения [c.6]

    Кроме того, многие из этих соединений диссоциируют при повышении температуры, а при плавлении давление паров элемента V группы достигает десятков атмосфер. Термическая неустойчивость является, по-видимому, следствием смешанного типа химических связей в соединениях А В . Поскольку с технологической точки зрения термическая неустойчивость соединений является определяющим фактором оформления процессов синтеза и получения монокристаллов, целесообразно разделить все соединения А В " на три группы  [c.455]

    Молекулы галогенидов ЭРв имеют структуры октаэдров с атомом Э в центре [ (SeF) = 1,69 А, / (SeF) =5,5, d(TeF) = 1,82 А]. Подобно SFe, шестифтористые сален и теллур характеризуются высоким давлением паров в твердом состоянии (т. возг. соответственно —46 и —39 °С). Поэтому их точки плавления (—35 и —37 °С) могут быть определены лишь под повышенным давлением. Образование обоих соединений из элементов сопровождается значительным выделением тепла (246 и 315 ккал/моль). [c.359]

    Если элемент способен проявлять переменные степени окисления, все эти степени окисления могут быть реализованы в галогепидах в зависимости от условий (температура, давление пара галогена и его окислительная активность). Таким образом, галогениды также следует отнести к характеристически.м соединения элементов, по- [c.68]

    Закон постоянства состава. Состав молекулярного соединения остается постоянным независимо от способа его получения. В отсутствие молекулярной структуры в данном агрегатном состоянии его состав зависит от условий получения и предыдущей обработки. Возьмем, к примеру, аммиак. Независимо от способов получения (прямой синтез из элементов, разложение аммонийных солей, действие кислот на нитриды активных металлов и т. п.) состав молекулы аммиака всегда постоянен и неизменен на атом азота приходится 3 атома водорода. А для оксида титана (2-[-) состав соединения зависит от условий получения температуры и давления пара кислорода. В молекуле аммиака, состоящей лишь из четырех атомов, исключается изменчивость состава. Оксид же титана (2-f) представляет собой фазу, состоящую из огромного числа атомов (порядка постоянной Авогадро), которая и определяет свойства этого соединения. Это— ярчайший пример перехода количества в качество коллектив из колоссального числа частиц обладает уже новым качеством — непостоянством состава. [c.24]


    Для галогенов характерно образование соединений, отвечающих промежуточным степеням окисления элементов. При этом повышение температуры, как пра-ви.по, способствует термической диссоциации высших галогенидов, что приводит к понижению степени окисления катионообразователя. Например, хлориды платины в зависимости от температуры существуют в следующих формах (под давлением пара галогена 1,013-10 Па)  [c.271]

    Измерены энтальпии ферментативного гидролиза крахмала амилазой при 310 К в широкой области концентраций реагентов. Определена теплоёмкость в области 5 - 300 К ряда производных элементов V группы со связями элемент - азот и некоторых алкильных соединений элементов той же группы. Определена также температурная зависимость давления пара и соответственно вычислены термодинамические характеристики парообразования некоторых из изученных соединений. [c.134]

    Формамид обладает необычной диэлектрической постоянной (110), существенно превосходящей диэлектрическую постоянную воды. Этот растворитель находится в жидком состоянии в удобной для работы области температур (2,5-193 °С) и имеет низкое давление паров при комнатной температуре. По вязкости он превосходит ДМФ (3,3 сП по сравнению с 0,80 сП для ДМФ). В отличие от ДМФ формамид лишь эпизодически применялся в качестве растворителя электролитов, причем область рабочих потенциалов в формамиде оказалась уже, чем в ДМФ. Более высокая диэлектрическая постоянная вообще не дает особых преимуществ формамиду перед ДМФ, так как диэлектрическая постоянная последнего также достаточно велика, чтобы обеспечить адекватную проводимость растворов. В основном с помощью формамида можно варьировать условия опыта путем изменения определенных свойств растворителя. Формамид - хороший растворитель для различных неорганических соединений, включая хлориды, нитраты и сульфаты ряда переходных и щелочноземельных металлов. Подобно воде, формамид растворяет более полярные органические соединения и смешивается с водой он очень гигроскопичен и легко гидролизуется с образованием уксусной кислоты и аммиака. Формамид использовался и качестве растворителя при полярографии на КРЭ некоторых переходных элементов и ряда органических соединений. [c.21]

    Исследовать возможность изучения физико-химических свойств растворов неэлектролитов исследуемого элемента и его соединений. При необходимости определить понижение давления пара растворителя, температуру кипения и [c.78]

    Для расчета равновесных составов сложных смесей, устанавливающихся в системе в результате того или иного процесса, необходимы сведения о константах равновесия всех независимых реакций, возможных в данной системе. Число таких реакций равно числу веществ, входящих в систему, минус число элементов, образующих эти вещества (и электрон, если в реакции участвуют ионизованные газы). При составлении таблиц термодинамических свойств для большого круга веществ целесообразно вычислять константы равновесия всех соединений для одного из двух типов реакции для реакций образования (или диссоциации) этих соединений из элементов в стандартных состояниях или для реакций диссоциации на атомы. В первом случае существенным преимуществом является то, что тепловой эффект соответствующей реакции равен теплоте образования вещества из элементов в стандартном состоянии и не зависит от данных для других веществ. Однако использование констант равновесия такого типа в высокотемпературных расчетах, когда элементы находятся в состояниях, отличных от их стандартного состояния, требует дополнительных данных о давлении насыщенных паров таких элементов. Кроме того, при расчете составов сложных смесей на электронных счетных машинах удобнее использовать константы равновесия реакций атомизации. Поэтому в настоящем Справочнике для всех двух- и многоатомных газов (кроме заряженных газов) приводятся константы равновесия их реакций диссоциации на атомы, тепловые эффекты которых равны теплотам диссоциации (или атомизации) молекул соответствующих газов. Для заряженных одноатомных и двухатомных газов приводятся константы ионизации соответствующего нейтрального или отрицательно заряженного газа, а для веществ в конденсированном состоянии — давления паров, являющиеся константой равновесия реакции сублимации или испарения. Очевидно, что в последнем случае [c.31]

Рис. 1.17. Давление паров некоторых элементов. Точки соответствуют температурам плавления. В тех случаях, когда в газовой фазе вещество образует несколько соединений (например, сера-8,, 5,, З ,...), линии соответствуют суммарному давлению пара Рис. 1.17. <a href="/info/500661">Давление паров некоторых</a> элементов. Точки <a href="/info/1793041">соответствуют температурам</a> плавления. В тех случаях, когда в <a href="/info/1512762">газовой фазе вещество</a> <a href="/info/1150377">образует несколько</a> соединений (например, сера-8,, 5,, З ,...), <a href="/info/1451474">линии соответствуют</a> <a href="/info/48602">суммарному давлению</a> пара

    Элементы в зависимости от их летучести разбивают (несколько условно) на три группы. В первую группу объединяют элементы с высоким давлением пара и элементы, образующие соединения с высоким давлением пара они быстрее других и при меньших температурах испаряются из канала электрода. К этим элементам относятся Hg, Аз, С<1, 2п, Т1, 5Ь, В1, КЬ, Сз, РЬ, (Ш, Мо), Ке. Ко второй группе отнесены элементы, испаряющиеся с умеренной скоростью или образующиеся соединения, испаряющиеся с умеренной скоростью. Такими элементами являются А , Си, 5п, Аи, 1п, Са, Ое, Ре, Мп, N1, V, Сг, Т1, Ве. В третью группу входят элементы с малым давлением пара, скорость испарения которых невелика, а также элементы, образующие в канале электрода соединения с малым давлением пара Р1, РЬ, Р(1, 5с, и, ТЬ, 2г, Н , Ыа, Та, J и редкоземельные элементы. [c.247]

    Исследование растворимости в водяном паре высокого давления соединений, собственное давление насыщенного пара которых при температуре опыта незначительно, представляет большой интерес как с практической, так и с научной точки зрения. Растворимость ряда соединений (кремнекисл оты, солей натрия, кальция и магния) имеет важное значение для паротурбинных электростанций, так как для нормальной работы турбин требуется пар высокой чистоты (сумма примесей не более 0,05—0,2 мг/кг). Еще большую роль играет чистота пара для атомных электростанций с кипящими реакторами и поступлением пара непосредственно в турбину, поскольку отложения в последней могут содержать долгоживущие радиоактивные изотопы. Для атомных электростанций имеет значение растворимость в паре очень большого числа разнообразных соединений, попадающих в котловую воду не только вследствие присосов воды, охлаждающей конденсатор турбины, но и за счет коррозии элементов оборудования, а в ряде случаев— попадания в воду продуктов деления. Существенную роль играет растворимость в паре некоторых соединений, особенно кремнекислоты, и в геологии (вопросы генезиса горных пород). [c.158]

    Для однозначного термодинамического рассмотрения процессов или реакций необходимо полностью описать состояние каждого вещества. Под стандартным состоянием вещества подразумевают некоторое определенное его состояние, выбранное из тех или иных физико-химических соображений для решения конкретной термодинамической задачи. Все остальные состояния обычно сравнивают со стандартным. Для элементарных веществ в качестве стандартного состояния выбирается конденсированное состояние до тех температур, при которых давление пара вещества достигает 1 атм, выше этих температур в качестве стандартного состояния выбирается состояние идеального газа. Стандартные состояния элементов приведены в гл. VIII. В литературе отсутствуют данные по энтальпиям для многих органических веществ в жидко состоянии. Для газообразного состояния эти величины известны чаще. Учитывая этот факт, а также то, что давления паров органических соединений достигают атмосферного при температурах порядка 500° К и ниже, в качестве стандартного состояния большинства органических соединений удобнее выбрать состояние идеального [c.28]

    При рассмотрении процессов и реакций необходимо учитывать состояние веществ, участвующих в превращениях. Для элементарных веществ в качестве стандартного состояния выбирается конденсированное состояние вплоть до таких температур, при которых давление пара элемента достигает 1 атм. При более высоких температурах в качестве стандартного выбирают состояние идеального газа. Практические величины энтропий элементов в стандартном состоянии приведены в гл. VIII и XIV. Как уже отмечалось в гл. I, в настоящей книге, за исключением специальных случаев, в качестве стандартного состояния органических соединений при всех температурах выбрано состояние идеального газа при давлении 1 атм (обозначаемое знаком градуса). Другие состояния, которые могут представлять интерес, нетрудно связать со стандартным состоянием. [c.131]

    Термодинамические свойства неорганических веществ, составители У. Д. Верятин, В. П. Мащирев и др., Москва, 1965. В справочнике приведены основные соотношения между термодинамическими величинами описаны рациональные способы расчетов термодинамических и термохимических величин даны в табличной форме термодинамические свойства элементов и неорганических соединений (гидридов, фторидов, хлоридов, бромидов, иодидов, окислов, сложных окислов, гидроокисей, сульфидов, сульфатов, нитридов, нитритов, нитратов, фосфидов, фосфатов, карбидов, карбонатов, силицидов, боридов и боратов) термодинамические потенциалы реакций образования неорганических соединений, кристаллических структур и давлений паров элементов и неорганических соединений термодинамические свойства бинарных металлических систем и интерметаллов. [c.107]

    Соединения элементов П1 и V групп часто выращивают посредством обратимых реакций в замкнутых системах, используя галогены в качестве транспортирующего агента. Для соединений A BV прямую сублимацию обычно не применяют, так как они разлагаются при температуре плавления и давление паров элементов V группы значительно больше давления паров элементов III группы. Вакуумным же напылением с использованием методики трехтемпературной печи были получены тонкие пленки InSb и GaAs [7]. В более распространенном методе выращивания из газовой фазы [7] применяют обратимую транспортную реакцию в закрытой реакционной ампуле, используя в качестве pea- [c.258]

    В аналогичном издании на английском языке (Г. Эг-лоф Физические константы углеводородов ) [28] приведены точки кипения и плавления, плотность, показатель преломления, термодинамические константы. Классическими являются труды национального комитета стандартов США [29]. Упомянем также книгу, содержащую данные о термодинамических свойствах элементов [30], справочник Барина и Кнаке о термохимических свойствах неорганических веществ [31], справочник Вих-терле, Линека и Гала [32] о равновесиях пар —жидкость (даны лишь ссылки на литературу, без приведения конкретных цифр), справочник Джордана по давлению пара органических соединений [33]. [c.54]

    При помощи масляных, дибутилфталатного, дибутилсебацинатного дифференциальных манометров, используя катетометр для замера уровней, можно измерить АР с точностью до нескольких тысячных мм рт. ст., а дифференциальные мембранные манометры [257] имеют на порядок большую чувствительность. Лучшие термостаты могут обеспечить идентичность температуры находящихся в них образцов с точностью 10 градуса [258]. Однако и этой сравнительно высокой точности эксперимента недостаточно для изучения разностей давлений пара изотопных соединений тяжелых элементов или мало различающихся но концентрации изотопных смесей соединений легких элементов. [c.11]

    По-видимому, ни одно из упомянутых выше летучих органических и комплексных соединений /-элементов не удовлетворяет условиям, при которых производят разделение изотопов газокинетическими методами. Давление паров этих соединений при температуре, близкой к комнатной, существенно ниже требуемого. Ближе всех к нужным пределам находятся боргидриды актиноидов (IV), особенно ргид-риды нептуния и плутония. Однако эти соединения термически крайне неустойчивы и не могут быть использованы в указанных процессах. [c.180]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]

    Несколько подробнее стоит остановиться на токсических свойствах ртути, потому что на ее примере мы познакомимся с некоторыми важными свойствами, присущими любым загрязнителям. Прежде всего токсичность вещества может сильно зависеть от его химического состояния. Металлическая ртуть характеризуется небольшим, но впо.гте измеримым давлением паров. Если оставить металлическую ртуть открытой в шюхо проветриваемом помещении на длительное время, то у людей, постоянно находившихся в этом помещении и вдыхавших в течение определенного времени ртутные пары, обнаружатся симптомы отравления. Однако если в организм человека попадает небольшое количество ртути, например кусочек серебряной амальгамы при пломбировании зуба, то это не представляет серьезной опасности для здоровья металл проходит через пищеварительный тракт, не подвергаясь при этом химическим превращениям. Соединения ртути(1), например каломель Hgj lj, не особенно токсичны вследствие их низкой растворимости в воде. Нерастворимые соли проходя через пищеварительную систему, не попадая в значительных количествах в кровоток. Ион двухвалентной ртути Hg" представляет собой очень опасную форму этого элемента. При попадании в человеческий организм в виде иона Hg" ртуть воздействует на центральную нервную систему, вызывая симптомы психического расстройства. В прошлом водорастворимая соль ртути, нитрат двухвалентной ртути, использовалась для размягчения щерсти, из которой изготовляли фетровые шляпы. Выражение безумен, как шляпник возникло потому, что у шляпников, страдавших от отравления ртутью, наблюдали симптомы психического расстройства. [c.163]

    Если взять источник света, в спектре которого содержатся линии, точно совпадающие но длине волны с линиями поглощения исследуемых атомов, причем ширина линий испускания этого источника (АХнсп) будет уже (или по крайней мере равна) ширине линий поглощения, то закон Бера будет выполняться с хорошей степенью точности. Такими источниками оказались свечения электрических разрядов разных типов, содержащих пары соединений того элемента, который необходимо определить в той или иной пробе. Причем как общее давление газа в таких источниках, так и давление паров соединений значительно меньше атмосферного (1 — 10 мм рт. ст.), что обусловливает малую ширину линий испускания в электрических разрядах пониженного давления. Узость линий обусловлена еще и тем, что такие разряды используют при температурах порядка 200° С. [c.142]

    Соединения с другими неметаллами. Халькогениды элементов подгруппы германия, как и оксиды, образуют 2 ряда монохалькогениды ЭХ и дихалькогениды ЭХ . Низшие халькогениды известны для всех элементов и халькогенов. Все монохалькогениды элементов можно получить как непосредственным взаимодействием компонентов при нагревании, так и пропусканием сероводорода через водные растворы, содержаш,ие ионы +. Дисульфиды германия и олова получают непосредственным взаимодействием компонентов при повышенном давлении пара серы. Все монохалькогениды являются типичными полупроводниками, что свидетельствует о преобладающем вкладе ковалентной составляющей в химическую связь. Кроме того, надо учитывать определенный ионный вклад, обусловленный различием в электроотрицательности, а также нарастание металличности с увеличением порядкового номера компонентов. Сульфиды и селениды германия и олова кристаллизуются в орто-ромбической структуре, а при переходе к соответствующим теллури-дам происходит уплотнение структуры с повышением координационного числа до 6 (структура типа Na l). [c.225]

    Нитриды железа, кобальта и никеля в отличие от нитридов предшествующих d-элементов фазами внедрения не являются. Об этом свидетельствуют их низкая термическая устойчивость и способность к последовательной диссоциации при иагревании с отщеплением азота и образованием все более бедных азотом соединений. Склонностью к термической диссоциации с последовательным отщеплением летучего компонента обладают также фосфиды и арсениды, причем первые — в большей степени. Для стибидов это свойственно в меньшей степени в силу небольшой летучести сурьмы. Фосфиды, арсениды и стибиды получают прямым синтезом из компонентов в эвакуированных и запаянных ампулах. Состав продукта зависит от исходного соотношения компонентов, температуры и давления пара летучего компонента в ампуле. Эти соединения разнообразны по составу, однако наиболее типичные фазы Э3П, Э2П, ЭП и ЭП. . Для кобальта и никеля известны фосфиды ЭР3. Высшие фосфиды ЭРз и ЭРз, а также арсенид FeAsj — полупроводники, остальные пниктогениды обладают полуметаллическими и металлическими свойствами. [c.407]

    Объекты исследования, предлагаемые в работах, выбраны с учетом их физико-химических свойств и требований техники безопасности при работе в учебных лабораториях (сравнительно невысокие температуры плавления и давление пара). Кроме того, авторы старались использовать, по возможности, недавно изученные соединения, свойства которых представляют определенный интерес. Поэтому наряду с классическими полупроводниковыми материалами (германий, кремний, соединения типа ) рекомендуются такие фазы, как СиР , ОеАз, В .,Тез, и др. Для некоторых же традиционных материалов предлагаются нетрадиционные методы синтеза (например, синтез ОаР из расплава в висмуте). Это позволяет повысить интерес студентов к практическим занятиям, расширить их кругозор и внести элементы исследовательской работы в учебный процесс. В зависимости от специфики научных исследований кафедры и возможностей учебной паборатории могут быть использованы и другие объекты с аналогичными свойствами. [c.3]

    Диаграмма состояния системы 1п—ЗЬ представлена на рис. 33. Оба элемента образуют между собой единственное конгруэнтно плавящееся соединение эквиатомного состава. Эвтектика 1пЗЬ—ЗЬ содержит 70,4 ат.% сурьмы и кристаллизуется при 505°С. с)втектика 1пЗЬ— п вырождена. Область гомогенности соединения очень невелика. Кристаллизация его идет со значительным увеличением объема (на И,4%). Давление пара над антимонидом при температуре плавления около 10 мм рт. ст. [c.64]

    Понижение температуры обычно благоприятствует проявлению более высокой валентности элементов, повышение— более низкой. Однако уже из данных для галогенидов платины видно, что получить при нагревании соединения, отвечающие всем низшим валентностям, не всегда возможно. Так, под давлением пара галогена в 100 кПа Р1Вг и РИ вообще не существуют, а некоторые другие промежуточные продукты распада (Р1С1, Р1Вг2, РИз) оказываются устойчивыми лишь в очень узких интервалах температур.  [c.479]

    Соединения с другими неметаллами. Халькогениды элементов подгруппы германия, как и оксиды, образуют два ряда монохалькогениды ЭХ и дихалькогениды ЭХг- Низшие халькогениды известны для всех элементов и всех халькогенов. Все монохалькогениды элементов можно получить как непосредственным взаимодействием компонентов при нагревании, так и пропусканием сероводорода через водные растворы, содержащие ионы Э . Дисульфиды германия и олова получают непосредственным взаимодействием компонентов при повышенном давлении пара серы. Все монохалькогениды являются фазвьми переменного состава общей формулы ЭХцх, хотя область гомогенности их невелика х <С 1). Поэтому их свойства изменяются с составом и зависят от условий получения. Поскольку области однородности узки, небольшое изменение состава в пределах существования фазы приводит к резкому изменению свойств, особенно электрических и оптических. [c.387]

    Ниридин - единственный ароматический растворитель, пригодный для электрохимических целей. Он, безусловно, представляет собой достаточно сильное основание, которое способно образовывать с ионами металлов льюисовские кислоты - основные аддитивные соединения. Хотя пиридин имеет довольно низкую диэлектрическую постоянную (12), он весьма универсальный растворитель. В нем растворимы многие соли, причем их растворы обладают низким сопротивлением. Ниридин находится в жидком состоянии в области температур от -41 до +115°С и характеризуется умеренно низким давлением паров при комнатной температуре. Но вязкости он подобен воде и растворяется в ней в любых пропорциях. Ниридин использовался в качестве среды для электролитического окисления и восстановления неорганических и органических соединений на ртутном, платиновом и графитовом электродах. Из пиридиновых растворов были электроосаждены следующие элементы Ы, Ка, К, Си, Ag, Mg, Са, Ва, 2п, РЬ и Ге [1]. Имеются некоторые указания на образование растворов электронов в пиридине [2.  [c.27]

    Атомы некоторых элементов, а также многоатомные соединения могут внедряться в графит и образовывать слоистые соединения. Наиболее изучены слоистые соединения щелочных металлов [84]. Как правило, они получаются нагревом графита и соответствующего щелочного металла до температуры, отвечающей определенному давлению паров металла. Считается, что могут образовываться слоистые соединения определенного состава. Такой вывод делается из рассмотрения кривых зависимости состава слоистого соединения от температуры его получения. Эти кривые имеют вид изотерм сорбции, причем каждой ступеньке соответствует слоистое соединение определенного состава (рис. 55). Соотношение между углеродом и металлом имеет дискретные значения, которые для щелочных металлов составляют С Мё, С Ме, СзвЛ е, С Ме, С,(,(,Ме, что отвечает расположению слоя атомов металла через один слой углерода, два и т.д. соответственно. Такие соотношения характерны при применении для синтеза слоистых соединений достаточно совершенных кристаллических форм углерода. Наличие дефектов структуры в реальных материалах может приводить к образованию соединений, отличающихся составом от приведенных. [c.137]

    С мышьяком и сурьмой галлий также образует соединения состава 1 1 [1088]. Антимонид галлия легко получается сплавлением исходных элементов. Для получения арсенида такой синтез представляет серьезные трудности, так как при температуре плавления арсенида давление пара мышьяка очень велико. Еще в большей степени это относится к фосфиду. Поэтому последний лучше получать косвенным путем, например действием на металл фосфористого водорода при 900—950° С [445]. Прямой синтез GaP может быть осуществлен в расплаве висмута, используемого в качестве индифферентного растворителя [496]. GaN, GaP, GaAs, GaSb — устойчивы по отношению к кислороду и влаге воздуха и лишь с трудом разлагаются кислотами. От нитрида к антимониду наблюдается постепенное нарастание металлических свойств. Все эти соединения являются полупроводниками. [c.23]

    Если пламя насыщено парами эквимолекулярных растворов двух элементов и первый из них (например, Ма) в отличие от другого (например, Ы) не образует сложных соединений, то парциальное давление этих элементов во всех фазах состояний пропорционально концентрации растворов и в ходе процесса остается постоянным, а общее парциальное давление второго элемента (Хго) представляет собой сумму парциальных давлений свободного металла (Хг) и гидроокиси (ХгОН)  [c.235]

    Абсолютные значения энергии Гиббса системы определить невозможно, поскольку в энергию Гиббса входит величина энтальпии. Величину энергии Гиббса можно лишь выразить в виде разности энергий Гиббса двух различных состояний, одно из которых принято за стандартное. В гл. VIII приведены термодинамические величины для стандартного состояния каждого из элементов, входящих в органические соединения, а также данные для некоторых важных неорганических соединений. Аналогичные величины для стандартных состояний органических веществ представлены в виде таблиц в последующих главах. Эти таблицы содержат величины энергии Гиббса, отвечающие образованию соединения в его стандартном состоянии из элементов, находящихся в своих стандартных состояниях. Для соединений в качестве стандартного желательно выбирать такое состояние, которое отвечало бы наибольшему удобству при использовании, поэтому для большинства приведенных соединений в качестве стандартного используется состояние гипотетического идеального газа при давлении 1 атм. Для некоторых соединений, обладающих очень низким давлением пара, термодинамические данные указаны для твердого или жидкого состояния. В принципе стандартное состояние идеального газа можно использовать непосредственно в расчетах при малых давлениях газовой фазы при расчете термодинамических свойств веществ при более высоких давлениях нетрудно внести соответствующие поправки к свойствам вещества в состоянии идеального газа, обусловленные его неидеальным поведением при высоком давлении. Энергия Гиббса, связанная с образованием соединения в стандартном состоянии идеального газа, чистой жидкости или в твердом состоянии при давлении 1 атм из элементов, взятых в их стандартных состояниях, называется стандартной энергией образования Гиббсаи обозначается надстрочным индексом градус AGf. [c.135]

    Чтобы изучить влияние гидратации ионов на свойства воды, а следовательно, выявить формы проявления периодического закона еще и на других свойствах растворов, были предприняты работы по исследованию давления паров воды над растворами перхлоратов и галогенидов элементов второй группы Периодической системы [51—59]. Сравнение данных по двойным системам МХг — НгО и НХ — НгО (часть данных взята из литературы [60, 61]) представлено на рис. 5 и 6. Рис. 5 относится к перхлоратным системам.. На оси абсцисс — порядковые номера элементов, а на оси ординат — давление паров воды, соответствующее растворам концентрации 3 мольЦОбО г воды. На том же рисунке нанесены данные по ионизационным потенциалам. Соединение точек проводилось так же, как и в предыдущем случае (см. рис. 3 и 4). Симбатность кривых неоспорима. Изучаемая величина (давление паров воды) сходна в некоторой степени с величинами, характеризующими теплоту гидратации иона, однако между ними имеется принципиальное различие первая величина относится к изменению свободной энергии перехода воды из раствора в газообразное состояние, что предполагает необходимость учета не только энтальпии, но и энтропии. [c.16]


Смотреть страницы где упоминается термин Давление паров элементов и соединений: [c.530]    [c.97]    [c.227]    [c.303]    [c.216]    [c.272]    [c.378]    [c.272]   
Инженерный справочник по технологии неорганических веществ Графики и номограммы Издание 2 (1975) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Давление элемента

Паров давление соединений

Паров давление элементов

Элементы II соединения



© 2025 chem21.info Реклама на сайте