Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие с молекулой-зондом

    И. Е. Н е й м а р к (Институт физической хилши им. Л. В. Писаржевского АН Украинской ССР, Киев). Принцип и физические основы метода люминесцирующего молекулярного зонда, состоящие в исследовании электронных спектров излучения молекулы-зонда в адсорбированном состоянии, изложены в [1]. В качестве зонда могут выступать молекулы, спектры люминесценции которых при различных типах молекулярных взаимодействий хорошо изучены. Зондом-адсорбатом нами были избраны молекулы нафталина. В качестве адсорбентов использованы катионированные цеолиты типа фожазита, силикагель и аморфный Na-алюмосили-кат. Процесс адсорбции и снятие низкотемпературных спектров люминесценции проводились в условиях высокого вакуума. [c.172]


    Методом люминесцирующего зонда изучены природа активных центров и механизм адсорбционного взаимодействия молекул различного электронного строения с поверхностью минеральных сорбентов [35, 36,39,85, 113,114,118, 119, 178—180 и др.]. Физическая основа метода состоит в том, что спектры люминесценции молекулы-индикатора, введенной в исследуемую среду с неизвестными свойствами (в нашем случае цеолит), сопоставляются с поведением этого же индикатора в средах, воздействие которых на него известно. В качестве зондов используются многие молекулы, но чаще всего ароматические, так как их спектры люминесценции и поглощения расположены в доступной области спектра. [c.112]

    Читатель уже убедился, что в СТМ решающее значение для получения атомного разрешения играет экспоненциальная зависимость туннельного тока от расстояния между зондом и поверхностью. В атомно-силовой микроскопии (АСМ) такое значение имеет резкая зависимость силы взаимодействия молекул от расстояния между ними Д (вандерваальсовы взаимодействия)  [c.57]

    В современной литературе, посвященной методу обращенной газовой хроматографии (этот термин был предложен в 1966 г. Девисом с сотр. и Березкиным [114]) широкое применение находят подходы, позволяющие выделить, хотя и формально, вклады специфического взаимодействия АС р или в стандартную энергию Гиббса АС° или теплоту адсорбции соответственно. (Метод обращенной газовой хроматографии применяется для исследования физико-химических характеристик разнообразных твердых материалов, включая полимеры, наполнители, катализаторы и, конечно, сорбенты, с помощью подходящих молекул-зондов (тестовых соединений)). АС р рассчитывают, используя следующее выражение  [c.314]

    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]


    Необходимо отметить, что первоначально интерес к изучению соединений иода был вызван не только его исключительной ролью в биохимии, но и его уникальными донорно-акцепторными свойствами, дающими возможность образовывать комплексы с большинством органических соединений. Эта способность превратила иод в своеобразный молекулярный зонд, с помощью которого были исследованы весьма тонкие закономерности в образовании химической связи, термодинамике и структуре молекул. В последнее время существенно расширился интерес к изучению взаимодействий иода с биомолекулами. С одной стороны, это вызвано поиском взаимосвязи между характеристиками электронно-донорно-акцепторных комплексов и физио- [c.9]

    Для изучения липид-белковых взаимодействий в таких реконструированных системах был применен метод спектроскопии ЭПР [35]. Цитохромоксидаза была очищена и отделена от ассоциированного с нею липида экстракцией растворителем. Путем обратного титрования липидом, содержащим спин-меченный зонд (см. разд. 25.3.5), показано существование слоя липида, прочно связанного с белком (рис. 25.3.9). Кроме того продемонстрировано, что для проявления ферментной активности необходимо существование такого пограничного слоя, состоящего из 50 липидных молекул на молекулу цитохромоксидазы. [c.124]

    Проведенные исследования показали, что метод спинового зонда может быть успешно применен для изучения стероид-белко-вого взаимодействия, поскольку позволяет получить как количественные, так и качественные характеристики комплексов. Количественная оценка взаимодействия проводится в равновесной системе без ее разделения на свободную и связанную фракции. Вместе с тем этот метод позволяет судить о локальном окружении стероидов, о жесткости их связывания с белком и об ориентации стероидных молекул относительно белка. [c.117]

    Способность связывать спиновые зонды может изменяться в зависимости от состояния белка, поэтому степень связывания спиновых зондов можно использовать для изучения конформационных превращений белковых макромолекул. Так, например, с помощью спин-меченых трифосфатов (таких, например, как радикал AXV), обратимо связывающихся с молекулами гемоглобина, удалось исследовать аллостерические взаимодействия в этом белке [191, 194]. [c.192]

    Выбор спинового зонда или метки определяется задачами исследования. Так, для изучения характера движения липидных молекул используют липофильные спин-меченные жирные кислоты, глико- и фосфолипиды. Последние применяют также для исследования латерального фазового разделения липидов и ли-пид-белковых взаимодействий. [c.206]

    Оптические методы позволяют получить информацию о механизме фотосинтеза, электронном транспорте, транспорте кислорода в тканях, транспорте ионов, взаимодействии веществ различной природы с мембранами, белок-липидных взаимодействиях и других процессах. Они основаны на присутствии в изучаемой системе эндогенных или экзогенных (вносимых в систему экспериментатором) хромофорных групп. К эндогенным хромофорам относятся порфирины, флавины каротиноиды, пиридиннуклеотиды, цитохромы, гемоглобин, миоглобин, которые поглощают свет в видимой области спектра. Акридины, нафталин-сульфонаты, цианины являются экзогенными хромофорами. К оптическим методам относят абсорбционную спектрофотомет-рию, люминесценцию, метод флуоресцентных зондов, а также круговой дихроизм, дисперсию оптического вращения. Последние наряду с ИК-спектроскопией и спектроскопией комбинационного рассеяния используются для определения содержания различных элементов вторичной структуры молекулы белка, позволяют изучать ее конформационные переходы. [c.208]

    Количественное исследование кислотно-основных свойств поверхности требует обширного и квалифицированного применения ИК-спектроскопии адсорбированных молекул. С помощью этого метода, подобрав соответствующее вещество-зонд и установив функциональные зависимости между частотами его нормальных колебаний, чувствительных к взаимодействию с поверхностными центрами, и термодинамическими характеристиками этого взаимодействия, можно определить силу протонных, апротонных и оснбвных центров. При использовании комбинированных ИК-спектроскопических и адсорбционных экспериментов также можно определять концентрации кислотных центров поверхности. [c.30]

    Привитый слой образован иммобилизованными молекулами, что в буквальном переводе означает лишенными подвижности . В действительности привитые молекулы лишены только возможности двигаться как целое, сохранив в значительной мере подвижность своих частей. Исследование подвижности молекул на поверхности необходимо для более полного описания привитых слоев и предсказания свойств химически модифицированных материалов. В настоящее время можно считать хорошо установленным, что подвижность привитых молекул уменьшается с ростом плотности прививки и снижением температуры. Литературные данные о влиянии растворителя на подвижность привитых молекул достаточно противоречивы. Процесс взаимодействия привитых слоев с растворителем во многом остается непонятным и требующим дальнейшего изучения. Для исследования динамики привитых слоев наиболее эффективным, вероятно, является метод твердотельной ЯМР-спектроскопии. Наряду с ЯМР также широко применяются методы спектроскопии ЭПР и флуоресценции с использованием меток и зондов. Данные методы. [c.212]


    Распределение радикалов. Прежде всего возникает вопрос о возможности однородного диспергирования радикалов в исследуемом веществе. Критерием более или менее однородного распределения в низкомолекулярной или полимерной среде нитроксильных радикалов, используемых в качестве зондов, может, по-видимому, служить наличие расщепления в спектре ЭПР, связанного с СТВ. При высоких локальных концентрациях радикалов сильные диполь-дипольные и обменные взаимодействия неспаренных электронов приводят к исчезновению сверхтонкой структуры спектра. Показано [203 204, с. 236], что вращательная и поступательная подвижность парамагнитного зонда в полимерной среде тесно связана с движением макромолекул. Изменение величины расщепления, ширины и интенсивности линий спектра происходят обычно вблизи температуры стеклования (как правило, выше Гст.) Зависимость от /Г при этой же температуре претерпевает перегиб. При температурах выше точки перегиба энергия активации Е возрастает. Для больших по объему молекул зонда температура начала изменения спектральных характеристик близка к Гст- Вращение малых молекул зонда в аморфных полимерах практически изотропно, поэтому для определения Хс используют соотношение (XI. 7). В области температур выше и ниже точки перегиба зависимость Хс от /Т описывается законом Аррениуса Тс = Тоехр ( // Г). На связь подвижности зонда с сегментальной подвижностью макромолекул указывают аномально большие значения предэкспоненты и возрастание энергии активации при температурах выше Гст- В табл. XI. 1 приведены релаксационные параметры то и для некоторых аморфных полимеров в области температур выше и ниже точки перегиба Г . [c.287]

    Специфика упомянутых текстурных характеристик в том, что их, как правило, нельзя измерять in situ, т.е. непосредственно в ходе эксперимента, приводящего к трансформациям текстуры. Поэтому они являются результатом интерпретации результатов измерений других величин, обычно адсорбции молекул—зондов (N2 и др.). Если точность измерений непосредственно величин адсорбции зависит от прецизионности использованного прибора, то точность и корректность значений удельной поверхности, рассчитанных из этих измерений, — от модельных допущений, использованных при переходе от величин адсорбции к величине поверхности. Эти допущения включают модель поверхности, предположения о доступности этой поверхности для использованных при адсорбционных измерениях молекул зонда, о их взаимодействии с атомами или атомными группами на поверхности и т.д. Аналогичные проблемы возникают и при определении размера, формы и объема пор и т.д. Часть этих проблем разрешается в комплексных исследованиях, объединяющих результаты электронно-микроскопических, рентгенофазовых и других измерений. Однако и в этих случаях неизбежны определенные элементы моделирования, т.е. последнее слово остается за надежностью интерпретации. [c.78]

    Метод моделирования и получения искусственных мембран основан на получении и исследовании моно- и бимолекулярных липидных слоев, везикул, липосом и протеолипосом. Сущ ествует два основных типа искусственных мембран классические плоские и сферические мембраны различного размера. Для получения искусственных мембран используют различные фосфатиды, нейтральные глицериды, смеси липидов биологического происхождения, добавляя к ним холестерин, а-токоферол и другие минорные добавки. Потенциальная ценность искусственных мембран для исследований зависит от возможности включения в них природных белков, в особенности тех, которые обладают транспортными свойствами. Липосомы, со-стоящ ие из белков и липидов, стали получать в 60-е гг. термин протеолипосомы был введен В. П. Скулачевым. В настоящее время разработан целый ряд методов приготовления различных типов липосом и протеолипосом, а также их стандартизации по размерам, структуре, гомогенности, стабильности и другим характеристикам. Липосомы используют для доставки в клетку лекарственных и химических соединений, стабилизации ферментов в инженерной энзимологии, введения в клеточные мембраны молекул зондов, модифицирующих и моделирующих их поверхность. Большой интерес для генной инженерии и медицины представляют работы по введению в клетки при помощи липосом нуклеиновых кислот и вирусов. В липосомы включают митохондриальные компоненты и изучают на таких модельных системах процессы генерации энергии в клетках. Ультра-тонкие искусственные мембранные структуры — полислои Лен-гмюра—Бложе (ПЛБ) — применяют для получения био- и иммуносенсоров. Создаются ПЛБ с иммобилизованными ферментами и компонентами иммунологических систем. При использовании смешанных липид-белковых пленок ПЛБ получают информацию о функционировании белков и о липид-белковых взаимодействиях в мембране. Результаты изучения физических характеристик, проводимости, проницаемости и других свойств искусственных липидных мембран имеют большое зна- [c.216]

    Наиболее часто используемые парамагнитные зонды — это нитроксидные радикалы (рис. 25.15). В спектре ЭПР одного из этих соединений обычно наблюдаются три линии (рис. 9.29) — результат сверхтонкого расщепления из-за взаимодействия электрона с ядром атома азота. (Спиновое квантовое число I ядра атома азота равно 1 при взаимодействии электрона с ядром, имеющим спиновое квантовое число /, в спектре ЭПР появляется и + 1 линий.) Форма и ширина линий определяются анизотропией сверхтонкого взаимодействия электрона с ядром азота и анизотропией -фактора нитроксидной группы (гл. 9). В свою очередь степень анизотропии этих параметров зависит от движения молекулы-зонда. [c.466]

    Позднее стали использовать стабильные органические свободные радикалы (преимущественно нитроксильиого типа) для изучения молекулярных динамических процессов в блочных полимерах и их растворах, межмолекулярных взаимодействий и конформаций макромолекул в растворах, адсорбции, ориентационного порядка в полимерах и жидких кристаллах. Стабильные свободные радикалы используются как в виде зондов, т. е. отдельных молекул, распределенных в исследуемом веществе,, так и в виде спиновых меток парамагнитных молекул, химически связанных с молекулами исследуемого вещества. Для этих целей чаще всего применяют 2,2,6,6-тетраметилпиперидин-1-оксил и его производные  [c.281]

    В тоже время карбонил обычной молекулы ЗГФ имеет одну неноделенную пару электронов, способную образовывать межмолекулярную водородную связь, этим влияя как на положение полосы в спектре эмиссии, так и на соотношение интенсивностей полос фототаутомеров. Стерическое блокирование карбонила (структуры 2а-2с) - метод устранения влияния специфических взаимодействий со средой на спектральные свойства зонда. Таким образом, 3-гидрокснхромоны без этой дополнительной модификации способны служить сенсорами полярности жидких сред и одновременно отслеживать наличие водородных связей в них. [c.389]

    В больщинстве работ по исследованию кислотности в качестве зондов использовались такие основания, как -аммиак, пиридин и пиперидин. Эти молекулы способны адсорбироваться на бренстедовских и льюисовских кислотных центрах, а также на катионах. Непосредственное взаимодействие. оснований с этими поверхностными группами, а также возникновение при адсорбции водородных связей приводит к образованию различных форм адсорбированных молекул, которые можно идентифицировать в ИК-спектре. Так, например, адсорбция на бренстедовских центрах сопровождается образованием ионов аммония, пиридиния и пиперидиния с характеристическими частотами колебаний 1475, 1545 и 1610 см соответственно. Адсорбция на льюисовских центрах, т. е. на трехкоординированных ионах алюминия, происходит путем образования координационной связи N- А1 С, которая в спектрах адсорбированного аммиака, пиридина и пиперидина проявляется в виде полос при 1630, 1450 и 1460 см Близкое положение в спектре занимают полосы, возникающие при взаимодействии оснований с катионами, которые, подобно льюисовским кислотным центрам, вступают с молекулами оснований в координационную связь. Во многих работах взаимодействие с катионами было ошибочно приписано взаимодействию с кислотными центрами Льюиса, хотя на самом деле по частотам [c.272]

    Для растворителей, специфическим образом взаимодействующих с нитроксильными радикалами, зависимость между электрон-но-спиновыми параметрами радикального фрагмента и характеристиками среды, естественно, более сложная, чем разобранная выше. Так, например, в случае воды, которая входит как составная часть во многие системы, исследуемые методом спинового зонда, и которая соответствует практически максимально возможным значениям а нитроксильных радикалов (см. табл. 1.3), зависимость между а и е, представленная на рис. 1.5, удовлетворяется лишь качественно [для водного окружения радикала СИ (13,2) величина а = 15,6 гс при комнатной температуре [45], тогда как по зависимости рис. 1.5 она должна составлять 14,6 гс]. Резкое увеличение а в этом случае обусловлено тем, что NO-rpynna радикала образует водородную связь с молекулами воды. Это приводит к существенному изменению равновесия между структурами А и Б радикального фрагмента (1.10) в пользу структуры Б, характеризуемой более электроотрицательным атомом кислорода. [c.22]

    Спин-спиновые взаимодействия могут иметь не только меж-молекулярпый характер. Если молекула нитроксильного радикала имеет в своем составе не одну, а две или даже более радикальных групп (см., например, радикалы АХУИ, АХУШ в Приложении), то спектр ЭПР такого би- или полирадикала может существенно отличаться от спектра монорадикала, имеющего, например, ту же частоту вращения. В ряде случаев, хотя и не часто, бирадикалы наряду с монорадикалами используются в качестве спиновых зондов (см. раздел 1 4), поэтому краткий анализ формы их спектров ЭПР будет проведен ниже. [c.95]

    Так как молекулы спиновых зондов не тождественны молекулам жидкого кристалла, то степени упорядоченности зонда Зц нельзя непосредственно приписывать молекулам среды. Одпако в теории нелштических жидких кристаллов удается степень упорядоченности зонда связать со степенью упорядоченности самого жидкого кристалла [144]. Исследуя экспериментальные зависимости величин Зц зондов от внешних условий, например температуры жидкого кристалла, удается проанализировать правильность использованной теории строения жидкого кристалла. Так, в работе [144] при исследовании ориентации ряда комплексов ванадила в нематических жидких кристаллах показано, что теория Майера—Заупе [146], предполагающая ван-дер-вальсово взаимодействие между молекулами жидкого кристалла и основанная на выборе ориентирующего межмолекулярного потенциала в виде [c.160]

    Результаты описанных выше экспериментов позволяют получить информацию о процессе смешения струй плазмы и нереагирующего газа в гидродинамическом смысле, т. е. о процессе выравнивания радиальных профилей температуры. Однако из полученных данных не следует, что перемешивание завершилось на молекулярном уровне [6]. В то же время именно такое перемешивание является необходимым (и при определенной температуре достаточным) условием реализации химической реакции, поскольку химическая реакция иредставляет собой взаимодействие на уровне молекул. Измерение поля температур в условиях реального технологического процесса (при введении в плазму паров эфиратов) затруднено вследствие образования в зоне реакции твердой фазы целевого продукта и забивки приемного отверстия зонда. Однако результаты анализа проб, отобранных из зоны реактора на расстоянии L/d 4—4,5 и из рукавного фильтра, установленного на расстоянии L/d>4,5, показали, что содержание С в конечном продукте в обоих случаях практически одно и то же. Это позволяет предположить, что в условиях проведенных экспериментов полученная ве- [c.127]

    При анализе спектров люминесценции адсорбированных молекул 8-оксихинолина сделан вывод об участии кислорода кристаллической решетки цеолитов в адсорбционных процессах [36]. Выбор 8-оксихинолина в качестве люминесцирующего зонда обусловлен следующими соображениями. Не люминесцирующие в основном состоянии молекулы 8-оксихинолина способны люминесцировать, причем в зависимости от типа межмолекулярного взаимодействия наблюдается синее или зеленое свечение. Молекула 8-оксихинолина люминесцирует только при разрыве в ней внутримолекулярной водородной связи [34]. Синяя люминесценция принадлежит 8-ок-сихинолину, образующему межмолекулярную водородную связь, а зеленая — комплексам 8-оксихинолина с акцепторами электронов. [c.130]

    Важнейшей задачей современной химической кинетики является исследование элементарных стадий, определяющих механизм сложных химических реакций. Решению этой чрезвынайно сложной задачи посвящена значительная часть 50-летней научной дея-тельностн академика Виктора Николаевича Кондратьева. Его работы в области строения молекул, их взаимодействия со светом, диссоциативной ионизации, созданные им методы линейчатого поглощения и калориметрического зонда явились основополагающими для развития количественных исследований элементарных химических процессов. Исследования В. Н. Кондратьева и его учеников, посвященные механизму горения, экспериментальной проверке теории разветвления цепных реакций, и многие другие служат образцом изучения элементарных стадий сложных процессов. Являясь председателем Научного совета по химической кинетике и строению АН СССР и членом ряда международных научных организаций, В. Н. Кондратьев ведет большую научно-организационную работу, направленную на развитие кинетических исследований и систематизацию констант скоростей элементарных процессов. [c.3]

    Фундаментальными вопросами адсорбции и катализа 5ВЛЯЮТСЯ формирование адсорбционного слоя, природа I количество адсорбционных и каталитически активных центров, характер взаимодействия с ними адсорбированных молекул, динамика адсорбционного слоя. Определенные успехи в решении этих проблем достигнуты при использовании спектральных методов, и в частности метода ЭПР. Метод ЭПР широко применяется для ис-гледования катализаторов, содержащих в качестве активных центров парамагнитные ионы и радиационные дефекты, и взаимодействия различных молекул с этими центрами, а также радикальных и ион-радикальных состояний, возникающих при взаимодействии некоторых адсорбатов с активной поверхностью твердых тел [1—2]. Для исследования катализаторов и адсорбентов, не содержащих парамагнитных центров, в частности, таких широко распространенных, как силикагель, оксид алюминия и некоторые другие оксиды, алюмосиликаты, цеолиты, в последнее время нашел применение метод парамагнитного зонда. Сущность его состоит в том, что в исследуемую систему вводят парамагнитные частицы (зонды), изменения спектров ЭПР которых отражают свойства окружающей их среды. В настоящем обзоре рассматриваются результаты, полученные при использовании в качестве зондов стабильных нитроксильных радикалов. Теория спектров ЭПР этих радикалов достаточно хорошо разработана [3—5]. Анализ спектров ЭПР адсорбированных нитроксильных радикалов позволяет судить о взаимодействии этих молекул с адсорбционными центрами поверхности и в ряде случаев непосредственно наблюдать сам адсорбционный центр. Представляет большой интерес также возможность оценить скорость вращательной и поступательной подвижности адсорбированных молекул, т. е. изучить динамику адсорб- [c.229]

    В заключение следует сказать, что метод парамагнитного зонда является весьма перспективным при исследовании явлений адсорбции и катализа. Он дает наглядное представление о формировании и динамике адсорбционного слоя и о характере взаимодействия адсорбированных молекул с активными центрами поверхности, т. е. позволяет решать важные вопросы физикохи-мии гетерогенного катализа. [c.252]

    A. Н. Фрумкиным (одновременно с Г. Гюйо во Франции) был предложен метод радиоактивного зонда, существенно дополнивший метод вертикальной струи Конрика для измерения адсорбционных потенциалов на границе раствор/воздух. Сопоставление адсорбционных скачков потенциала на границах раздела раствор/воздух и раствор/ртуть вскрыло значение гидратации ионов в явлениях адсорбции, значение ориентации адсорбированных органических молекул, а также роль специфического взаимодействия определенных атомов в адсорбированной молекуле или ионе с поверхностью ртути. [c.164]

    Биофизические методы позволяют изучать динамическую организацию биомембран, получить представления об упаковке и движении липидных молекул в природных и модельных мембранах, их взаимодействии друг с другом и молекулами белков, исследовать фазовые переходы и другие процессы. К ним относятся дифракционные методы (рентгеновская дифракция, дифракция нейтронов), резонансные методы, метод электронной микроскопии, оптические методы (круговой дихроизм, дисперсил оптического вращения, абсорбционная спектроскопия, люминесценция, метод флуоресцентных зондов), метод дифференциальной сканирующей микрокалориметрии, метод моделирования и получения искусственных мембран и др. [c.203]

    Если производное иминоксильного радикала присоединяют к белку или липиду ковалентной связью, то такое производное называется спиновой меткой. Если молекула (например, спинмеченный фосфолипид или спинмеченный холестерин) встраивается в белковую молекулу или в липидный бислой мембран и там удерживается не ковалентными связями, а с помощью электростатических сил или гидрофобных взаимодействий, то такая молекула называется спиновым зондом. Форма сигнала ЭПР, даваемого спиновой меткой или зондом, зависит от микроокружения иминоксильного радикала и в первую очередь от вращатель- [c.115]

    Вскоре после появления основополагающей работы Вебера [5 ] поляризация флуоресценции стала все шире применяться в изучении биологических систем. Это физическое явление используется для разнообразных целей, включая 1) изучение вращения и размеров молекул в растворах 2) изучение ассоциации и межмолеку-лярного взаимодействия белков 3) применоше мембранных зондов 4) иммунохимические исследования. [c.140]

    В работах [204,205 авторы использовали флуоресцентный зонд (пирен) для исследования полярности и динамических свойств привитых слоев некоторых коммерческих гидрофобных адсорбентов. В спектре флуоресценции пирена имеется пять основных колебательных полос, обозначаемых цифрами от I до V соответственно. Соотношение интенсивностей этих полос может служить критерием для оценки полярности окружения молекул пирена. Так, для раствора пирена в гексане соотношение интенсивностей П1/1 равно 1,63, а для раствора в воде 0,51 [204 . У алкилкремнеземов Лихросорб КР-2 и КР-18, диспергированных в воде, полярность окружения адсорбированного пирена соответствует полярности октанола 1. При увеличении содержания метанола в водной фазе полярность окружения уменьшается, что авторы связывают с проникновением молекул метанола в привитый слой и блокированием остаточных силанольных групп. В водно-ацетонитрильных смесях при малом содержании ацетонитрила (< 14%) полярность поверхности уменьшается, однако при содержании ацетонитрила 14-28 % полярность поверхности вновь возрастает, что объясняют насыщением привитого слоя молекулами ацетонитрила. Авторы [205] проводили аналогичные исследования с применением специальной кюветы, позволяющей моделировать условия жидкостной хроматографии. Изучали два коммерческих С18-адсорбента — мономерный и полимерный. Исследования показали, что полярность поверхности (точнее, полярность окружения адсорбированного пирена) уменьшается с ростом содержания воды в подвижной фазе для смесей ацетонитрил-вода, метанол - вода и тетрагидрофуран - вода. Поведение мономерного и полимерного привитых слоев было в целом аналогично. По мнению авторов [205], полученные результаты свидетельствуют о проникновении молекул пробы (пирена) в гидрофобный привитый слой в условиях обращенно-фазовой жидкостной хроматографии. В своей следующей работе [206[ авторы исследовали поведение в системе пирен-привитый слой С18 — растворитель в широкой области состава растворителя метанол-вода. Было показано, что при уменьшении содержания воды в растворителе от 90 до 20 % полярность окружения адсорбированного пирена проходит через минимум, соответствующий 50 %-му содержанию воды. По мнению [206[, при содержании воды более 50% привитый слой схлопывается , занимая меньший объем. При этом происходит выталкивание адсорбированных молекул пробы в водный раствор. Кроме того, полярность поверхности может увеличиваться за счет взаимодействия воды с остаточными силанольными группами. При дальнейшем снижении содержания воды от 50 до 20% происходит рост полярности привитого слоя, аналогичный описанному в более ранних работах [204,205[. [c.214]


Библиография для Взаимодействие с молекулой-зондом: [c.253]   
Смотреть страницы где упоминается термин Взаимодействие с молекулой-зондом: [c.219]    [c.444]    [c.573]    [c.243]    [c.245]    [c.150]    [c.332]    [c.163]    [c.400]    [c.307]    [c.332]   
Химия привитых поверхностных соединений (2003) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула взаимодействие

РНК-зонды



© 2025 chem21.info Реклама на сайте