Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафталин, поглощение света

    Различия в поглощении света в разных направлениях, которые очень легко измерить в кристалле, зависят только от симметрии кристалла и могут быть определены из таблицы характеров фактор-группы. Поскольку длина волны поглощаемого света очень велика по сравнению с размерами решетки, то хорошим приближением является предположение, что могут встречаться только те переходы, в которых волновой вектор одинаков в начальном и конечном состояниях . Если основное состояние описывается выражением (12), относящимся к к = О, то в этом приближении все верхние состояния относятся к нулевому волновому вектору, а все остальные правила отбора являются правилами отбора фактор-группы. Это опять-таки может быть продемонстрировано на кристаллах нафталина и антрацена Р2 а). Переход из состояния типа симметрии Го в верхнее состояние с симметрией Гд разрешен в том случае, когда прямое произведение для перехода содержит полностью симметричное представление, а именно [c.524]


    В разделе 1,3,Г было показано, что свойства поглощения света кристаллами в зависимости от направления связаны со свойствами симметрии волнового вектора и обычно с самой фактор-группой. Вследствие этого нафталин и антрацен поглощают вдоль оси Ь кристалла и в плоскости ас в бензоле, имеющем фактор-группу Озл, единственные направления поглощения — это направления вдоль трех орторомбических осей. Интенсивность поглощения вдоль активных направлений зависит от ориентации осей молекулы относительно осей кристалла, а также от величины смешения между различными верхними состояниями молекул, обусловленного членами второго порядка, которые только что рассматривались. В модели ориентированного газа для кристалла, в которой предполагается, что молекулы вообще не взаимодействуют, интенсивность поглощения в одном из главных направлений пропорциональна квадрату проекции момента перехода в свободной молекуле. Отношение интенсивностей в двух главных направлениях, называемое поляризационным отношением, равно, таким образом, отношению квадратов проекций момента перехода молекулы. В случае кристалла Р2у а с двумя молекулами в ячейке моменты переходов в г-е возбужденное состояние могут быть записаны в виде и Щ, причем нижними индексами обычно обозначают различные молекулы. Направления обоих векторов параллельны активным осям молекулы. При последовательном образовании осей в молекуле 2 с помощью отражения в плоскости ас сумма + лежит в плоскости зеркального отражения, а разность перпендикулярна [c.538]

    Важный вопрос о спектрах смешанных кристаллов выходит за пределы этой главы. Использование таких кристаллов представляет один из наиболее радикальных методов определения поляризационных свойств переходов молекулы. Принцип состоит в том, что небольшое количество молекул одного-соединения вводится в кристалл другого подходящего соединения и измеряются свойства поглощения света молекулами первого соединения в зависимости от направления при условии, что взаимодействие с молекулами второго соединения незначительно. Двумя основными требованиями к кристаллу второго соединения являются подобие структуры этого кристалла структуре кристалла первого соединения и отсутствие поглощения в исследуемой спектральной области. Одним из наиболее важных примеров является исследование Мак-Клуром [60] спектра нафталина в области 3200 А в матрице из кристаллического дурола. Спектры были измерены вдоль осей кристалла не эти оси почти совпадают с направлениями длинной и короткой осей молекулы нафталина. Разрешенные и запрещенные правилами отбора компоненты этой системы, о которой уже говорилось в разделе 1,6,В, были разделены, и она была отнесена как система, поляризованная вдоль длинной оси. [c.563]


    Такие вещества называют невидимо окрашенными , поскольку глаз человека не может уловить интенсивность поглощения света этими веществами. Для человеческого глаза (и, следовательно для визуального прибора) водные растворы, содержащие 1—10% ацетона, окрашены одинаково, как и спиртовые растворы, содержащие различные количества нафталина. [c.423]

    Фульвен и октатетраен (по сравнению с бензолом) и азулен (по сравнению с изомерным нафталином) показывают зависимость поглощения света от относительной стабилизации основного и возбужденных состояний, но не от энергии сопряжения , о чем говорилось ранее. Если сопряжение стабилизирует возбужденное состояние больше, чем основное состояние, поглощение смещается в длинноволновую область. Структуры Кекуле играют большую роль в резонансной стабилизации бензола и поэтому разница между энергией основного и первого возбужденного состояния настолько велика, что поглощение происходит в ультрафиолетовой области. В случае фульвена главной структурой основного состояния является (А), в то время, как первое возбужденное состояние стабилизируется резонансом ионных структур типа (В) поэтому фульвен поглощает в видимой области и имеет желтый цвет [c.440]

    Дополнительные данные в пользу инициирования ПП по двухквантовому механизму были получены нами при фотосенсибилизации реакции нафталином. Молекула НФ не имеет хромофорных групп, ответственных за п, п -поглощение света. Вполне очевидно поэтому, что если комплекс НФ с ПЭ образуется, то его состав, а следовательно, и полосы триплет-триплетного поглощения должны быть иными, чем в случае БФ . Тем не менее опыты показали, что при облучении ПЭП (НФ) одновременно двумя источниками света 1х (X = 313 нм) и /а (Я- > 436 нм) проходила реакция ПП акри- [c.104]

    Импульсное облучение кюветы проводится фильтрованным светом. Могут быть использованы следующие светофильтры для нафталина УФС-1 или УФС-2, а также комбинация фильтров УФС-2 и ЖС-З для фенантрена те же фильтры, что и для нафталина, или УФС-6 для антрацена УФС-1, УФС-2, УФС-6 или узкополосный фильтр для выделения ртутной линии 365 нм. Энергия вспышки выбирается такой, чтобы в максимуме спектра поглощения оптическая плотность не превышала 0,3. После получения кинетических кривых проводят их обработку (см. 5) и строят зависимость оптической плотности от длины волны, т. е. спектр триплет — триплетного поглощения. [c.191]

    При поглощении кванта света молекула переходит в электронновозбужденное состояние, в котором существенно меняются такие свойства, как геометрия, электронное распределение, реакционная способность и др. Так, например, молекула формальдегида Н2С = 0, плоская в основном состоянии, при возбуждении меняет геометрическую структуру на пирамидальную с внеплоскостным углом 35°. Дипольный момент 4-амина-4 -нитростирола в основном состоянии равен 6,80, а в первом синглетном возбужденном состоянии он становится равным 28,50, что свидетельствует о существенном перераспределении электронной плотности. В нафталине а-положение в 50 раз реакционноспособнее р-положения. При возбуждении наблюдается нивелирование реакционной способности а- и 3-положений. [c.289]

    Чтобы понять, как характер поглощения связан со строением органического вещества, вернемся к условию Бора Е — Ео = /IV. Чем ближе друг к другу находятся оба энергетических уровня (основной и возбужденный), тем меньше затрата энергии на возбуждение, тем меньшей энергией может обладать действующий квант света, тем, следовательно, меньше его частота (и соответственно больше длина волны). Разность энергий Е — Ед определяется природой возбуждения. Свет видимой и ультрафиолетовой частей спектра обладает энергией, достаточной для возбуждения электронов затрачиваемая на возбуждение энергия определяется в конечном счете подвижностью электронов. Так, электроны 0-связей требуют для своего возбуждения квантов с большой энергией, эти электроны малоподвижны. Поэтому предельные углеводороды, спирты, простые эфиры поглощают лишь в очень далекой ультрафиолетовой области. Этилен, имеющий подвижные л-электроны, поглощает свет при 193 нм. Сопряженные двойные связи в бутадиене, обладая еще большей подвижностью я-электронов, вызывают поглощение уже при 217 нм. В бензоле я-электронная система имеет несколько полос поглощения, наиболее длинноволновая из которых расположена в области 260—270 нм. Нафталин поглощает уже при 314 нм, антрацен — при 380 нм. На этих примерах видно, как с ростом сопряжения (ростом подвижности электронов) поглощение постепенно сдвигается в длинноволновую область — в область квантов со все меньшей энергией. Однако все упоминавшиеся пока соединения бесцветны — их поглощение лежит в ультрафиолетовой области спектра. [c.358]

    При использовании маловязких растворителей необходимо удалить кислород из раствора. При использовании глицериновых растворов или полиэтиленгликоля можно работать в присутствии воздуха. Практически задача выполняется следующим образом. Готовят раствор нафталина (10 М), который разбавляют растворителем в 40 раз с различным содержанием антрацена — 10 М. Регистрируют кинетику триплет-триплетного поглощения на длине волн 425 нм (для антрацена) и 412 нм (для нафталина). Облучение раствора проводят через светофильтры УФС-2 и ЖС-3, которые не пропускают свет с длиной волны, поглощаемой антраценом. Определяют константу скорости триплет-триплетного переноса энергии. [c.318]


    Важным результатом проведенного нами рассмотрения при помощи теории возмущений является непосредственное объяснение присущей азулену глубокой сине-фиолетовой окраски в отличие от бесцветного нафталина. Как видно на рис. 2, сближение атомных орбит и хе оставляет неизменными энергии Еу и Ее, исходных молекулярных орбит Фг и Фз десятичленного кольца, в то время как молекулярные орбиты Фг и Фз соответственно стабилизируются и дестабилизируются с введением новой связи. Переход электрона с теперь верхней занятой ЛКАО МО Фз на нижнюю незанятую Фу соответствует длинноволновой полосе поглощения нафталина, расположенной около 310 м х. Разность энергий 7—Ев составляет около 1,236 8 и, согласно соотношению Бора АЕ = /г v с — скорость света), должна быть пропорциональна волновому числу V = 32 000 см соответствующему приведенной выше длине волны 310 м х наблюдаемого перехода, С другой стороны, возмущение исходных уровней энергии Ев и Ег десятичленного кольца при приводящем к азулену соединении атомных орбит Х4 и /з обусловливает заметно меньшую энергию перехода с верхней, занятой, на нижнюю, незанятую орбиту. Разность Ез + ЬЕг) Е% + З в) равна 0,836, как это видно на рис. 3. Таким образом, наше примитивное рассмотрение показывает, что длинноволновый переход азулена должен быть заметно сдвинут в длинноволновую область спектра по сравнению с нафталином. Это действительно имеет место. [c.195]

    В полном соответствии с этим, по данным квантово-химических расчетов, в пятичленном цикле локализована избыточная электронная плотность, а в семичленном - дефицит электронной плотности. Одновременное присутствие в молекуле азулена и эффективного донора, и сильного акцептора объясняет необычно длинноволновое поглощение этого соединения в электронном спектре. Азулен имеет синий цвет. Сравните этот факт с тем, что нафталин бесцветен, несмотря на то, что также имеет в своей молекуле систему из пяти сопряженных С=С-связей (подробнее о природе света см. в разд. 7.5). [c.399]

    Мы не можем закончить обсуждение этого вопроса однозначным выводом. С одной стороны, ИК-спектры ориентированных образцов в поляризованном свете, несомненно, полезны при отождествлении колебательных полос и при грубом определении ориентации групп в молекулах. С другой стороны, имеется достаточно оснований, чтобы соблюдать осторожность при детальной количественной интерпретации результатов. Даже в случае нафталина, когда взаимодействие между молекулами в кристалле относительно мало, наблюдаются отклонения от модели ориентированного газа [1636]. В кристаллах с Н-связью межмолекулярные взаимодействия гораздо сильнее, а коэффициент поглощения ИК-полос испытывает анизотропные возмущения за счет Н-связи, поэтому такие отклонения должны быть еще больше. Как отметили Хаггинс и Пиментел [979], дихроизм полос валентных колебаний определяет ориентацию связи только в случае линейной Н-связи, когда интенсивность полосы валентного колебания усилена за счет индуцированного дипольного момента, направленного вдоль связи А — Н. В тех же случаях, когда линейность Н-связи не доказана, необходимо иметь в виду, что приращение дипольного момента может быть параллельно связи [c.106]

    Спектр кристаллического бензола сравнительно давно исследован для не-поляризованного света [48]. Однако для классификации полос поглощения существенна их поляризация. Поэтому были получены [23, 34, 47] спектры поглощения различным образом развитых плоских кристаллов бензола в поляризованном свете и аналогично тому, как это было сделано ранее для нафталина [49], сравнены со спектром поглощения паров. При этом были обнаружены серии полос, аналогичные полосам в спектре газа, а также другие серии, полосы которых сопоставить с существующими полосами спектра газа не удалось. [c.53]

    В большинстве экспериментов, о которых до сих пор говорилось, измерения делались только для одной поверхности кристалла, т. е. для двух перпендикулярных направлений поляризации в этой плоскости. Для моноклинных кристаллов теоретически предсказано существование спектра, поляризованного вдоль оси Ь, и другого спектра, поляризованного в плоскости ас. Таким образом, полная информация о положениях полос в спектре может быть получена только нри измерениях в свете, поляризованном вдоль оси Ь и вдоль любого другого перпендикулярного направления. Для системы нафталина при 3200 А Вольф [44, 101 ] приводит поляризационные отношения, характерные для поглощения вдоль осей кристалла а и 6 и вдоль направления, перпендикулярного этим двум направлениям его данные согласуются с такой интерпретацией. [c.562]

    Сравнение данных табл. 9.3—9.7 показывает, что во многих случаях наиболее длинноволновые максимумы оптического поглощения (табл. 9.3) соответствуют энергиям, превышающим значения энергий связи для С — НиС — С, ав тех случаях, когда это не так, имеется поглощение в области более коротких волн, которое обладает этим свойством. Ароматические углеводороды, такие, как бензол и нафталин, значительно более интенсивно поглощают более коротковолновое излучение. Другими словами, эти вещества поглощают значительно большую часть облучающих фотонов. Количественно абсорбция характеризуется коэффициентом экстинкции 8 л моль-см), который связывает интенсивность падающего света /о с интенсивностью прошедшего света /, с концентрацией С моль л) и толщиной образца й см)  [c.325]

    Образование второй из этих форм в процессе облучения УФ-светом подтверждается измерениями спектров ЭПР растворов. В спектре облученного и замороженного раствора имеется полоса поглощения, характерная для нафталина в возбужденном Г-состоянии. [c.43]

    Чем ближе друг к другу находятся оба энергетических уровня, тем меньше затрата энергии на возбуждение, тем меньшей энергией может обладать квант света, т. е. меньше частота (и, наоборот, тем больше соответствующая этой частоте длина волны). Разность энергии Е — Ео определяется в конечном итоге подвижностью электронов. Так, электроны о-связей связаны весьма прочно для возбуждения их нужны кванты с большой энергией. Поэтому предельные углеводороды, спирты, простые эфиры поглощают лишь в очень далекой ультрафиолетовой области. Этилен, имеющий подвижные я-электроны, поглощает при 193 нм. Сопряженные двойные связи в бутадиене СН2=СН—СН = СНг, обладая еще большой подвижностью я-электронов, поглощают уже при 217 нм. В бензоле я-электронная система имеет несколько полос поглощения, наиболее длинноволновые из которых расположены в области 260—270 нм. Нафталин поглощает уже при 314 нм, антрацен — при 380 нм. На этих примерах видно, что с ростом сопряжения (ростом подвижности электронов) наблюдается постепенный сдвиг поглощения в длинноволновую область. Однако все упоминавшиеся до сих пор соединения бесцветны, так как их избирательное поглощение лежит в ультрафиолетовой области спектра. Видимая желтая окраска появляется лишь у нафтацена (Хмакс = = 480 нм)  [c.478]

    При триплет-триплетной аннигиляции энергия двух независимо поглощенных фотонов сосредоточивается в одной и той же молекуле. Эта особенность позволяет получать свет флуоресценции, сдвинутый в коротковолновую область по сравнению со светом, поглощаемым системой. Действительно, это возможно, если уровень 5) донора лежит ниже, чем у акцептора, а уровень Тх донора — выше, чем у акцептора (рис. 44), и достаточно эффективно протекают как триплет-триплетный перенос энергии, так и триплет-триплетная аннигиляция. Этим условиям хорошо удовлетворяет пара фенантрен — нафталин Р — Л см. рис. 44) [41—43], для которой механизм замедленной флуоресценции может быть записан в следующем виде  [c.148]

    С увеличением ненасыщенности олефина возрастает интенсивность окраски комплекса (от желтой до темно-красной). Поскольку даже химически довольно инертные двойные связи дают цветную реакцию, эта проба пригодна и для их определения. Алкильные группы у двойной связи еще более увеличивают интенсивность поглощения света, а, р-Не-иасыщенные кетоны реагируют слабо, а с аллиловыми спиртами реак ция совсем не идет. При взаимодействии с бензолом получается желтое соединение нафталин, который обладает большей реакционной способностью, образует оранжевый комплекс. Положительную пробу дает также циклопропан, остальные циклоалканы и алкины не образуют комплексных соединений. В настоящее время эти окрашенные продукты рассматривают как я-комплексы, подобные тем, которые образуются с бромистым водородом и с металлическими соединениями или ионами. [c.169]

    Паркер и Джойс [114] определили описанным методом эффективности образования триплетов для хлорофилла а и хлорофилла Ь в этаноле, использовав в качестве донора антрацен или нафталин. Им пришлось вводить поправки из-за малого вклада замедленной флуоресценции, возбуждаемой при непосредственном поглощении света хлорофиллом в растворах, содержащих сенсибилизатор (подробные данные см. в оригинальной статье). Полученные результаты включены в табл. 33. Сумма (ф/ + фг) заметно меньше единицы, что указывает на значительную роль внутренней конверсии из электронно-возбужденного синглетного состояния. В этом отношении результаты Паркера и Джойс отличаются от результатов Боуэрса и Портера [216], полученных в эфирных растворах методом импульсной абсорбционной спектроскопии. [c.296]

    Очевидно, поглощение света полимерным материалом обусловлено двумя видами хромофоров — не принадлежащих макромолекулам полимера и входящих в их состав. В первом случае для возбуждения макромолекулы должен осуществляться межмолеку-лярный перенос к ней электронной энергии от поглотившего свег хромофора. При этом показана возможность переноса по 5—5-и Т—Г-механизмам. Из них последний реализуется чаще из-за большего времени жизни триплетных возбужденных состояний особенно в условиях малых концентраций поглощающих свет примесей [21, 22]. С переносом энергии на макромолекулу может конкурировать ее перенос к другим дополнительным компонентам полимерного материала. Возбужденная макромолекула в свою очередь способна передавать электронную энергию подходящим акцепторам например, зафиксирован перенос триплетной энергии от поливинилбензофенона к нафталину [23]. [c.145]

    Данные о поглощении света очищенным НК, вулканизованным пероксидом дикумила с 7пО и без него, и о фоторелакса-иии этих вулканизатов при облучении монохроматическим светом в щироком диапазоне длин волн, представлены на рнс. 1.3. Из рисунка видно, что в присутствии 2пО область светочувствительности каучука сдвигается в сторону более длинных волн, т. е. оксид цинка является фотосенсибилизатором. Сорбируя на 2пО УФ-абсорберы (например, нафталин, который при введении в НК не влияет на фотоокисление его вулканизата), можно уменьшить фотопроводимость 2пО и, видимо, адсорбцию кислорода и тем самым активирующее действие 2пО на кислород (рис. 1.4). Ионол за счет ингибирующего действия эффективен, как введенный отдельно от 2пО, так и предварительно сорбированный на нем. [c.21]

    Были синтезированы бис-оксинафтоильные производные некоторых диаминонафталинов и найдено, что они обладают субстантивностью того же порядка, что и Нафтол АЗ—3 . При замене нафталинового ядра в Нафтоле АЗ карбазольным имеет место большое возрастание субстантивности антраценовое производное (Нафтол АЗ—ОК) имеет относительно высокую субстантивность однако максимальной субстантивностью среди продажных нафтолов обладают производные 1,2-бензокарбазола — Нафтол АЗ—30 и Нафтол АЗ—ЗК. Возрастание субстантивности нафтолов в ряду производных бензола, нафталина, карбазола, антрацена и бензо-карбазола, вероятно, связано с резонансными свойствами этих кольцевых систем важно также и. то, что с возрастанием сложности конденсированных кольцевых систем наблюдается прогрессирующее увеличение поглощения света. [c.773]

    ПО отношению к целлюлозе. Например, лейкосоединения дибензантрона, его 16,17-диметоксипроизводного и изодибензантрона отличаются очень высокой субстантивностью. Следует напомнить, что длина волны и интенсивность максимума поглощения также повы-щаются в ряду бензол, нафталин, антрацен и т. д. Вероятно, что резонанс молекул, с которым связан характер поглощения света, также обусловливает субстантивность красителей, являющихся производными этих кольцевых систем. Вследствие электронного резонанса между молекулами большие плоские молекулы в растворе склонны к полимеризации, на что иногда указывает появление в спектре поглощения z-полосы. По мере увеличения размера циклической системы возрастает склонность ароматических соединений к образованию продуктов присоединения (например, с пикриновой кислотой). Большая поляризуемость сложных циклических систем увеличивает возможность взаимодействия между красителем и целлюлозой. Несмотря на высказанное предположение, что основным механизмом связывания молекул красителя и целлюлозы является образование водородных мостиков, в настоящее время несомненно, что даже в отсутствие таких связей для межмолекулярного притяжения целлюлозы и красителей, например лейкосоединений антрахиноновых кубовых красителей с конденсированными многоядерными ароматическими системами, достаточно дисперсных и электростатических сил, возникающих в результате постоянных диполей в молекуле целлюлозы и красителя. Однако в этом случае [c.1472]

    Свойства индиго. Чистый индиго представляет собой темно-си-ний порошок, нерастворимый в воде, спирте, эфире и бензоле трудно растворим в ацетоне, хлороформе и уксусной кислоте хорошо растворим в КИПЯШ.ИХ феноле, анилине, нитробензоле, нафталине, дифениламине и особенно во фталевом ангидриде, из которых он кристаллизуется в синих призмах ромбической системы, плавящихся с разложением при 390—392 °С. При 290 °С индиго возгоняется в виде фиолетово-красных паров. Максимум поглощения света для индиго (в нитробензоле) лежит около 641 нм. Являясь веществом амфотер-ного характера, индиго проявляет как слабокислотные, так и слабоосновные свойства образует соли с минеральными кислотами, например С15Ню02М2-Н2504, а при действии спиртового раствора едкого натра дает продукт присоединения, которому приписывается следующее строение  [c.308]

    Особое электронное состояние молекул неальтернантных углеводородов сказывается и в специфическом влиянии структурных факторов на поглощение света этими соединениями. Если в ряду альтернантных углеводородов бензол — нафталин — антрацен с увеличением числа сопряженных двойных связей энергия возбуждения снижается (АЕ в единицах р —2р, —1,24р и —0,83р соответственно) и полосы поглощения смещаются в длинноволновую область (см. выше), то в ряду изомерных им соединений фульвен(4) — бензофульвен (5) — дибензофульвеп (6), неальтернантных углеводородов, наблюдается противоположный эффект—увеличение энергии возбуждения (А соответственно —0,81р, —0,88р, —1,03р) и смещение полосы поглощения в коротковолновую область (гипсохромный сдвиг). [c.46]

    Бензотиазол имеет в спектре поглощения три полосы с -макс 216 нм (емакс 16000), 251 нм (емакс5000) и 283 нм (бмакс 1800) и по поглощению света занимает промежуточное положение между бензолом (Ямакс 184, 203,5 и 255 нм) и нафталином (Амакс 220, 275 и 311 нм). [c.467]

    При проведении любых исследований по люминесценции очень важно правильно подобрать источник света. Следует учитывать, что только поглощенный свет может привести к люминесценции или химической реакции (закон Гротгуса —Дрепера), а поэтому источник света должен иметь сильное испускание в области сильных полос поглощения исследуемого соединения. К счастью, большинство рассматриваемых в этой главе органических соединений, особенно ароматического ряда, сильно поглощают в ультрафиолетовой области спектра. Некоторые из больших молекул, например красители, поглощают также в видимой области, но имеют еще более интенсивные полосы поглощения в ультрафиолетовой области. Вследствие этого линия испускания ртути 3650 А особенно удобна для исследований по флуоресценции и фосфоресценции. В разнообразных имеющихся в продаже лампах черного света используется стекло Вуда, черное стекло, содержащее 9% окиси никеля, которая почти полностью отрезает видимое излучение и свободно пропускает свет с длиной волны 3650 А. Для таких соединений, как бензол и нафталин, сильные полосы поглощения которых лежат ниже 3650 А, используются кварцевые лампы, пропускающие резонансную линию 2537 А. [c.81]

    В. Л. Броуде, А. Ф. Прихотько и Э. И. Рашбы [22]) было выдвинуто другое объяснение природы полосы. Они утверждают, что эта полоса очень сильно ослабляется, если пользоваться образцами, тщательно очищенными методом зонной плавки. Более того, эта полоса обязана своим появлением примеси р-метилнафталина, что показано путем прямого введения этого соединения в очищенный нафталин. Советские ученые (В. Л. Броуде и др.) в своем обзоре [22] по проблемам люминесценции кристаллов высказывают ту точку зрения, что ни один из случаев наблюдавшейся низкотемпературной люминесценции молекулярных кристаллов не является люминесценцией чисто экситонного типа. Экситоны, появляющиеся при поглощении света, аннигилируют без излучения либо в основном кристалле, либо на примесях или дефектах решетки, давая типичную примесную люминесценцию. Однако, хотя экситоны не принимают прямого участия в люминесценции, они играют важную роль при переносе энергии по решетке кристалла к дефектам решетки и к примесям. [c.116]

    По поглощению света тиазол занимает промежуточное положение между бензолом (Я акс 255 нм) и нафталином 275 нм). Так, хлористоводородная соль 2-аминотетрагидробенз тиазола, в которой метиленовые группы мало влияют на поглощение света, а электронодонорная аминогруппа фактически выключена солеобразованием, имеет 267 нм. Поэтому [c.371]

    По поглощению света тиазол занимает промежуточное положение между бензолом (Ямакс 255 нм) и нафталином (Ямакс 275 нм). Так, гид-рохлорад 2-аминотетрагидробензтиазола, в котором метиленовые группы мало влияют на поглощение света, а электронодонорная аминогруппа фактически выключена солеобразованием, имеет Ямакс 267 нм. Поэтому включение в сопряженную систему тиазоловых колец, конденсированных с ароматическими, например, остатков бензтиазола, гораздо сильнее смещает полосу поглощения в длинноволновую часть спектра по сравнению с обычными ароматическими остатками. [c.394]

    Во многих ароматических соединениях с делокализованными электронами, как и в комплексах переходных металлов с -орбиталями, энергетические уровни располагаются достаточно близко друг к другу, что позволяет этим соединениям поглощать видимый свет. Поэтому соединения двух этих классов часто обладают яркой окраской. При поглощении фотона света один электрон со связывающей л-орбитали (см. рис. 13-26) переводится на низшую разрыхлящую молекулярную л -орбиталь. Такое поглощение световой энергии называется я -> я -переходом. У бензола и нафталина энергетические уровни располагаются слишком далеко друг от друга, чтобы поглощение происходило в видимой области спектра, и поэтому данные соединения бесцветны. Но если к нафталину присоединены две нитрогруппы, то в конечном продукте, 1,3-динитронафталине, расстояние между энергетическими уровнями становится меньше [c.305]

    Появление окраски обусловлено увеличением размеров делокализованной электронной системы, в которую теперь входят две нитрогруппы, в результате чего энергетические уровни (и расстояние между ними) понижаются. Этот эффект еще сильнее выражен в 2,4-динитронафтоле-1, распространенном желтом красителе для шерсти и шелка. Добавление гидроксильной группы еще больше увеличивает сопряженную систему, и энергия я -> я -перехода уменьшается. Окраска соединения становится оранжево-желтой, В трех указанных соединениях происходит поглощение соответственно ультрафиолетового (в нафталине), фиолетового (в 1,3-динитронафталине) и голубого (в 2,4-динитронафтоле-1) света. [c.306]

    Соответствующий подбор параметров позволяет осуществить реакцию присоединения. Длину волны света следует подобрать так, чтобы она включала полосу поглощения олефинового или ацетиленового соединения и, предпочтительно, чтобы не включала полосу поглощения продукта реакции по той причине, что желательно, чтобы субстрат в противоположность конечному продукту был достаточно возбужденным, чтобы вступать в реакцию. Лучше всего работать при наименьших длинах волн света, добиваться возбуждения правильным подбором фильтров, даже если это и приведет к значительному увеличению времени реакции. Другим средством инициирования реакции является использование сенсибилизаторов, но они иногда изменяют направление реакции. В основном сенсибилизатор это агент для переноса энергии света. Он активируется до синглетного или триплетного состояния и именно в последнем состоянии активирует субстрат в результате интеркомбинационной конверсии. Энергия возбуждения триплета должна быть выше соответственно энергии субстрата [48]. Ниже приведены некоторые энергии триплетов в ккал/моль пропиофенон 74,6 бензо-фенон 68,5 трифенилен 66,6 нафталин 60,9 пирен 48,7. Если энергия триплета ниже энергии субстрата, сенсибилизатор может подавить реакцию. К сожалению, в случае олефинов используемые в качестве сенсибилизаторов кетоны могут вступать в реакцию с образованием оксетанов. Наконец, выбор растворителя может оказаться решающим. Учитывая все эти переменные величины, трудно сделать обобщения относительно того, что можно и чего нельзя делать. Поэтому будут приведены характерные примеры каждого типа реакции для того, чтобы читатель мог сделать собственные заключения. Среди этих реакций имеются цис-транс-кзоьлериэй-ция (разд. Г.1), изомеризация с перемещением двойной связи (разд. Г, 1), образование мостиков и сдваивание. Эти примеры взяты из работы Кана [49], если не оговорено особо. [c.147]

    Наиболее существенные трудности, возникающие при измерениях спектров кристаллов, вызываются необходимостью получения тонких образцов с известной ориентацией, а также использования низкотемпературных кювет и поляризованного ультрафиолетового света. Чистота образца — очень важный фактор. Давно известно, что люминесцентные свойства кристаллов сильно изменяются в присутствии небольших количеств примеси, порядка всего одной доли на 10 или 10 долей основного вещества. Во многих недавно выполненных работах показано, что влияние примесей на спектры поглощения хотя и не столь уж велико, но может привести к серьезным ошибкам. Например, Прихотько и Шпак [72] заново исследовали некоторые полосы поглощения, предположительно отнесенные ранее к нафталину, уделив особое внимание чистоте образца. При этом были использованы химические методы, перекристаллизация из раствора, возгонка и зонная плавка. Авторы обнаружили, в частности, что интенсивность линии спектра 31 060 см  [c.545]

    В то же время у соединений I и II не была обнаружена флуоресценция в той области, где флуоресцируют производные бензола. Эффективность флуоресценции соединения I не зависела от длины волны в интервале от длинных волн до более коротких, чем область поглощения бензоидных соединений, и Вебер и Тил заключили, что перенос энергии к нафталиновому кольцу успещно конкурирует с безызлучательной дезактивацией бензольного кольца. У соединения II выход флуоресценции при переходе к возбуждению светом 260 нм (область поглощения бензоидной группировки) падает до 30% — в данном случае безызлучатель-ная дезактивация бензольного кольца происходит значительно быстрее, чем перенос энергии к циклической системе нафталина. [c.88]


Смотреть страницы где упоминается термин Нафталин, поглощение света: [c.528]    [c.165]    [c.50]    [c.192]    [c.192]    [c.130]    [c.155]   
Физическая Биохимия (1980) -- [ c.407 ]




ПОИСК







© 2024 chem21.info Реклама на сайте