Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы химических связей и энергии связи

    Энергия кристаллической решетки. Энергия кристаллической решетки оценивается количеством энергии, которое необходимо затратить для разрушения кристаллической решетки на составные части и удаления их друг от друга на бесконечно большое расстояние. По значениям энергии кристаллической решетки можно судить о типе химической связи в веш естве и ее энергии. Понятно, что наибольшую энергию кристаллической решетки имеют ионные и ионно-ковалентные кристаллы, наименьшую — кристаллы с молекулярной решеткой (табл. 17). Металлы по величине энергии кристаллической решетки занимают промежуточное положение. [c.166]


    Типы химической связи. Ковалентные и ионные связи. Энергия связи, длина связи и атомные радиусы. [c.385]

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Рассмотренные в этой главе типы химической связи в твердых телах систематизированы в табл. 14-3. Ионные, или электростатические, связи, а также ковалентные связи характеризуются энергией связи порядка 400 кДж моль Металлические связи могут иметь различную прочность, однако она сопоставима с прочностью ионных и ковалентных связей. Водородные связи намного слабее энергия связи между атомами О и Н до- [c.639]

    В соответствии с изменением типа химической связи и структуры в свойствах бинарных соединений проявляется более или менее отчетливо выраженная периодичность. Об этом, например, свидетельствует характер изменения по периодам и группам стандартной энтропии, температуры плавления, энтальпии и энергии Гиббса образования в зависимости от порядкового номера элемента с положительной степенью окисления (рис. 130), В изменении параметров отчетливо проявляется также вторичная периодичность (рис. 131). [c.247]

    Гибкость молекул и их способность с небольшими затратами энергии переходить из одних конформационных форм в другие играет выдающуюся роль в морфологии каталитических превращений. Эти формы поддаются структурному анализу, так как длины определенных химических связей варьируют незначительно в различных молекулах. То же справедливо для углов, под которыми взаимно располагаются различные химические связи одного и того же атома, например простые связи углеродных тетраэдров или углы между двойными и простыми связями у углерода и азота и т. д. Известны также отправные размеры и ориентации групп молекул в разных циклах и их конформации. Это дает возможность определить, какие конформации возможны для данной молекулы и какие из конформационных форм наиболее благоприятны для определенного типа реакций. Сравнение реакционной способности молекул различного строения позволяет проверять выводы, вытекающие из конформационных схем. При этом приходится учитывать также специфику ориентации и длин химических связей и соответствующих электронных орбиталей у атомов (ионов) активных центров катализатора и влияние на конформацию реагирующих молекул, их химических связей с поверхностью. [c.47]

    Ионная связь — это тип химической связи, энергия которой в основном определяется электростатическими силами притяжения противоположно заряженных ионов Такую связь можно рассматривать как предельный случай ковалентной полярной связи, образованной атомами с сильно различающимися электроотрицательностями [c.71]

    Предложена классификация форм связи влаги с материалами по энергетическому принципу [1], согласно которой существуют формы связи трех типов химическая, физико-химическая и физикомеханическая. Химически связанная влага, количество которой определяется соответствующим-и стехиометрическими соотношениями, удерживается веществом наиболее прочно и в большинстве случаев при тепловой сушке не удаляется из влажных материалов. Физико-химически связанная влага удерживается на внутренней поверхности пор адсорбционными силами. Ее количество может быть различным в зависимости от пористости материала и внешних условий — температуры и влажности окружающей среды. Физико-механически связанная влага — это жидкая фаза, находящаяся в крупных капиллярах, а также влага смачивания, которую принимает тело при непосредственном контакте с жидкостью. Удаление этой влаги при сушке требует наименьших затрат энергии, равных теплоте парообразования жидкости. [c.125]

    Связь — состояние системы, обусловленное таким взаимодействием объектов, которое приводит к уменьшению полной энергии этой системы. Свойства и поведение каждого объекта при этом зависят от свойств и поведения других объектов — партнеров по связи водородная С. — разновидность трехцентровой химической связи типа Х-Н. .. B-Y, образующейся вследствие невалентного взаимодействия водорода молекулы Х-Н, связанного ковалентной связью с электроотрицательным атомом X, с атомом В молекулы BY, характеризующимся наличием неподеленной пары электронов, направленной вдоль линии этой связи. По существу, водородную связь можно рассматривать как частный случай координационной связи, поскольку число связей, образуемых водородом, превышает его формальную валентность. При образовании водородной связи водород в качестве мостика соединяет два фрагмента X и B-Y, где X и В представляют собой электроотрицательные атомы, чаще О, N, F, реже S, С1 и др. Различают межмолекулярную (I), (II) и внутримолекулярную (III) водородные связи  [c.267]

    По значениям энергии кристаллической решетки можно судить о типе химической связи в соединении и ее энергии. Как е идно из данных табл. 25, наибольшую энергию кристаллической решетки имеют ионные и атомно-ковалентные кристаллы, наименьшую — кристаллы с молекулярной решеткой. Металлы по величине энергии решетки занимают промежуточное положение. [c.201]


    Ионизационный потенциал и сродство к электрону определяют тип образования связи. В природе химических реакций заложена тенденция, направленная в сторону образования веществ, характеризующихся прочными связями. В этом процессе заключается выигрыш энергии. Чем слабее связь, тем меньше энергии нужно затратить на ее разрыв. Чем прочнее связь, тем больше энергии Е2 выделится при ее образовании. Величина Д = г—Ei характе- ризует выигрыш энергии. [c.105]

    Ингибиторы коррозии являются поверхностно-активными веществами (ПАВ) их подразделяют на водорастворимые (ВИК), водомаслорастворимые (ВМИК) и маслорастворимые (МИК) соединения (см. табл. 8.1). Существует связь между химическим строением ПАВ — ингибиторами коррозии, их поверхностной активностью на границе с воздухом, водой и металлом и защитной эффективностью. Обпще закономерности поверхностной активности и мицеллообразования маслорастворимых ингибиторов анионо- и катионоактивного типов в углеводородных средах являются, в известной мере, зеркальным отображением соответствующих закономерностей для водорастворимых ПАВ в полярньк средах. С увеличением молекулярной массы маслорастворимых ПАВ, умень-щением их гидрофильно-лиофильного (олеофильно-гидрофильного) баланса уменьшается полярность, возрастает энергия связи со средой, убывает поверхностная активность и критическая концентрация мицеллообразования, при этом защитные свойства ухудшаются. [c.371]

    Количественно расщепление энергетических уровней измеряется энергией расщепления Л, которая зависит от числа лигандов, их природы, типа химической связи между лигандами и комплексообразователем и геометрической конфигурации комплекса. [c.200]

    Причиной образования любого типа химической связи является понижение энергии системы, которое сопровождает этот процесс. Разность энергии начального и конечного состояния называется энергией связи ( "с ) и определяется количеством теплоты, выделяющейся при ее образовании, Экспериментально удобнее находить эту величину по количеству энергии, которая затрачивается на разрыв данной связи. Энергия химических связей оценивается значениями порядка 125—1050 кДж/моль, [c.112]

    Типы химических связей и энергии связи [c.78]

    Как следует из сказанного, причина полиморфизма заключается в стремлении кристаллического вещества приспособить свою структуру к изменившимся внешним условиям (температуре, давлению) таким образом, чтобы она обладала наименьшей энергией Гельмгольца, т. е. была наиболее стабильной. Со структурной точки зрения причиной полиморфизма является ограниченность для каждой данной структуры возможных тепловых колебаний, поэтому каждое вещество стремится приобрести такую структуру, которая при данных условиях обладала бы максимальной способностью к аккумуляции тепловой энергии. Если в каждой из возможных структур данного вещества допустимы все виды тепловых колебаний, то оно не будет обладать полиморфизмом, поскольку в одной из структур с минимальной свободной энергией могут совершаться колебания с максимальной способностью к аккумуляции теплоты и эта структура будет стабильной при всех температурах вплоть до температуры плавления. Однако в зависимости от симметрии, координационного окружения атомов в структуре, типа химической связи и степени ее ионности или ковалентности (а при изменении структуры тип химической связи всегда в той или иной мере меняется) и других факторов различные структуры могут обладать различной способностью к аккумуляции теплоты, т. е. для каждой из структур разрешенными будут лишь определенные колебания. Поэтому если для данного соединения с определенной структурой существует другая структура, допускающая при определенной температуре тепловые колебания с более высокой энергией при меньшей деформации связей, то первоначальная структура будет стремиться в нее перейти, т. е. соединение будет обладать полиморфизмом, [c.48]

    Внутренняя энергия и (термодинамическая функци равна сумме потенциальных энергий химических связе водородных связей, всех типов межмолекулярных взаим действий, а также энергии колебательного движения мол кул в нулевой точке [c.138]

    Безопасное напряжение зависит, следовательно, от поверхностных свойств полимера, типа химической связи (кт) и дефектности материала ( ). Чем длиннее микротрещины, тем ниже 00. Таким образом, ао оказалось связанным с поверхностной энергией и тем самым с эффектом Ребиндера. [c.169]

    Поскольку каталитические реакции с участием водорода осуществляются через стадии образования связи между поверхностью катализатора и водородом, естественными оказались поиски корреляций каталитической активности металлов с такой энергетической характеристикой их поверхности, как прочность адсорбционной связи металл — водород [24, 68]. Было показано, что действительно существует зависимость каталитической активности некоторых металлов в реакциях с участием молекулярного водорода от энергии связи Сме-н- На рис. 7 представлены вулканообразные кривые, выражающие такую зависимость для реакции гидрирования этиленовых соединений. Общим для этих кривых является то, что на вершинах кривых находится родий, обладающий оптимальной энергией связи Ме—Н для гидрирования этиленовых соединений. При гидрировании соединений, содержащих иные типы химических связей, оптимальными оказываются катализаторы с другими значениями Сме-н Для гидрирования бензола — платина, ацетона — никель и платина. [c.65]

    Фундаментальной энергетической характеристикой остова является предложенная Б. В. Некрасовым константа электросродства, дающая представление об энергии присоединения электрона, начинающего валентный слой, к остову, т. е. к ядру вместе со всеми законченными слоями [9]. Самые элементарные соображения дают основание думать, что этот параметр может характеризовать возможность элементов давать соединения с определенным типом химической связи. [c.99]

    Если попытаться построить молекулярную модель предполагаемого взаимодействия типа 8 2 для этого случая [238], то выясняется, что реакционный центр сильно экранирован. Кроме того, несмотря на то что расстояния между R и N, а также между R и X близки к расстояниям, нри которых может осуществиться химическая связь, эта связь не реализуется, и потому энергия отталкивания становится очень большой. Все это исключает механизм типа Sj 2. [c.312]

    Обычно Оже-спектр представляют как первую производную кривой распределения вторичных электронов по энергиям, где пики Оже-электронов проявляются более отчетливо. Так же как и энергии квантов характеристического излучения, Оже-спектры разделяются на серии и группы (рис. 23.4) и могут быть использованы для определения химического состава вещества, а также типа химической связи на поверхности (химическое взаимодействие атомов вызывает сдвиг Оже-пиков). [c.573]

    Конечно, каждое из этих явлений можно рассматривать изолированно и изучать его зависимость от свойств облучаемого вещества (например, от его агрегатного состояния, характера химической связи, типа соединения, а также от размеров молекул, их сложности, термодинамической устойчивости и т. д.), от вида излучения (например, от массы и энергии быстрых частиц), а также от температуры, давления и дозы излучения. Такой подход к изучаемому вопросу нужен для того, чтобы получить общее представление о природе радиационно-химических процессов. Однако наряду с этим заслуживает внимания изучение явлений, происходящих при действии излучения на ограниченный класс соединений с различными, но близкими по своей природе свойствами. Особый интерес представляет изучение органических соединений в связи с тем, что они обладают легко регулируемыми свойствами и характеризуются наличием ковалентных связей, а также в связи с тем , что в случае орга- [c.150]

    Дополнительная вероятность перехода ядра из возбужденного состояния в основное путем внутренней конверсии зависит от конфигурации электронной оболочки. Эта конфигурация, в свою очередь, зависит, правда в незначительной степени, от типа химической связи данного атома с другими. При изменении состава молекулы электронная конфигурация данного атома меняется, в результате чего происходит изменение полного коэффициента конверсии последнее, в свою очередь, вызывает изменение периода полураспада Ту,. Таким образом, постоянная изомерного перехода К, как и постоянная распада при захвате орбитального электрона, должна зависеть от химического состояния атома. Для электрического /-польного излучения выражение коэффициента внутренней конверсии на /(-оболочке (при условии, что энергия связи электрона мала по сравнению [c.297]

    Такой ТИП ассоциации носит название водородной связи, и хотя прочность таких связей гораздо меньше, чем прочность большинства обычных химических связей, она все же довольно существенна (5—10 ккал на связь). Отсюда ясно, что более высокие температуры кипения спиртов по сравнению с температурами кипения соответствующих алкилгалогенидов, простых эфиров или углеводородов обусловлены необходимостью разрыва водородных связей при переходе молекул в газовую фазу, для чего требуется дополнительная энергия. С другой стороны, ассоциация за счет водородных связей может рассматриваться как существенное увеличение молекулярной массы, что приводит к уменьшению летучести. [c.409]

    В соответствии с изменением типа химической связи и струн туры в свойствах бинарных соединений проявляется более и. и менее отчетливо выраженная периодичность. Об этом, наприме ), свидетельствует характер изменения по периодам и группам ет и1 дартной энтропии, температуры плавления, энтальпии и энергии Гиббса образования однотипных соединений (рис. 104). В изме [c.197]

    Свойства полимеров определяются не только гибкостью макромолекул, но и их взаимным расположением, т. е. структурой. Для полимерных веществ с линейными и разветвленными макромолекулами характерны два типа связей. Между атомами в цепных молекулах действуют прочные ковалентные химические связи длиной 0,1 0,15 нм. Взаимодействие между цепными молекулами осуществляется за счет сил Ван-дер-Ваальса, проявляющихся на расстоянии 0,3 0,4 нм. Иногда между макромолекулами возникают и водородные связи. Энергия межмолекулярного взаимодействия на 1—2 порядка меньше энергии химической связи. Например, энергия химической связи С—Н (в углеводородах) составляет 415, С—С-связи — 332 кДж/моль, а энергия взаимодействия между молекулами углеводородов — приблизительно 4,18кДжна группу СНз.При увеличении молекулярной массы вещества (например, у полимеров) суммарный эффект межмолекулярных сил резко возрастает. [c.327]

    Основной характеристикой атома серы, существенно определяющей особенности процессов образования, типы химической связи и физико-химические свойства сульфидных фаз, является его акцепторная способность, вызванная стремлением к достройке 5 р -конфигурации атома серы до энергетически наиболее устойчивой конфигурации присущей инертным газам и обладающей минимальным запасом свободной энергии. Эта особенность атома серы обусловливает значительную долю ионной связи Ме—5 во многих сульфидах, а также образование атомами серы ковалентносвязанных групп 8х, что, в частности, определяет склонность к образованию полисульфидных фаз. [c.7]

    В зависимости от типа процесса изменениям энтальпии присваивают название теплоты образования, теплоты сгорания, теплового эффекта химической реакции, энергии связи, высшей или низшей теплоты сгорания, теплоты фазового перехода. Высшей теплотой сгорания называют теплоту, выделяемую при полном сжигании вещества и конденсации водяного пара, образующегося при сжигании углеводорода, при достижении исходной температуры. Если при сжигании углеводородов водяной пар не конденсируется по достижении исходной температуры, то выде- [c.65]

    Наиболее сильное взаимодействие между частицами проявляется в кристаллическом состоянии вещества. Сила этого взаимодействия такова, что частицы образуют определенную пространственную структуру —/срисгалл, в котором они закономерно расположены на фиксированном расстоянии друг от друга. Кристалл ограничен плоскими гранями, которые пересекаются по прямым линиям — ребрам. Углы между гранями обусловлены внутренним строением кристалла и зависят от типа химической связи между частицами, от ее энергии, углов и числа связей между частицами. Существование кристаллов является следствием исключительно высокого порядка в расположении частиц, составляющих кристалл. [c.158]

    Но все подсчеты, сделанные для газовых сред и с помощью различных приближений распространенные на жидкости, приводят к общему важному заключению, что ван-дер-ваальсовы силы рассмотренных выше типов вносят лишь незначительный вклад в общую энергию связей между частицами жидкости. Особенно убедителен расчет для воды (см. М. И. Шахпаронов). Приняв диаметр молекулы воды равным приблизительно 0,28 нм, получаем для усредненной энергии дипольного взаимодействия 797 Дж/моль, лондоновского—140 и поляризационного 42 Дж/моль, т. е. всего 979 Дж/моль, тогда как при испарении одного моля воды поглощается 42 000 Дж/моль. Ван-дер-ваальсовы взаимодействия таким образом обусловливают всего около 2% энергии связей в воде. К этому можно добавить, что энергия теплового движения при 300 К составляет приблизительно 2500 Дж/моль — значительно больше, чем энергия ван-дер-ваальсовых взаимодействий. Вот почему химические взаимодействия между молекулами жидкостей, в результате которых жидкость образует единую химическую систему, представляют особенно большой интерес. Сильные химические взаимодействия, при которых происходит перестройка электронных оболочек, разрываются химические связи и возникают новые связи, сопровождаются большими изменениями запаса энергии системы (порядка 400 кДж/моль) и ведут к образованию соединений, значительно отличающихся по свойствам от исходных. Такой процесс называют химической реакцией. При этом, разумеется, жидкая система может превратиться в пар или твердое вещество. [c.241]

    Рассмотренные выще потенциалы относятся к молекулам, взаимодействия между которыми имеют характер вандерваальсовых. Однако во многих системах, наряду с такими взаимодействиями, имеются и взаимодействия типа слабой химической связи, которые отличаются от вандерваальсовых большей энергией, локализацией в пространстве, насыщаемостью. Указанными особенностями обладает донорно-акцепторная связь, образование которой сопровождается перераспределением электронной плотности не только внутри молекул (поляризация), но и между ними (перенос заряда). Одна из взаимодействующих молекул выступает как донор электронов, другая — как акцептор. Донором может быть молекула, содержащая на внешнем энергетическом уровне неподеленную электронную пару, т. е. пару не участвующую в образовании связи с другой частицей. Это, например, спирты, органические сульфиды, иодиды, и азотистые основания, в которых неподеленные пары локализованы на атомных орбиталях кислорода, серы, иода и азота. [c.123]

    ИОННАЯ СВЯЗЬ, тип химической связи, для к-рой характерно существ, перераспределение электронной плотности атомов в молекуле по сравнению со своб. атомами. Идеальная И.с. отвечает образованию ионов в молекуле, т.е. такому электронному распределению, когда вблизи к.-л. ядра или группы ядер электронная плотность оказывается близкой к электронной плотности своб. иона. При этом электронная плотность смещается от одного из атомов (с низким потенциалом ионизации) к другому атому (с высоким сродством к электрону), как если бы произошел перенос электрона от одного атома к другому. Хим. соединения с И. с. можно качественно описывать как образованные не атомами, а ионами, напр. Na" СГ, s , Li (AIFJ . Энергия И. с. в существ, степени определяется электростатич. (кулоновским) взаимод. ионов, в к-рых распределение заряда перестает быть сферически симметричным (т.е. ионы поляризуют друг друга). Взаимное расположение ионов в молекуле (ее геом. конфигурация) также определяется прежде всего кулоновским взаимод. ионов. [c.257]

    КОБАМИДНЫЕ КОФЕРМЕНТЫ, см. Витамин Вц. КОВАЛЕНТНАЯ СВЯЗЬ (от лат. со--приставка, означающая совместность, и valens-имеющий силу), тип химической связи, характеризуемый увеличением электронной плотности в области между химически связанными атомами в молек ле по сравнению с распределением электронной плотности в своб. атомах. Уменьшение энергии системы при образовании К. с. не может быть описано электростатич. моделью и треб>ет учета квантовых св-в молекулы, напр, симметрии многоэлектронной волновой ф-ции относительно перестановок индексов электронов. [c.420]

    Возможность образования связей за счет тех или иных орбиталей определяется не только энергией, но также геометрическими свойствами орбиталей. Поскольку s-орбитали сферически симметричны относительно ядра, они могут взаимодействовать с ядрами других атомов независимо от направления. Орбитали других типов, как это было описано в гл. 5, характеризуются пространственной направленностью. Поэтому их особенностью является образование направленных связей. Рассмотрим, например, роль р-орбиталей при образовании химической связи в молекулах фтора (Fj) и фтористого водорода (HF) оба процесса изображены на рис. 7.11. В молекуле фтора можно сконструировать связывающую орбиталь, взяв по одной из 2р-орбиталей каждого атома фтора. Связь в молекуле HF формируется путем комбинации ls-орбитали водорода с 2р-орбиталью фтора. Связи в каждой из этих молекул образуются в направлении, в котором 2р-орбиталь фтора дает наибольшую электронную плотность. Это соображение играет очень важную роль для молекул, состоящих из трех или большего числа атомов, поскольку оно показывает, чем определяется геометрия молекул. В более сложных случаях приходится учиты- [c.117]

    Поскольку огнеупорные материалы имеют высокие температуры плавления, опи, видимо, характеризуются прочными химическими СВЯЗЯ.МИ. Причем химические связи могут быть как ионною, так и ковалентного типа. Огнеупорные вещества с ионным характе])ом связи должны иметь высокую энергию крнстал-лнчсскоп решетки. Из уравнения (8.19) следует, что энергия кристал.чнческон решетки н[)011орциона. ьна следующему отношению [c.259]

    Возникает вопрос, в чем же причина существования трех уровней энергии активации деструкции полимеров. На первый взгляд, причина может заключаться в том, что полимерные цепи имеют в общем случае химические связи трех уровней прочности. Но более внимательное изучение приводит к выводу о существовании только двух типов связей слабых и прочных. Первый процесс деструкции определяется разрывом слабых связей, причем происходят разрывы в основном не концевых связей, а внутренних (по схеме рис. 2.3, где С/о = о ). Второй процесс определяется разрывом прочных связей (также внутренних) с ио = Еп После протекания первой и второй стадий остаются короткие осколки полимерных цепей, поэтому статистически преобладают разрывы концевых связей (в полиэтилене, например, отрыв концевых групп СНз) с энергией активации по Котреллу Ео. При этом продолжается и разрыв внутренних связей с энергией Еа Усредненное значение энергии активации деструкции на третьей стадии Ео > должно лежать между этими значениями. Так, для полиэтилена Ео = 345, о = 300, а о = 267 кДж/моль. Для ПММА о = 345, Бй 2)=217 кДж/моль, и следует ожидать, что Ео > 260 кДж/моль. [c.120]

    Способность неопределенных соединений полупроводникового типа увеличивать интервалы непрерывного изменения энергии химической связи при взаимодействии с атомами или молекулами дальтонидов за счет изменения электронных зарядов связей от нуля, т. е. от ван-дер-ваальсовой связи, до 2,5 (т-электронов, т. е. до усиленной полной ковалентной связи. Определенные соединения такой способностью не обладают электронные заряды связей в них изменяются в пределах 0,6 о-электрона, т. е. от ослабленной до усиленной ковалентной связи, или количественно от 1,8 до 2,4 э. Различие между определенными и неопределенными соединениями в этом отношении в свою очередь связано со способностью твердых тел астехиометрического состава к химическому взаимодействию, посредством электронного и дырочного газа. [c.394]

    Обобщение. Энергия ионизации, электронное средство и электроотрицательиость — это три величины, характеризующие аттракцию внешних электронов в атомах (лат. attra tio — притяжение). Они помогают оценить степень электронофильностн элементов. Соотношение величин аттракции к электронам у взаимодействующих атомов-партнеров А и Б и определяет собой тип химической связи А — Б. Если разница в аттракции к электронам у частиц А и Б достаточно велика для того, чтобы электроны были оттянуты атомом более электро-нофильного элемента, то образуется ионный кристалл. Это один крайний случай. Если атомы А и Б принадлежат к одному и тому же элементу, то различие в их аттракционной способности к электронам Д.4 = 0. Тогда связь полностью полярна. Это другой крайний случай. Наиболее многочисленны промежуточные случаи разных степеней полярности. Сказанное можно представить в виде следующей схемы. [c.122]

    Вид кривой изменения потенциальной энергии, внутримолекулярного взаимодействия (ионов в ионной молекуле Na l, а также, например, в ковалентной молекуле Нг) является общим для всех видов химического взаимодействия. Кривые незначительно отличаются лишь величинами некоторых параметров. Таким образом, единство и определенное взаимодействие между противоположностями обусловливает существование того или иного типа химической связи, возникновение ее и, следовательно, образование химического соединения. [c.168]

    Раньше существовало мнение, что образование химической связи оказывает влияние только на внешние электронные уровни, поскольку в связанном состоянии изменяются лишь положение и форма края поглощения или испускания, связанного с этим уровнем. Однако в действительности любые изменения во внешнеэлектронной конфигурации сопровождаются изменениями более глубоких атомных уровней, поскольку энергия ионизации электрона существенно зависит от экранирующего влияния всех остальных электронов, какими бы ни были их волновые функции. В частности, это было установлено Кошуа [21] в связи с расчетами энергии ионизации ионов с различной электронной конфигурацией, выполненными по методу самосогласованного поля Хартри — Фока [22, 23]. Энергия ионизации должна изменяться приблизительно на одну и ту же величину для каждого внутреннего уровня. Поэтому соответствующие смещения атомных спектральных линий очень малы и их трудно обнаружить. Спектрографическая аппаратура высокого разрешения позволила зафиксировать небольшие смещения наиболее интенсивных линий при изменении степени окисления, однако этот эффект заметен только в случае самых легких элементов. Вообще энергия внутренних уровней зависит от пространственного распределения электронного облака, которое окружает излучающий атом. Поэтому положение атомных линий связано и с гибридизацией валентных орбиталей, и с ковалентным характером связей, и с типом координации. Приведем несколько примеров. [c.125]


Смотреть страницы где упоминается термин Типы химических связей и энергии связи: [c.281]    [c.194]    [c.27]    [c.14]   
Смотреть главы в:

Химия и периодическая таблица -> Типы химических связей и энергии связи




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь химическая энергия

Связь энергия Энергия связи

Химическая связь

Химическая связь связь

Химическая энергия

Химический связь Связь химическая

Энергия связи

Энергия химически связей

Энергия химическои связи

типы связ



© 2025 chem21.info Реклама на сайте