Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация способность к полимеризации

    В настоящее время известно несколько способов стереоспецифиче-ской полимеризации. Обычно стереоспецифичность реакции достигается комплексообразующей способностью катализатора, влиянием растворителя или температуры. Особое место среди методов стереоспецифической полимеризации занимает полимеризация в кристаллической фазе и полимеризация в соединениях включения. Оба эти метода являются случаями полимеризации в матрице , т. е. реакции, в которой строение образующегося полимера зависит только от геометрического фактора. В случае полимеризации в кристаллической фазе для каждого мономера существует только одна матрица — характерная для него кристаллическая решетка. [c.78]


    Особым свойством многих простых И замещенных олефинов является их способность превращаться в вещества с той же эмпирической формулой, но более высокого молекулярного веса. Такие продукты обычно известны как полимеры винила или полимеры присоединения, а реакция, приводящая к образованию таких продуктов, называется реакцией полимеризации винила или полимеризационным присоединением. Сами олефины обычно называются мономерами. [c.114]

    Таким образом, сохранение в масле во взвешенном состоянии твердых продуктов окислительной полимеризации способствует поддержанию чистоты двигателя. Отсюда следует, что оценить качество моющих присадок можно на основе исследования их стабилизирующих свойств. Опыты такого рода проводились, как уже указывалось, многими исследователями, причем большинство моющих присадок обнаружило способность стабилизировать суспензии. Хотя полученные данные относительной стабилизирующей способности не всегда совпадали с действительными моющими свойствами присадок, вероятно, что причиной этого были недостатки методики исследования, которую не всегда можно назвать вполне качественной. В табл. 133 приведены данные, полученные на весовом седиментометре в сопоставлении с результатами оценки моющих свойств тех же присадок методом ПЗВ [5]. [c.360]

    К полимеризации способны соединения с кратными связями, число и характер которых в молекуле мономера могут быть различными. [c.211]

    Вопрос, о том, где кончается вещество, способное дать углеводороды, является беспредметным. Часть органического вещества может, в силу своей химической структуры, дать настоящие углеводородные смеси, тогда как другая часть, химически менее активная, может одновременно присутствовать в данных условиях в неизменном состоянии. Можно, конечно, допустить, что жировой материал, содержащий готовую цепь углеродных атомов способен сравнительно легко перейти в метановые углеводороды или вообще — в углеводороды. Но это только часть вещества будущей нефти, основная же масса его превращается, проходя последовательные этапы, в сложную смесь веществ высокого молекулярного веса, обладающих циклическим строением, а также содержащих некоторое количество гетероатомов. Потеря этих гетероатомов создает предпосылки для образования активных соединений, способных к последующей полимеризации и конденсации молекул. Поэтому начальная углеводородная смесь должна иметь сложный полициклический характер в этой смеси наряду с полиметиленовыми циклами будут содержаться ароматические, а также их различные комбинации. Начальные стадии нефтеобразования, если подразумевать под этим термином собственно образование углеводородов, характеризуются совместным содержанием высокомолекулярных углеводородов и остатков гетерогенных соединений. Эти химические свойства объясняют высокий молекулярный и удельный вес первичной нефти и значительное содержание в ней смолистых веществ, не идентичных смолистым веществам, возникающим при вторичных процессах изменения нефти. Пока сложные молекулы еще сохраняют какую-то близость к структуре исходного материала, очевидно, не имеется достаточных оснований предполагать в таких нефтях высокое содержание легких углеводородов и газа. [c.211]


    Передача цепи. Для процессов полимеризации, протекающих в среде растворителя, а также для полимеризации мономеров, в молекулах которых имеются подвижные атомы или группы, характерны реакции передачи цепи. В этом случае насыщение макрорадикала происходит вследствие присоединения атомов или групп, отщепляющихся от других молекул (мономера, полимера, растворителя и др.). В результате образуются валентно-насы-щенная макромолекула полимера и свободный радикал, начинающий новую молекулярную цепь. Таким образом, при передаче цепи прекращение роста макромолекулы не приводит к уничтожению кинетической цепи. Если реакционная способность новых радикалов, образующихся при передаче цепи, мало отличается от активности начальных радикалов, инициирующих образование кинетических цепей, то передача цепи заметно ие изменяет скорость полимеризации, но приводит к образованию полимера с пониженным средним молекулярным весом. Протекание реакций передачи цепи может быть обнаружено из сопоставления молекулярного веса и скорости полимеризации при различных концентрациях веществ, на молекулы которых передаются цепи. [c.125]

    Выбор ионогенных групп катионитов и анионитов зависит от назначения ионообменных смол. Сейчас есть смолы с высокой избирательной способностью к обмену ионов определенного типа. При синтезе ионитов используют такие ионогенные группы, которые являются аналитическими реактивами, осаждающими тот или иной ион. Ионообменные смолы получают как по реакции поликонденсации, так и по реакции полимеризации. [c.219]

    Полимеризацией называют реакции образования высокомолекулярных соединений из мономеров. В таких реакциях рост макромолекул происходит путем присоединения мономеров к исходным инициирующим частицам и далее —к реакционноспособным группам на концах образующихся полимеров. К полимеризации способны органические соединения, содержащие либо кратные (двойные. Тройные) связи, либо циклы. Число мономерных звеньев в данной макромолекуле определяет степень ее полимеризации. [c.384]

    IV. Для радикальной полимеризации характерны реакции передачи цепи. Сущность состоит в отрыве растущим радикалом атома или группы атомов от какой-либо молекулы (передатчика цепи). В результате радикал превращается в валентно-насыщенную молекулу и образуется новый радикал, способный к продолжению кинетической цепи. Передача цепи может осуществляться 1) через молекулу мономера [c.387]

    Б реакциях радикальной полимеризации способно участвовать абсолютное большинство выпускаемых промышленностью мономеров этиленового ряда, а также бутадиен и его производные (изопрен, хлоропрен). Однако активность мономеров в этих реакциях существенно зависит от природы заместителей при атомах углерода. Рассмотрим сравнительную активность мономеров на примере [c.29]

    Активность мономеров в реакциях радикальной полимеризации существенно зависит не только от природы, но и от числа одинаковых или разных заместителей в молекуле мономера. Так, наличие двух бензольных колец при Одном атоме углерода в молекуле мономера полностью подавляет его способность к полимери- [c.31]

    Олефиновые мономеры легко поглощают кислород из воздуха, образуя перекиси, способные сами по себе генерировать радикалы и тем самым служить инициаторами полимеризации. Поэтому в процессе хранения к мономерам обычно добавляют какой-либо ингибитор, например гидрохинон. Если такой стабилизованный мономер нужно заполимеризовать, то для этого необходимо достаточное количество радикалов, которые после насыщения ингибитора смогли бы инициировать полимеризацию. Именно этим объясняется наличие индукционного периода, часто наблюдаемое при проведении процесса полимеризации. [c.294]

    Свободные радикалы в процессе полимеризации способны вступать в различные реакции, указанные в табл. 2.2, Прн реакциях 1 и 5 свободные радикалы исчезают, при остальных — происходит замена одних радикалов другими, В химических взаимодействиях реакции 2—4 обеспечивают рост цепи и продолжение процесса, реакции 1 и 5 — его прекра, енне. [c.111]

    С повышением концентрации мономеров в реакционной смеси и понижением температуры полимеризации степень полимеризации БК увеличивается. Наиболее высокомолекулярные фракции (10-20%(масс.) полимера с более 1,5-10 ) представляют разветвленные полимеры со среднемассовым числом узлов ветвлений 10-12. Характерной особенностью процесса являются практическое отсутствие реакции передачи цепи через мономер, повышение относительной реакционной способности изопрена (рис. 7.32) и независимость содержания С=С-связей в БК от конверсии. С повышением температуры при одном [c.331]

    Из водорастворимых основ наибольшую популярность в фармацевтической практике приобрели продукты различной степени полимеризации окиси этилена, характеризуюш иеся полной физиологической индифферентностью и хорошей растворимостью в воде. Преимуществами основ этого тина являются растворимость в секретах слизистых оболочек, что устраняет необходимость подбирать вещества со строго заданной температурой плавления, способность полностью отдавать действующие вещества, стойкость при хранении полиэтиленоксиды длительно сохраняются без изменения и являются неблагоприятной средой для развития микроорганизмов. Положительным является также возможность их использования в производстве суппозиториев методами выливания и прессования, а также возможность использования в тропиках. Следует отметить, что с введением в практику основ этой группы (в частности, поли- [c.277]


    Значение взаимосвязи между константами скоростей полимеризации и 1/2 трудно переоценить. Так как определение значений 1/2 неизмеримо проще, чем определение кинетических характеристик мономеров, то о реакционной способности мономера удобней судить по полярографическим показателям. Здесь же следует заметить, что в случае пространственных затруднений в молекулах отдельных мономеров в таком ряду соединений сравнение значений 1/2 с константами скоростей реакций радикальной полимеризации, по-видимому, невозможно. В качестве примера такого рода приведем изученные нами мономеры стирол, п-винилнафталин, аценафтилен [290]. Линейной зависимости между 1/2 и кинетическими характеристиками в случае этих мономеров нет, что, как уже сказано, может быть объяснено различной чувствительностью к пространственным факторам сравниваемых реакций вообще известно, что радикальные реакции особенно чувствительны к пространственным затруднениям. [c.192]

    Синтез полимеров основан на способности низкомолекулярных полифункциональных соединений к реакциям полимеризации, поликонденсации и ступенчатой полимеризации. Однако сами по себе макромолекулы также способны к химическим превращениям (см. раздел 2.1.6), что часто используется в практических целях. В химии высокомолекулярных соединений различают реакции функциональных групп, протекающие без изменения строения основной цепи, а следовательно, и степени полимеризации, и реакции, протекающие с деструкцией макромолекулярных цепей. Во многих случаях обе эти реакции протекают одновременно. Кроме того, возможны реакции сшивания и прививки, которые могут быть использованы для получения блок- и привитых сополимеров (см. раздел 3.3.2). [c.237]

    ПОЛИМЕРИЗАЦИЯ (аддиционная полимеризация), синтез полимера путем последоват. присоединения молекул ниэ-комол. в-ва (мономера) к активному центру, находящемуся на конце растущей цепи. В П. вступают соед., содержащие кратные связи С=С, С=С, С = 0, =N и др., либо способные раскрываться циклич. группировки (окиси олефинов, лактоны, лактамы и др.У По числу участвующих в р-ции мономеров различают гомополвмеризацию (один мономер) и саполимеризацию (два и более). В зависимости от природы активного центра выделяют радшальную полимеризацию (активный центр — своб. радикал) и ионную полимеризацию (ион, ионная пара или поляризов. молекула см. Анионная полимеризация, Катионная полимеризация). Важная разновидность П.— стереоспецифическая полимеризация, при к-рой образуются полимеры с высокой степенью упорядоченности пространств, строения. [c.462]

    ДМСО > ТГФ, основной причиной которого служит уменьшение отношения kp/f > [8]. Значительные различия в величинах kp/f > при полимеризации этих мономеров отмечены и для ряда других растворителей (формамид, диоксан) и их смесей с водой [5, 52, 128]. Отмечено, что добавки небольших количеств воды к раствору АА в ДМСО позволяют заметно повысить скорость полимеризации и вязкость растворов полимеров [52, 129]. В случае же полимеризации N, N-ди-метилакриламида добавки воды не оказывают заметного влияния на скорость образования полимера в среде этанола [128]. Предположено [130, 131], что роль воды при полимеризации АА связана с сольватацией его растущих цепей, ограничением столкновений между растущими макрорадикалами и обрывом цепи. Изменение состава смеси вода-ДМСО оказывает сильное влияние на значение кинетических параметров полимеризации АА (табл. 2.4), причем наблюдается более значительное уменьшение кр, чем кц, с увеличением доли ДМСО в реакционной смеси. Более высокие значения кр в водных растворах свидетельствуют о большей реакционной способности в них акриламидного радикала, а также меньшей степени автоассоциации мономера. В растворах ДМСО сольватация молекул АА ниже, чем в воде, в связи с чем мономер в них существует в виде ассоциатов, на разрушение которых при полимеризации затрачивается дополнительная энергия, что выражается в увеличении энергии активации роста цепи при переходе от водных растворов к растворам в ДМСО. Согласно [125], в твердом состоянии АА существует в виде димера. В водных же растворах, вследствие образования водородных связей с водой, димер распадается на молекулы. В то же время в формамиде и ДМСО АА в некоторой степени димеризуется, на что указывают теплоты растворения, равные -12,2, -10,5 и -4,6 кДж/моль в воде, формамиде и ДМСО соответственно и характеризующие степень разрыва водородных связей в димере. [c.42]

    Доказательства существования ионного механизма иолиме-рнзации вначале были получены при исследовании каталитической полимеризации [44, 45]. Было обнаружено, что соединения, которые ускоряют полимеризацию, способны, как и можно было ожидать, отщеплять анион хлора от атома фосфора в молекуле (ЫРС1г)з (такими соединениями являются карбоновые кислоты, спирты и металлы) [45]. Было высказано предположение, что и в некатализируемых реакциях полимеризация инициируется в результате термической ионизации тримера [45, 49]. [c.205]

    Полимеризация альдегидов. Полимеризацией, ка к упоминалось выше, называется реакция соединения двух или нескольких одинаковых молекул. Продукт реакции, называемый полимером, имеет тот же состав, что исходное вещество ( мономер ), но обладает большим молекулярным весом. При реакции полимеризации остатки молекул в полимере часто связываются через атом кислоро<да, азота или другого элемента—ие углерода. Однако молекулы альдегидов способны соединяться в более крупные молекулы (иолимеризо-ваться) и таким образам, что отдельные молекулы в продукте реакции связываются путем непосредственного соединения атомов углерода (без кислородных или каких-либо других мостиков ). Этот последний способ полимеризации по характеру соединения молекул можно отнести также к реакциям конденсации. Реакциями конденсации называются реакции образования из меньших молекул ббльших молекул с образо- [c.110]

    Внутримолекулярное взаимодействие концевой аминной группы и полипептидного цикла представляет собой интересный процесс обрыва [44, 45]. В результате такой реакции должны образовываться циклические полипептиды, и из продуктов полимеризации NKA в присутствии некоторых апротонных оснований действительно удалось выделить гексамерные циклические полипептиды. Скорость такого обрыва должна зависеть от молекулярного веса полимера, так как вероятность замыкания кольца больше при относительно низкой степени полимеризации DP 4—8), и понижается с увеличением длины полимерной цепи [72,73]. Следовательно, некоторая часть полимерных цепей должна обрьшаться в результате циклизации еще при низких степенях превращения, а молекулы, имеющие длину цепи выше критической, способны расти до достаточной длины, пока не произойдет одна из возможных реакций обрыва. Возможно, такой характер обрыва цепей ответствен за широкое молекулярновесовое распределение (высокое отношение Мщ/Мп) полипептидов, полученных полимеризацией в присутствии апротонных оснований ), а также объясняет постоянную степень полимеризации в последовательных реакциях пост-полимеризации (разд. 7). [c.587]

    Другие каучуки, получаемые методом растворной полимеризации. Методом полимеризации в растворе получают морозостойкие и бензомаслостойкие каучуки на основе циклических окисей— сополимеры окиси пропилена и аллилглицидилового эфира (СКПО), а также сополимеры окиси этилена и эпихлоргидрина [14, 15]. Эти каучуки выпускаются в промышленном масштабе. Предполагается, что для сополимеров типа СКПО ухудшение эластических свойств в области низких температур, по-видимому, связано с образованием стереорегулярных — изотактических блоков пропиленоксида и другими особенностями их молекулярной структуры. В случае сополимеров окиси этилена и эпихлоргидрина, где сомономеры входят в полимер в соизмеримых количествах (обычно 1 1), ухудшение эластических свойств может быть связано с образованием длинных блоков обоих сойолимеров, которые способны к образованию кристаллической фазы. [c.62]

    Способность системы сохранять дисперсность во времени при отсутствии внешних астабнлизующих воздействий далеко не исчерпывает требований к устойчивости синтетических латексов. В отличие от латексов — полупродуктов эмульсионных каучуков, которые должны сохранять устойчивость лишь на стадиях полимеризации и отгонки незаполимеризовавшихся мономеров, товарные латексы подвергаются в процессе их получения и переработки ряду дополнительных специфических воздействий механических [8—12], замораживанию-оттаиванию [13—16], испарению влаги с поверхности и в объеме [8, 17, 18], а также в латексы вводят электролиты [9, 19—24], наполнители, неионные эмульгаторы в качестве стабилизаторов [23, 25—28]. 6о многих случаях требуется ограниченная устойчивость к одним и высокая — к другим коагулирующим воздействиям. Например, при проведении процесса агломерации частиц латекс должен обладать лишь ограниченной устойчивостью к агломерирующим воздействиям, препятствующей макрокоагуляции этот же латекс в процессе дальнейшей переработки при получении на его основе пенорезины должен обладать высокой устойчивостью к механическим воздействиям, но ограниченной устойчивостью к действию специфических химических агентов — латекс должен быстро желатинировать. (Иногда желательно даже, чтобы латекс желатинировал при повышенной температуре без введения специальных агентов. Такой процесс положен, например, в основу одного из способов получения пенорезинового подслоя при производстве ковров.) [c.588]

    Соединения с несколькими способными к полимеризации двойными связями могут образовывать совершенно нерастворимые сетчатые полимеры напрнмер, при сополимеризации стирола с -дивинилбензолом получаются нерастворимые, ограниченно набухающие полимеризаты, так как дивинилбензол заполимеризовывается в полистирольные цепи, а остающаяся двойная связь так же способна полимеризоваться, как двойная связь мономерного стирола. [c.944]

    Содержание гетероэлементов нежелательно. Они могут влиять на реакционную способность пека, Бар и Левис [8] показали, что мягкое окисление на воздухе приводит к дегидратационной полимеризации, а более жесткое окисление— к поперечному связыванию молекул при помощи -0-, что в конечном счете делает пек неплавким и его впоследствии невозможно сформовать. Кислород или сера, присутствуя в определенных количествах, изменяют реакционную способность и могут решительно изменить микроструктуру. Большие количества (выше 5-7%) кислорода и серы вообще предотвращают образование мезофазы, делая предшественник неграфитируемым. Кроме того, при выделении гетероатомов в виде газообразных продуктов при повышенных температурах упорядочение кристаллитов в [c.183]

    Стирол СдН5СН=СН2 — жпдкосгь с приятным запахом. Характерной особенностью является способность полимеризации, что находит широкое применение в производстве иоли-стирола. В сочетании с бутадиеном используется для получения полисгнрольно о каучука. [c.316]

    Полак Л. С., Неравновесная химическая кинетика и ее применение, М., 1979. Л. С. Полак. РАДИАЦИОННАЯ ПОЛИМЕРИЗАЦИЯ, инициируется радикалами, положит, и отрицат. ионами, образующимися при взаимод. с в-вом излучения высокой энергии (напр., рентгеновского и 7-лучей, а- и (3-частнц, ускоренных электронов, протонов и др.). К Р. п. способны любые мономеры. Механизм зависит от их строения и условий р-дии (т-ра, природа р-рителя). Наиб, часто процесс проводится в жидкости, твердой фазе (см. Твердофазная полимеризация) и в адсорбц. слоях. Кинетика Р. п. в жидкости, структура образующихся полимеров и состав сополимеров определяются природой активного центра (радикальная, ионная). Особенности Р. п.— независпмопь скорости инициирования от т-ры, легкость регулирования мовщости дозы, Высокая степень чистоты получаемых полпмеров, возможность продолжения р-ции.после выключения источника излучения (пост-полимеризация), особенно в эмульсиях, с образованием полимеров высокой мол. массы. [c.488]

    КАТИОНИТЫ, см. Катионообменные смолы. КАТИ0НИАЯ ПОЛИМЕРИЗАЦИЯ, ионная полимеризация, в к-рой растущий конец полимерной цепи несет положит. заряд. К этой полимеризации способны олефины, ароматич. соединения с ненасыщ. боковой цепью, алифатич. альдегиды и тиоальдегиды, виниловые эфиры и тиоэфиры, кетены, нитрилы, диазоалканы, цианамиды, изоцианаты, напряженные циклоалканы (напр., циклопропан), гетероциклич. простые и сложные эфиры, ацетали, амиды, ам1шы, сульфиды, дисульфиды, силоксаны, иминоэфиры. [c.353]

    РАДИКАЛЬНАЯ полимеризация, полимеризация, в к-рой активные центры роста представляют собой своб. радикалы. Р. п. возможна для большинства виниловых, винилиденовых, диеновых мономеров, а также для нек-рых напряженных циклич. соединений. Нек-рые ненасыщ. мономеры не способны полимеризоваться по радикальному механизму вследствие стерич. затруднений (напр., 1,2-дизаме-щенные виниловые мономеры) или в случае вырожденной передачи цепи (см. ниже), напр, пропилен, аллильные мономеры. [c.157]

    Способность алюмосиликатов расщеплять при повышенной температуре тяжелые углеводороды была впервые отмечена Уббелоде и Ворониным Затем Л. Г. Гурвич обнаружил, что флоридин вызывает полимеризацию алкенов Полимеризацию и дополимерц-зацию алкенов над флоридином детально изучал С. В. Лебедев [c.224]

    Мономеры, для которых значения е лежат в пределах от —1 до + 1,5, способны полимеризоваться по радикальному механизму. Как показывает опыт, ВА легко полимеризуется в присутствии источников свободных радикалов. В отличие от стирола и метилметакрилата он не способен к термической полимеризации. Попытки полимеризации ВА по катионному механизму привели к получению лишь очень небольших количеств полимера. Высокие выходы ПВА были получены при полимеризации мономера в присутствии боралкилов, но тщательное исследование реакции показало, что и здесь инстинными инициаторами полимеризации являются пе- [c.8]

    В своих более ранних исследованиях, выполненных при 25°С и наиболее стабильном pH 2,0, Хоббель и Викер получили основные сведения по полимеризации в 0,4 М растворе монокремневой кислоты (2,4 % SIO2) при ее старении за время от 5 мин до 24 сут. Измерения были также выполнены при концентрациях растворов 0,084 М и 0,97 М. Полученные данные показали, что по мере развития процесса полимеризации способность кремнезема образовывать желтую кремнемолибденовую кислоту понижалась. Для каждого образца, взятого после определенного времени старения, измерялось процентное содержание кремнезема, еще не прореагировавшего с молибденовой кислотой, в зависимости от времени такой реакции вплоть до 80 мин. На основании этих данных для каждой стадии полимеризации подсчитывалась скорость реакции кнм мин фракции с высокой молекулярной массой. Представленные на рис. 3.45 данные взяты из работы [84]. [c.352]

    Полимеризация протекает особенно легко, если мономер реагирует с образованием стабилизированного карбениевого иона. Такими мономерами являются изобутен, простые виниловые эфиры, стирол, а-метилстирол и бутадиен, но не такие вещества, как, например, акриламид. Поскольку реакционная способность мономеров очень различна, катионную сополимеризацию трудно осуществить. [c.305]

    В противоположность поликоиденсации ступенчатая полимеризация протекает без выделения побочного продукта связывание мономерных звеньев сопровождается в этом случае передачей атома водорода (см. уравнение реакции образования полиуретана из диола и диизоцианата в разделе 4.2.1). Как и поликонденсация, ступенчатая полимеризаг я представляет собой ступенчатый процесс, состоящий из отдельных независимых стадий. Поэтому средняя молекулярная масса образующегося полимера непрерывно возрастает в процессе реакции. Олигомерные и полимерные продукты, образующиеся на каждой стадий , содержат те же функциональные группы, что и исходный мономер. Эти продукты можно выделить, причем их реакционная способность не уменьшается (в отличие от продуктов полимеризации). Ступенчатая полимеризация подчиняется тем же кинетическим закономерностям, что и равновесная поликонденсация [см. уравнения (4.1) — (4.4) в разделе 4.1]. Аппаратурное оформление в основном то же самое. [c.225]


Смотреть страницы где упоминается термин Полимеризация способность к полимеризации: [c.691]    [c.326]    [c.27]    [c.691]    [c.365]    [c.103]    [c.374]    [c.48]    [c.249]    [c.407]    [c.65]    [c.122]    [c.131]    [c.214]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен способность к полимеризации

Винил фтористый способность к полимеризации

Винилфенилкетон способность к полимеризации

Влияние размера лактамного цикла и заместителей в кольце на способность к полимеризации

Влияние строения мономера на способность к полимеризации

Влияние строения олефинов на способность к полимеризации

Гексадиен способность к полимеризации

Гетероциклы, способность к полимеризации

Группы, способные к полимеризации

Диизокротил способность к полимеризации

Диизопропилиден-циклобутан способность к полимеризации

Диметил-пентадиен способность к полимеризации

Диметилен способность к полимеризации

Диолефины, способность их к присоединению полимеризация

Зависимость способности мономеров к гидролитической полимеризации от их строения

Инден способность к полимеризации

Казанский. Реакционная способность активных центров в процессах анионной полимеризации гетероциклов Структура, устойчивость и взаимодействия ионных пар

Капролактам способность к полимеризации

Карбонильная группа, влияние заместителей на способность к полимеризации

Карбонильные соединения, способность к полимеризации

Катионная виниловая полимеризаци структура олефинов и реакционная способность

Кетены способность гомологов к полимеризации

Лактамы способность к полимеризации

Лактамы, реакционная способность при полимеризации

Лактоны способность к полимеризации

Латексы способностью к полимеризации

Мирцен способность к полимеризации

Мономеры реакционная способность при радикальной цепной полимеризации

Мономеры способность к полимеризации

Образование привитого сополимера на основе растворимых полимеров с концевыми группами, способными к полимеризации

Ольхов Ю. А.,Батурин С. М., Энтелис С. Г. Реакционная способность функциональных групп компонентов и ее влияние на кинетику трехмерной полимеризации и свойства сшитых полиэфируретанов

Определение инициирующей способности в реакции радикальной полимеризации виниловых мономеров

Органические радикалы и атомные группы, способность к полимеризации

Пиперидон, способность к полимеризации

Пиперилен, способность к полимеризации

Пирролидон, способность к полимеризации

Полимеризация влияние строения на способность к полимеризации

Полимеризация дивинила присутствие соединений, способных к изомерным или таутомерным превращениям

Полимеризация реакционная способность мономеро

Полимеризация реакционная способность мономеров

Полимеризация реакционная способность радикало

Пропилен способность к полимеризации

Радикалы реакционная способность при полимеризации

Реакционная способность ионных пар в ионной полимеризаци

Связь между строением мономера и его способностью к полимеризации

Сольватирующая способность среды влияние на полимеризацию

Способность к полимеризации производных этилена

Способность к полимеризации различных соединений

Строение и способность мономеров к полимеризации

Флоридин, способность вызывать полимеризацию

Циклические эфиры, способность к полимеризации

Циклогексадиен способность к полимеризации

Циклогептадиен, способность к полимеризации

Циклопентадиен способность к полимеризации

Эпоксидные соединения с группами, способными к В полимеризации, или в смеси с соединениями, содержащим, щ такие группы

Этиленовые производные, способность к полимеризации

Этилены замещенные, способность к полимеризации

Этиловый способность к полимеризаци

метил-пентадиен способность к полимеризации

способность к полимеризации

способность к полимеризации



© 2025 chem21.info Реклама на сайте