Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика газовых реакций гетерогенных реакций

    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]


    Для того, чтобы уяснить, в чем состоит взаимоотношение диффузии и кинетики химической реакции, разберем следующий простой случай. Допустим, что в неподвижной газовой среде при некоторой, везде одинаковой температуре (в изотермических условиях) находится частица сферической формы радиусом г , реагирующая с окружающим газом. Положим, протекает гетерогенная реакция первого порядка. Газ поступает из окружающей среды только за счет молекулярной диффузии одинаково ко всем элементам симметричной реакционной но- [c.102]

    Скорость химической реакции зависит от концентрации реагирующих веществ и наличия или отсутствия катализаторов — ускорителей реакции. В связи с этим реакции подразделяются на каталитические и некаталитические. Наконец, реакции могут идти как только с участием валентно-насыщенных молекул или ионов — так называемые неценные реакции, — так и с участием свободных радикалов или атомов. В последнем случае реакции идут по цепному механизму и относятся к классу цепных реакций. В зависимости от условий протекания реакции механизм кинетических процессов меняется. Поэтому для различных условий течения реакции характерны специфически отличные кинетические законы. Это приводит к необходимости разделения кинетики на разделы кинетика некаталитических и каталитических реакций. Каждая из этих глав может быть в свою очередь разделена на кинетику нецепных реакций и кинетику цепных-реакций. Нецепные и цепные реакции могут быть как гомогенными, так и гетерогенными. Кинетика гомогенных реакций объединяет кинетику газовых реакций и кинетику реакций в растворах. Специфика гетерогенных реакций зависит как от фазового состояния системы, так и от того, в какой области (кинетической, диффузионной или переходной) протекает реакция. [c.6]

    О теоретических основах кинетики газовых реакций в струе. (Кинетика гетерогенных каталитических реакций).— Азерб. нефт. хоз-во, 1951, № 6, с. 15—17. [c.13]

    Под химической коррозией подразумевается прямое взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте. Такая кор-ро ия протекает по реакциям, подчиняющимся законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются газовая коррозия выпускного тракта двигателей внутреннего сгорания (под действием отработавших газов) и лопаток турбин газотурбинного двигателя, а также коррозия металлов в топливной системе двигателей (за счет взаимодействия с находящимися в топливах сероводородом и меркаптанами). В результате окисления масла в поршневых двигателях могут образовываться агрессивные органические вещества, вызывающие химическую коррозию вкладышей подшипников [291]. Можно привести и другие примеры. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала, основную роль играет электрохимическая коррозия, протекающая, как правило, со значительно большей скоростью, чем химическая. [c.279]


    В этом разделе мы рассматривали гомогенно-гетерогенные процессы, при которых реакция частично протекает в газовой фазе, окружающей катализатор. Кинетика таких реакций требует более углубленного исследования. [c.154]

    Гомогенный и гетерогенный катализ. Если реагенты и катализатор находятся в одной фазе (газовая смесь или раствор), то осуществляется гомогенный катализ. Если реагенты (газ или жидкость) плохо растворимы в жидком катализаторе или жидкий катализатор плохо растворим в жидких реагентах и имеются две фазы, то, хотя реакция осуществляется гомогенно, в одной из соприкасающихся фаз, она является гетерофазной. При определенных условиях кинетика такой реакции определяется массообменом между фазами катализатора и реагентов, и в этом случае протекает гетерогенная реакция. При гетерогенном катализе катализатор— твердое вещество, а реагенты —жидкие или газообразные вещества. Реакция в этом случае протекает на поверхности катализатора. Гетерогенный катализ распространен в нефтеперерабатывающей промышленности значительно больше, чем гомогенный. [c.135]

    Зависимость скорости реакции от концентрации реагентов, выражаемая основным законом химической кинетики, распространяется на газовые смеси и растворы, но она неприменима к реакциям с участием твердых фаз. В последнем случае реакция развивается не во всем объеме системы, а лишь на границе раздела реагентов (эти различия гомогенной и гетерогенной реакций были рассмотрены при сопоставлении их механизмов, с. 53). [c.56]

    В последние годы опубликовано несколько монографий по химической кинетике. В Советском Союзе изданы монографии Н. Н. Семенова О некоторых проблемах химической кинетики и реакционной способности (1958) и В. Н. Кондратьева Кинетика газовых химических реакций (1958). В русском переводе вышла книга С. Бенсона Основы химической кинетики (1964). Эти обширные монографии дают достаточно полное представление о ряде важнейших направлений научных исследований в области химической кинетики. Однако, поскольку они содержат большое количество специального и зачастую дискуссионного материала, изучение этих монографий требует от читателя знакомства с основами химической кинетики. В то же время учебная литература по химической кинетике все еще немногочисленна. Особенно ощущался недостаток в учебнике по современным основам химической кинетики. По-видимому вследствие этого первое издание настоящего Курса химической кинетики , вышедшее в свет в 1962 г., разошлось очень быстро и возникла необходимость в выпуске второго издания — исправленного и дополненного. В предлагаемом курсе изложены теоретические основы кинетики гомогенных химических реакций. Кинетика гетерогенных реакций в курсе не рассматривается в связи с тем, что она в основном имеет значение для области гетерогенного катализа, которая представляет собой самостоятельный раздел науки. [c.4]

    Реакции между газообразными веществами на поверхности твердых катализаторов весьма часто применяются при осуществлении промышленных процессов (синтез метилового спирта, реакции гидрогенизации и дегидрогенизации углеводородов, синтез и окисление аммиака и т. д.). Кинетика таких каталитических реакций существенно изменяется по сравнению с кинетикой в отсутствие катализатора. В некоторых случаях увеличение парциального давления одного из реагирующих газов приводит вместо ускорения реакции к ее замедлению. В других случаях замедление реакций происходит вследствие увеличения количества одного из продуктов реакции. В гетерогенных газовых реакциях часто наблюдается дробный порядок реакций. [c.409]

    Часто химическая реакция на поверхности раздела фаз происходит значительно быстрее, чем массопередача веществ к поверхности и от поверхности в газовую фазу или внутри образовавшейся новой фазы, например внутри пленки окисла на поверхности твердого тела. ЭтО значит, что кинетика гетерогенных реакций часто сводится к кинетике диффузионных процессов, протекающих с уменьшением свободной энергии (ДС) и с увеличением энтропии. [c.49]

    Реакции в закрытых системах. Все варианты процессов, идущих в газовых или жидких, т. е. в гомогенных средах, описывают методами кинетики гомогенных реакций. Процессы в гетерогенных системах, состоящих из двух и более фаз, значительно сложнее. Примерами гетерогенных реакций могут служить процессы восстановления оксидов [c.170]

    Наиболее надежные результаты при исследовании кинетики нестационарных гетерогенных реакций получаются при использо -вании дифференциального проточного реактора. В данных реакторах степень превращения ограничивается весьма малыми величинами. Применение дифференциального проточного реактора требует высокочувствительного метода анализа состава газовой смеси. Более удобным, чем анализ состава, является характеристика изменений суммарных свойств газовой смеси. В данной работе в качестве такого свойства использована теплопроводность газовой смеси. [c.133]


    Химическая коррозия. Это—самопроизвольное разрушение металлов при взаимодействии с внешней средой. Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций и не сопровождается электрическим током. Этот тип коррозии наблюдается при действии на металлы сухих газов и жидких неэлектролитов, т. е. в нашем случае при контакте сухих топлив, масел и газовой среды. Характерной особенностью химической коррозии (в отличие от электрохимической) является то обстоятельство, что продукты коррозии образуются непосредственно на участках поверхности, вступающих в реакцию. Дальнейший рост пленки зависит от возможности проникновения нефтепродуктов через эту защитную пленку. Переход нерастворимых продуктов коррозии в нефтепродукты определяется физикохимическими свойствами верхних слоев отложений. [c.106]

    Гетерогенными факторами указанного типа обусловлены также следующие закономерности цепного горения изотермическое многократное самовоспламенение в замкнутом объеме, новые критические явления внутри области воспламенения в изотермическом режиме, изотермическое гетерогенное распространение пламени, гистерезис кинетики цепного процесса, индукция одной цепной реакцией другой реакции из-за участия адсорбированных носителей цепей, гетерогенное разветвление цепей, приводящее к локализации изотермического пламени у поверхности даже в условиях, когда обрыв цепей происходит в основном на поверхности, выход атомов кристаллической решетки в газовую фазу под воздействием носителей цепей и т. д. Обнаруженные закономерности присущи всему классу разветвленных процессов, т. е. имеют общий характер. Очевидно, что указанные факторы действуют и в неизотермических условиях. [c.429]

    Возможность выделения двух конкурирующих фаз — алмаза и графита — существенно усложняет процесс кристаллизации. В кинетике гетерогенных химических реакций широко используются понятия и определения, заимствованные из учения о гомогенных химических реакциях. Во многих случаях это вполне оправданно, например, при каталитических реакциях. Во многих же гетерогенных процессах, например, процессах роста и травления кристаллов, происходит обмен веществом между газовой и твердой фазами, что приводит к ряду принципиальных особенностей гетерогенных реакций, идущих с образованием новой фазы. Эти особенности позволяют выделить физико-химический синтез веществ в качестве отдельного направления химического (неорганического и органического) синтеза, подобно тому как в настоящее время из общих методов анализа выделился физико-химический анализ. [c.22]

    Деструкция щелочной целлюлозы относится к числу гетерогенных процессов. Газообразный молекулярный кислород вначале растворяется в набухшей гелеобразной щелочной целлюлозе и затем протекает химическая реакция. При недостаточной степени измельчения или малой концентрации О2 в газовой фазе кинетику процесса может лимитировать диффузионная область. Необходимо также отметить, что сама щелочная целлюлоза имеет внутреннюю гетерогенность, обусловленную ее надмолекулярной структурой. Несмотря на сильное набухание в ней сохраняются более упорядоченные кристаллические участки, которые менее доступны для кислорода. Размеры этих участков малы и на суммарную кинетику окислительных реакций они практически не влияют. Хотя, как будет показано ниже, влияние особенностей надмолекулярной структуры на кинетику изменения СП и фракционного состава существенно и должно учитываться при проведении процесса. [c.69]

    Масс-спектрометрический метод с полевой ионизацией позволяет изучать адсорбционный слой, взаимодействие адсорбированных атомов (молекул) с поверхностью металла и между собой, образование поверхностных соединений, поверхностную диффузию, различные гетерогенные реакции, кинетику таких реакций и другие поверхностные процессы в широком интервале температур вплоть до самых низких. В качестве эмиттера-адсорбента могут использоваться только твердые вещества с высокой электропроводностью — металлы, сплавы, графит. Метод ограничен величиной давления газовой фазы (менее 10 Па). Кроме того, высокая напряженность электрического поля у поверхности острия может оказывать значительное влияние на поверхностные процессы. Обзор работ с применением данного метода приведен в работах [7, 15, 16]. [c.51]

    С диффузионной областью мы будем иметь дело в условиях, благоприятствующих большой скорости реакции и малой скорости диффузии при высоких температурах, высоких давлениях и малых скоростях газового потока. Напротив, при низких температурах, низких давлениях и больших скоростях газового потока будет наблюдаться кинетическая область. Последними условиями и пользуются, когда хотят измерить истинную кинетику гетерогенной реакции. [c.59]

    Был проведен ряд теоретических и экспериментальных работ по изучению процесса горения угольного канала, отдельной угольной частицы, слоя и т. д., а также исследования кинетики отдельных реакций—окисления, восстановления углекислоты и др. Основным результатом этих работ явилось следующее. Процесс горения твердого топлива в основном может рассматриваться как так называемый гетерогенный процесс — на границе твердой п газовой сред, в котором в той или иной степени играют роль и определенным образом взаимодействуют химические п физические факторы, в первую очередь диффузия (диффузионно-кинетическая теория). [c.10]

    Гомогенная и гетерогенная стадии химических реакций. Для выяснения механизма химической реакции и природы входящих в него отдельных элементарных процессов весьма существенное значение имеет вопрос о том, протекает ли данная реакция целиком в гомогенной (газовой) фазе и какое влияние на течение реакции оказывают гетерогенные факторы. В случае газовых реакций таким фактором чаще всего является стенка реакционного сосуда. На значение стенок реакционного сосуда (в частности, относительной величины их поверхности и их материала) для кинетики химических газовых реакций первый обратил внимание Вант-Гофф [37] (1884), хотя отдельные наблюдения действия стенок на химическую реакцию отмечались и раньше. Изучая реакцию полимеризации хщановой кислоты НСМО в стеклянных сосудах с поверхностью различной величины, Вант-Гофф нашел, что скорость реакции в сосуде с большей поверхностью заметно больше скорости реакции в сосуде с меньшей поверхностью. Он, далее, установил, что предварительное покрытие стенок реакционного сосуда циамелидом — продуктом полимеризации цианово1г кислоты — приводит к увеличению скорости реакции более чем в три раза. Сильное влияние природы стенок на скорость реакции было замечено Вант-Гоффом также в случае окисления гремучей смеси 2Н2-Ь02 (прн 440° С). В последующие годы влияние величины поверхности и природы (материала и характера обработки) стенок на скорость химической реакции было установлено для многих реакций, протекающих в газовой фазе. Оказалось, что в одних случаях стенка тормозит реакцию, в других — ее ускоряет. Известны также случаи двоякого действия стенки, когда стенка благоприятствует реакции и действует тормозящим образом в той же реакции. В качестве одного из примеров здесь можно привести действие стенки в реакции горения водорода. Вводя в зону горения тонкие стерженьки из различных материалов, А. Б. Налбандян и С. М. Шубина [2041 обнаружили при этом резкое замедление реакции. С другой стороны, Алиа и Габер [315] показали, что воспламенение водорода в месте скрещения горячих струй водорода и кислорода (нагретых до 7 < 540° С) при давлении в несколько десятков миллиметров ртутного столба происходит лишь при внесении в газ тонкого кварцевого стерженька Таким образом, нужно заключить, что твердая иоверхиость способствует возникновению реакции горения водорода и тормозит уже идущую реакцию. Укажем, что согласно [c.50]

    Особенно большое промышленное значение имеет гетерогенный катализ. Уже в самом начале исследований кинетики газовых реакций, происходящих на поверхности твердых катализаторов, было установлено, что каталитическая активность обусловлена явлениями адсорбции. Для приближенного рассмотрения кинетики подобных реакций целесообразно использовать уже упоминавшееся уравнение изотермы Лангмюра. Это уравнение устанавливает связь между степенью заполнения (9) поверхности катализатора молекулами реагирующего вещества и парциальным давлением этого веп1ества в газовой фазе р  [c.277]

    Вильямс [510] изучал кинетику терлшческого соединения этилена и брома на поверхности стекла при О —25° под давлениями от нескольких миллиметров до 100 мм. Реакция гетерогенна и сводится по существу к присоединению брома. В некоторых случаях, в особенности при избытке брома, наряду с реакцией присоединения, вероятно, имеет место полимеризация промежуточных продуктов. бромирования. Некоторые экспериментальные результаты, например зависимость скорости реакции от давления брома, замедление реакции отравленным битым стеклом и инертными газами, повидимому, указывали наличие цепной реакции в газовом пространстве. Порядок реакции зависит от реакционного сосуда и бывает первый или второй и редко нулевой. Было найдено, что при данной поверхности сосуда порядок реакции понижается с увеличением давления и понижением температуры. Кинетика скорости реакции не зависит от давления этилена, но возрастает с увеличением давления брома увеличение поверхности сосуда благоприятствует реакции. [c.181]

    В последние годы снова появились работы канадских, английских и французских исследователей [19], в которых на основании широкого применения методов газовой хроматографии, масс-спектрометрического анализа и других совершенных методов ис следований изучался состав продуктов и кинетика первичного крекинга при низких давлениях (10—150 мм рт. ст.) в интервале 400—600° С. Эти работы снова подтверждают радикально-ценной механизм первичного термического крекинга кроме того, в них рассчитываются скорости некоторых элементарных реакций, протекающих с участием радикалов и, в частности, подчеркивается важная роль этильных радикалов при определении кинетических характеристик крекинга алканов, на что указывалось еще в работах Фроста в 40-е годы [20]. Французские исследователи дискутируют с Воеводским по поводу выдвинутой им концепции гетерогенного зарождения, возрая ая против заметного влияния стенок на зарождение цепей в термическом крекинге. Ниже мы обсудим результаты проведенных нами исследований, показавших, что рост гетерогенного фактора (б /у) увеличивает обрыв цепей, но мало влияет па их зарождение. [c.344]

    Из общих книг по катализу на русском языке см. особенно К. Райдиль и Г. Тэйлор, Катализ в теории и практике, 1933 Г. М. Шваб, Катализ, 1934 Ч. Н. Гиншельвуд, Кинетика газовых реакций, 1933 A.B. Раков-с к и й, Химическая кинетика и катализ, 1931 Э. 3 а у т е р. Гетерогенный катализ, 1932 и ряд статей в сборнике Новые идеи в области катализа (ред. С. 3. Рогинского и А. В. Фроста), 1932 исчерпывающий материа ц10 катализу в органической химии собран в книге П. Сабатье, Катализ в органической химии, 1932. [c.452]

    Изучение элементарных процессов на поверхности твердых тел имеет принципиально важное значение не только для области гетерогенно-каталитических реакций, но также и для кинетики газовых реакций. Именно с этих позиций подошел к изучению данной проблемы в своих работах В. В. Воеводский. Одной из идей, проводившихся в его исследованиях, было представление о важной роли стенки в гомогенных цепных и радикальных процессах. При этом стенка реакционного сосуда рассматривалась не только как область гибели свободных радикалов, но и как источник их о бразования. Дальнейшее развитие этих взглядов привело В. В. Воеводского к выводу о возможности существования на поверхности твердых тел адсорбированных свободных радикалов поверхности. Согласно развиваемым им представлениям, эти частицы являются не только промежуточными формами в процессах гибели и образования свободных радикалов на иоверхности, ио играют также и роль активных промежуточных продуктов гетерогенно-каталитических реакций. В результате высокой реакционной способности радикалов поверхности появляется возможность возникновения цепных гетерогенных реакций. Логическое завершение этой концепции было сделано в известном докладе В. В. Воеводского, Ф. Ф. Волькенштейна и Н. И. Семенова на Всесоюзном совещании по кинетике и реакционной способности в 1955 г. Хотя в, дальнейшем выяснилось, что цепные реакции нз поверхности не столь распространены, как это можцо было предполагать, эти представления привлекли внимание широких кругов исследователей к изучению адсор-б ированных свободных радикалов н послужили основой быстрого прогресса в этой области. [c.384]

    Контактные каталитические газовые реакции. Скорости газовых реакций на твердых каталитичесгсих поверхностях и факторы, влияющие на них, имеют бол Шое значение в технике, но количественных обобщений относительно этих прс цессов нельзя еще сделать. Скорость таких процессов и порядок реакции определяются природой и величиной поверхности катализатора а также относительной степенью адсорбции реагирующих веществ и продуктов реакции на поверхности катализатора. Тогда как в гомогенных реакциях порядок реакции представляет собой число молекул, входящих в реакцию, для гетерогенных реакций это не обязательно. Так, каталитическая реакция между двумя веществами в действительности бимолекулярная может казаться реакцией первого порядка, благодаря тому что одно из реагирующих веществ сильно адсорбируется поверхностью независимо от его давления. Во многих случаях скорость таких реакций обратно пропорциональна той или другой степени концентрации продуктов реакции. Подробное изложение этого вопроса можно найти у Тейлора, Физическая химия 981—1015 (перев. с англ.) Л. 1936, Гиншельвуда, Кинетика газовых реакций (перев. с англ.) М.-Л. 1933, Заутера, Гетерогенный катализ (перев. с нем.), Харьков 1932 и др. (см. литературу во введении). [c.89]

    Для иыяснения механизма химической реакции и природы входящих в него отдельных элементарных процессов весьма существенное значение имеет вопрос о том, протекает ли данная реакция целиком в гомогенной (газовой) фазе и какое влияние на течение реакции оказывают гетерогенные факторы. В случае газофазных реакций таким фактором чаще всего является стенка реакционного сосуда. На значение степок реакционного сосуда (в частности, их материала и относительной величины поверхности) для кинетики химических газовых реакций впервые обратил внимание Вант-Гофф. [c.20]

    Трубчатый реактор обычно используют для изучения кинетики быстрых реакций, особенно гомогенных и гетерогенных газовых реакций. Его основной недостаток — невозможность непосредственного измерения скорости превращенпя, так как в результате экспе-риме1иа получают среднюю по всей длине реактора величину ( интегральный реактор). Для устранения указанного недостатка часто применяют трубы небольшой длины или повышают нагрузку реактора, чтобы получить низкие степени превращения и почти постоянные условия по всей длине трубы ( дифференциальный реактор). При этом требуется высокая точность измерений состава (см., нанример, Риетема Кроме того, при использовании короткой трубы результат может зависеть от значительной растянутости распределения времени пребывания. [c.236]

    Уже на ранних стадиях изучения газовых реакций, происходящих на поверхности твердых тел, было найдено, что их первой стадией является адсорбция реагентов, а по завершении процесса десорбция продуктов. Поэтому при рассмотрении кинетики гетерогенных каталитических реакций используют различные изотермы адсорбции, которые позволяют определять связь между концентрациями реагирующих веществ па поверхности твердого тела и в объеме. Так, уравнение изотермы Лангмюра (гл. XV) применяют для рассмотрения кинетики мономолекулярной реакции Аг- Вг, происходящей на поверхностн твердого тела. Так как обычно адсорбционное равновесие устанавливается существенно быстрее, чем протекает химическое превращение, то скорость реакции пропорциональна поверхностной концентрации газа в адсорбированном слое или, что то же, доле занятых активных центров 0 на поверхности катализатора  [c.525]

    Закись азота, образующаяся по реакциям (2.68), (2.69), разлагается затем на поверхности катализатора или в газовой фазе, давая при этом молекулярный азот. Возможно, однако, что на поверхности катализатора одновременно протекают реакции (2.626), (2.67) —(2.69) и вклад этих реакций в суммарное разложение определяется температзфой, составом реакционной смеси и природой катализатора. Для выяснения этих вопросов, очевидно, требуется дальнейшее экспериментальное исследование кинетики и механизма гетерогенного разложения N0. [c.112]

    Из немногочисленных данных о кинетике гетерогенных каталитических газовых реакций при высоких давлениях укажем еще на исследование разложения и синтеза пронионовой кислоты при 300° на металлическом никелевом катализаторе [211]. Первая реакция замедляется при повышении давления [c.121]

    Вышо было рассмотрено влияние давления на равновесие ы скорость химических реакций. При этом в ряде случаев возникала необходимость истолкования результатов исследований сложных процессов (в частности, в раздело, посвященном кинетике гомогенных и гетерогенно-каталитичс ских газовых реакций). Состав продуктов сложных процессов может претерпевать существенные изменения в зависимости от применяемого давления. Так, повышение давления при полимеризации ненасыщенных соединений не только ускоряет этот процесс, но и приводит во многих случаях к увеличению молекулярного веса образующихся полимеров. Увеличение давления при изосинтезе обусловливает образование, наряду с углеводородами, также значительных количеств кислородсодержащих соединений. Число подобных примеров дюжет быть легко удшожено. Естественно, что состав продуктов сложных процессов определяется равновесием и скоростью составляющих их простых реакций. [c.172]

    Для получения оптимальных конструкции и рабочей характеристики турбины необходимо точно знать свойства газа, на котором работает турбина его показатели должны отличаться высокой воспроизводимостью. При сравнительно низких температурах, характерных для газовой турбины при продолжительности реакции несколько миллисекунд, химическое равновесие обычно не достигается. Поэтому термодинамические расчеты уже не могуэ дать достаточно надежных сведений о составе газа. Состав и свойства газа определяются кинетикой химической реакции в сочетании с процессами массо- и теплообмена. Химические и физические свойства топлива и конструкция камеры сгорания в своем сочетании совместно определяют протекание процесса гетерогенного сгорания и свойства образующегося газа. Поэтому при разработке ракетных топлив большое значение приобретает экспериментальное изучение сгорания смеси с повышенным содержанием горючего. [c.106]

    Однако использование проточно-циркуляционных систем для определения активности катализаторов не всегда удобно, в особенности, если требуются длительные испытания катализаторов из-за сложного конструктивного оформления, связанного с использованием движущихся поршней, термосифонов. Этот метод напболее удобен п перспективеч для изучения кинетики гетерогенных каталитических реакций. Поэтому для исследования газовых реакций применяются простые проточные реакторы, содержащие слой зерен катализатора. [c.94]

    Кинетику гетерогенного катализа изучать значительно труднее, чем кинетику гомогенного катализа, поскольку концентрации реагирующих веществ и продуктов реакции в газовой фазе экспериментально определять проще, чем в поверхностной фазе, где непосредственно протекает гетерогенная реакция. По аналогия с гомогенными системами истинная кинетика гетерогенной реакции определяется видом зави.си-мости скорости реакции от поверхностных концентраций. На П рактике, однако, наблюдается лишь кажущаяся кинетика, выражаемая зависи-М Остью. скорости реакции от давления (различных газ.ов. Соотношение между истинной и кажущейся кинетикой определяется адсорбционным равновесием, т. е.. связью между ко.нцентрациями в л.овер Хностн.ой и газовой фазах. В этом разделе ра-осматривается вл.ия,ние адсорбционного равновесия на кинетику гетеро.генного катализа. [c.533]

    Программа курса Кинетика и катализ охватывает 1) теорию ки-нетики гомогенных процессов (формальная кинетика, за некоторыми специальными исключениями, предполагается достаточно из вестноп из общего курса физической химии), включая разбор механизма элементар ных актов, теории столкновений и активного комплекса, разбор моно- и тримолекулярных реакций и некаталитических реакций в растворах 2) гомогенный катализ, сопря женные реакции и окислительные процессы, теорию промежуточных соединений в гомогенном катализе, кислот но -основной катализ цепные реакции, фотохимические реакции, газовоэлектрохимические реакции (последние в очень небольшом масштабе в связи с читаемым в IX семестре для части студентов специальным курсом Газовая электрохимия ) 3) кинетику гетерогенных каталитических процессов (теория Лэнгмюра, влияние неоднородности поверхности на гетерогенный каталитический процесс, кинетика реакции в потоке, элементы макрокинетики) и 4) теорию активных центров в гетерогенном катализе (первоначальные теории активных центров, теории мультиплетов и активных ансамблей, современные электронные представления в катализе). [c.220]


Смотреть страницы где упоминается термин Кинетика газовых реакций гетерогенных реакций: [c.283]    [c.283]    [c.59]    [c.4]    [c.12]    [c.308]   
Физическая химия Книга 2 (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенные кинетика

Реакции газовые

Реакции гетерогенные



© 2024 chem21.info Реклама на сайте