Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакции влияние концентрации. Кинетика

    Скорость реакции влияние концентрации. Кинетика [c.448]

    В формальной кинетике рассматривается зависимость скорости реакции от концентрации реагирующих веществ. Она основана на ряде положений, из которых наиболее важными являются закон химической кинетики, принцип независимости протекания химических реакций в системе и уравнение материального баланса реагентов. Закономерности протекания элементарного химического акта и влияние ИХ на общую скорость процесса в формальной кинетике не рассматриваются. [c.533]


    Влияние концентраций реагирующих веществ. Чтобы осуществлялось химическое взаимодействие веществ А и В, их молекулы (частицы) должны столкнуться. Чем больше столкновений., тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующих веществ. Отсюда иа основе обширного экспериментального материала сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ  [c.91]

    Объектом исследования химической кинетики является химический процесс превращения реагентов в продукты. Можно возразить, что химическая реакция является предметом исследования и ряда других химических дисциплин, таких как синтетическая и аналитическая химия, химическая термодинамика и технология. Следует отметить, что каждая из этих дисциплин изучает химическую реакцию в своем определенном ракурсе. В синтетической химии реакция рассматривается как способ получения разнообразных химических соединений. Аналитическая химия использует реакции для идентификации химических соединений. Химическая термодинамика изучает химическое равновесие как источник работы и тепла и т. д. Свой специфический подход к химической реакции имеет и кинетика. Она изучает химическое превращение как процесс, протекающий во времени по определенному механизму с характерными для него закономерностями. Это определение нуждается в расшифровке. Что именно в химическом процессе изучает кинетика Во-первых, реакцию как процесс, протекающий во времени, ее скорость, изменение скорости по мере развития процесса, взаимосвязь скорости реакции с концентрациями реагентов - все это характеризуется кинетическими параметрами. Во-вторых, влияние на скорость и другие кинетические параметры реакции условий ее проведения, таких как температура, фазовое состояние реагентов, давление, среда (растворитель), присутствие нейтральных ионов и т. д. Конечный результат таких исследований - количественные эмпирические соотношения между кинетическими характеристиками и условиями проведения реакции. В-третьих, в кинетике изучают способы управления химическим процессом с помощью катализаторов, инициаторов, промоторов, ингибиторов. В-четвертых, кинетика стремится раскрыть механизм хи- [c.15]

    Зависимость поверхностных свойств катализатора от температуры и состава реакционной смеси находит свое отражение и в кинетических закономерностях каталитических реакций. Вследствие этого зависимость скорости реакции от концентрации реагентов должна включать два множителя первый, определяющийся протеканием собственно каталитической реакции на стационарной поверхности /(с 0,), и второй, отражающий влияние температуры и состава реакционной смеси на каталитические свойства этой поверхности-ф(Т с,) (где с,—концентрации веществ, участвующих в реакпии 6,--степень покрытия поверхности катализатора этими веществами Г-температура реакции). Если кинетика процесса изучается при условии, что при любом составе реакционной смеси катализатор успевает прийти в стационарное состояние, отвечающее этому составу, то наблюдаемая зависимость скорости реакции от состава будет отвечать произведению названных [c.115]


    С другой стороны,Свен с сотрудниками [21, 35] выявили большое положительное влияние на скорость бимолекулярного замещения электрофильности растворителя. Изучение кинетики метанолиза трифенилхлорметана в бензольных растворах показало, что в этих условиях скорость реакции пропорциональна концентрации трифенилхлорметана и квадрату концентрации метилового спирта если же в реакционную смесь добавочно ввести фенол, то скорость метанолиза оказывается пропорциональной концентрации метилового спирта и концентрации фенола  [c.313]

    Различие в кинетике между механизмами 5n1 и Sn2 часто может быть установлено при изучении влияния добавления конкурирующего нуклеофила, например азид-аниона N3, на общую скорость реакции. Общая концентрация нуклеофила при этом увеличивается, и поэтому при механизме Sn2, где концентрация нуклеофила входит в уравнение скорости, это приведет к повышению скорости реакции. Наоборот, при механизме SnI величина [Nu ] не входит в уравнение скорости реакции, т. е. нуклеофил не участвует в скоростьлимитирующей стадии реакции, хотя, естественно, будет влиять на состав продуктов реакции. [c.93]

    В превращениях с участием крупных молекул, характеризующихся большим влиянием диффузионных препятствий на скорость реакции, связь кинетики с обменной емкостью ионита носит более сложный характер. Например, на катионите дауэкс-50 в форме Н—Ма или Н—К на зависимость константы скорости инверсии сахарозы от концентрации каталитически активных ионов в ионите влияет величина модуля Тиле, определяемого радиусом зерна ионита и коэффициентом диффузии превращающегося вещества. Малым значениям модуля отвечает линейная зависимость между константой скорости реакции и концентрацией ионов водорода в ионите, большим значениям — пропорциональность константы скорости корню квадратному из концентрации водородных ионов 120. Характерно, что для данной реакции, осложненной диффузионными затруднениями, на константу скорости влияет не только степень замещения ионов водорода, как в ранее рассмотренном случае гидролиза эфиров , но и природа замещающего катиона, от которой зависит набухаемость катионита. [c.44]

    Начальная скорость ферментативной реакции будет прямо пропорциональна концентрации присутствующего фермента. Любое наблюдаемое отклонение от линейной зависимости вовсе не означает изменения того очевидного принципа, что две молекулы фермента вызовут превращение в результате реакции в два раза большего (по сравнению с одной молекулой) количества вещества. Отсутствие линейной зависимости между скоростью реакции и концентрацией фермента свидетельствует о влиянии какого-то фактора, усложняющего ход реакции. Такими факторами — если мы не имеем дело со слишком быстро протекающей реакцией, в связи с чем данный метод оказывается непригодным для изучения ее кинетики, — могут быть присутствие в реакционной среде ингибитора или феномен подавления реакции ее продуктом. Обычно такое кажущееся отклонение обусловлено тем, что с помощью данного метода определения активности фермента мы на самом деле измеряем не истинную начальную скорость реакции, а лишь скорость на ранних этапах реакции. Таким образом, обнаружение нелинейной зависимости между скоростью реакции и концентрацией фермента должно прежде всего заставить исследователя критически проанализировать детали используемого метода, прежде чем пытаться строить предположения о новых принципах кинетики данной реакции. [c.104]

    Внешнедиффузионная область реализуется, главным образом, в окрестностях максимума скорости реакции. Там же следует ожидать максимального внутридиффузионного торможения. Как мы видели, наличие внешне- и внутридиффузионного торможения легко фиксируется экспериментально. Относительно просто та же найти интервал условий, где их влиянием можно пренебречь. В то же время следует заметить, что влияние процессов диффузии в газовой фазе на наблюдаемую кинетику топохимической реакции должно быть относительно малым в начальный и конечный периоды, когда скорости реакции малы. Поэтому в принципе кинетические параметры топохимических реакций могут быть определены из данных для начального или конечного участка кинетической кривой по зависимости скорости реакции от концентраций, температуры и других параметров. Однако следует учитывать, что интерпретация экспериментальных величин для начального этапа реакции более сложна [21]. [c.97]

    О механизме электроокисления гидразина. Как следует из результатов экспериментов, кинетика анодного окисления гидразина имеет сложный характер и определенные особенности изменение коэффициента наклона поляризационных кривых, сложная функциональная зависимость скорости реакции от концентрации гидразина и щелочи, наличие участков торможения и спада тока на кривых ток — потенциал, ток — концентрация гидразина, ток — концентрация щелочи, необычная зависимость предельного тока от концентрации реагента, наличие нестационарных токов, различное влияние предварительной и анодной обработок на скорость окисления гидразина на различных металлах и др. Такая сложность процессов обусловлена рядом причин необходимостью передачи на электрод четырех электронов и, соответственно, многостадийностью процесса, протеканием побочных реакций, наличием на поверхности окисных и адсорбционных пленок и др. Механизм электроокисления гидразина может меняться в зависимости от природы металла, состояния поверхности, потенциала и концентрации реагентов. В связи с этим можно говорить лишь о механизме электроокисления при строго фиксируемых условиях. Рассмотрим некоторые общие вопросы механизма электроокисления гидразина. [c.260]


    При рассмотрении механизма химической реакции следует выяснить, какого вида молекулы взаимодействуют и в каком порядке, а также какие атомы меняют свое положение и связи при этом взаимодействии. Структурные химические формулы промежуточных соединений дают представление о механизме реакции. Необходимые сведен ия о механизме реакции получаются в общем случае в результате исследования кинетики реакций, т. е. изменения скорости реакции со временем и концентрацией. Однако химическая кинетика в стадии ее современного развития направлена к изучению более тонких проблем. Представляется интересным установить, какие специфические изменения атомных связей происходят и какие реакции имеют место внутри комплексов, временно образующихся из реагирую-щих молекул. Исследования такого рода помогают выяснить механизм активации. Выяснение указанных выше вопросов является главной целью исследований, особенно в области контактного катализа, где рассматриваются простые реакции. Необходимые сведения получаются главным образом путем исследования энергетических отнощений, в частности влияния температуры на протекание реакции. Таким образом, исследование механизма основано на выяснении зависимости скорости реакции от концентрации и температуры. [c.25]

    Уже в самых ранних исследованиях по влиянию концентрации реагента на скорость ферментативных реакций была обнаружена очень важная особенность ферментативного катализа, которая состоит в сложном характере кинетики этих реакций. При низких концентрациях реагента (в энзимологии реагент называют субстратом) реакция протекает в соответствии с уравнением первого порядка, однако при высоких концентрациях субстрата скорость перестает зависеть от концентрации и, таким образом, реакция в этих условиях протекает в соответствии с уравнением нулевого порядка. Общий вид зависимости скорости реакции от концентрации субстрата при такой двухступенчатой кинетике приведен на рис. 6.7. [c.341]

    Г. К. Боресковым установлено, что в реакциях гетерогенного катализа каждому составу реакционной смеси отвечает определенный стационарный состав катализатора, зависящий от соотношения скоростей воздействия на катализатор отдельных компонентов реакционной смеси [240]. Если скорость этого воздействия невелика и за время проведения каталитического процесса не происходит заметного изменения состава катализатора, то удельная каталитическая активность зависит от предшествующей обработки катализатора. Если же стационарный состав катализатора достигается быстро, то его изменение в результате воздействия реакционной смеси оказывает существенное влияние на кинетику каталитической реакции. Зависимость скорости реакции от концентрации компонентов реакционной смеси определяется, следовательно, не только изменением числа столкновений реагирующих частиц, участвующих в лимитирующей стадии реакции, но и изменением константы скорости реакции вследствие воздействия реакционной смеси на состав и свойства катализатора. Этим, в частности, были объяснены формы кинетических уравнений с дробными показателями, трактовавшиеся ранее с позиций влияния неоднородности поверхности [240]. Взгляды Г. К. Борескова на значение этого фактора в катализе получили за последние годы подтверждение и развитие в работах ряда советских и зарубежных ученых. [c.121]

    Рассмотрим, каким образом только что выведенные уравнения можно применить для описания различных этапов диффузионных процессов. Если изменение концентрации е невелико, то можно считать, что в рассматриваемом сечении на реакцию не будет оказывать влияние очень медленная диффузия. Строго говоря, это означает, что, воспользовавшись соотношениями между скоростью реакции и концентрациями или давлениями, можно убедиться в том, что различия в скоростях, обусловленные очень медленной диффузией, пренебрежимо малы по сравнению с точностью измерений. При этом предполагается, что закон изменения скорости реакции может быть определен хотя бы приближенно. Как это часто бывает в экспериментальных исследованиях, работа ведется одновременно в обоих направлениях отыскивается закон изменения скорости реакции и рассчитываются различия в концентрациях. Работа ведется до тех пор, пока не будет найден точный закон изменения скорости реакции и определены различия в концентрациях, причем эти различия не могут существенно повлиять на кинетику процесса. [c.134]

    Как показано выше, при влиянии на кинетику процесса диффузионного массопереноса субстрата зависимости скорости реакции от концентрации субстрата в растворе имеют более сложный характер. В предельных случаях, когда фермент работает в строго диффузионном режиме, эти зависимости имеют вид [c.292]

    У1-2-2. Очень медленные реакции. Если реакция достаточно медленна, то вся жидкость становится и остается насыщенной непрореагировавшим газом (концентрация которого соответствует его парциальному давлению над жидкостью), и реакция растворенного в жидкости газа является истинно гомогенной. В таких условиях концентрация газа в жидкости отвечает его растворимости (с учетом влияния на нее других веществ, растворенных в жидкости, в соот ветствии с изложенным в главе I), и скорость дальнейшего погло щения газа равна скорости гомогенной реакции в жидкой фазе Скорость реакции г, отнесенная к единице объема жидкости, опре деляется скоростью поглощения газа, деленной на объем жидкости Этот метод, детально рассмотренный Диксоном применялся для исследования кинетики ряда реакций. [c.166]

    Отдельные группы реакций разбивают на подгруппы по виду кинетического уравнения, описывающего скорость процесса, по порядку и молекулярности реакции и по некоторым другим признакам. В качестве кинетического критерия реакционной способности химической системы можно было бы взять скорость реакции. Учитывая, что скорость реакции зависит от концентрации реагирующих веществ [см. уравнение (193.1)], разумно выбрать какое-то стандартное состояние по концентрациям реагирующих веществ. В качестве такого стандартного состояния принимают состояние системы, когда концентрации реагирующих веществ Сь Са,. .., С равны единице. При этом скорость реакции численно равна константе скорости реакции к. Следовательно, в качестве кинетического критерия реакционной способности системы в направлении определенной реакции при концентрациях реагирующих веществ, равных единице, можно принять константу скорости этой реакции. Последняя определяется предэкспо-ненциальным множителем А и энергией активации Е . Теория кинетики химических реакций должна раскрывать физическую сущность Л и и закономерности, определяющие влияние различных факторов — температуры, среды, катализатора, строения молекул и др., на Л и 2 следовательно, и на общую скорость процесса. Зная закономерности влияния различных факторов на Л и реакций, можно синтезировать эффективные катализаторы и создавать условия, при которых реакция пойдет в нужном направлении с высокими скоростями. [c.532]

    Влияние растворителя изучалось в работе [7], где приводятся данные по исследованию кинетики превращения глюкозы в водно-спиртовых растворах (вода — этанол и вода — изопропа-нол) в присутствии различных катализаторов. Так, например, в присутствии катализатора 5% Ни на А Оз с добавлением к воде этанола (до 40%) скорость гидрогенизации возрастает. Увеличение концентрации этанола выше 40% практически не сказывается на интенсивности процесса. Повышение скорости реакции с добавлением этанола объясняется ростом воспроизводства водорода в растворе и уменьшением растворимости глюкозы (что способствует высаливанию ее на поверхности катализатора). По мере добавления изопропанола (до 40%) скорость реакции уменьшается, а затем увеличивается, проходя через небольшой экстремум (60%). [c.71]

    Таким образом, скорость каталитической реакции может изменяться с изменением типа катализатора, температуры, концентраций реагентов и конечных продуктов. Хотя эти переменные не являются независимыми, система особенно чувствительна к изменению катализатора, так как каждое твердое вещество оказывает свое особое влияние на кинетику и константы скоростей реакций. [c.13]

    Большинство химических превращений в газовой и жидкой фа зах относятся к сложным химическим процессам, протекающим через ряд стадий (элементарных реакций). Совокупность всех стадий такого процесса, в итоге которых возникают наблюдаемые продукты, а также данные влияния концентрации, температуры, давления и других физико-химических факторов на скорости элементарных реакций позволяют представить механизм сложного процесса. Первоначальная задача изучения сложного химического процесса состоит в выяснении совокупности отдельных стадий различными химическими или физическими методами. Среди химиков распространено представление о том, что для решения этой первой фактически качественной задачи достаточно средств химии и физики без использования методов химической кинетики, т. е. без изучения скорости реакций. Однако понять количественные соотношения наблюдаемых выходов продуктов не удается, если не изучены скорости их образования. Следует иметь в виду, что состав главных продуктов определяется наиболее быстрыми реакциями, а кинетика сложного превращения или, как говорят, брутто-реакции — наиболее медленными реакциями. Поэтому выяснение механизма сложной реакции никогда не ограничивается установлением качественного и количественного состава продуктов превращения с помощью физикохимических методов исследования и наметкой схемы или механизма превращения, всегда носящий характер гипотезы, а проводится еще и детальное изучение скоростей сложной реакции и ее отдельных стадий. [c.213]

    В общем случае скорость химической реакции зависит от времени. Решающее влияние на нее оказывают концентрации реагирующих веществ, температура и катализаторы. Скорость реакции характеризуется количеством вещества, вступающего в реакцию в единицу времени. Такое определение не является точным, поскольку в реакции участвует несколько химических соединений исходные, промежуточные вещества и продукты реакции. Поэтому в химической кинетике принято говорить не о скорости химической реакции вообще, а о скорости по некоторому компоненту. [c.310]

    Влияние концентрации катализатора на скорость реакции оксосинтеза систематически еще не изучено. Наилучшим практическим методом изучения такого влияния, принимая во внимание нестабильность гидрокарбонила, является введение кобальта в виде дикобальтоктакарбонила. Имеются сообщения, что небольшие количества кобальта могут катализировать реакцию. Хорошо известно, например, что в автоклавах, повторно используемых для проведения реакции оксосинтеза, реакция проходит. лучше, чем в совершенно чистом новом автоклаве. Большинство реакцйй проходит при концентрации кобальта 0,5—5,0% мол. Весьма вероятно, что при изучении кинетики реакции в указанной выше области концентрации между скоростью реакции и концентрацией дикобальтоктакарбонила будет найдена зависимость, близкая к первому порядку. [c.292]

    Встречается и обратная ситуация, когда 5-образная кривая в присутствии аллостерического эффектора превращается в гиперболическую. Например, пируваткиназа скелетных мышц характеризуется кинетикой Михаэлиса, но в присутствии аллостерического ингибитора (фенилаланина) кривая зависимости скорости реакции от концентрации субстрата становится 5-образной, при этом сродство фермента к субстрату (фосфоенолпирувату) уменьшается. Изменение кинетических свойств под действием аллостерических эффекторов обусловлено конформационной перестройкой молекулы белка. С помощью сшивающих реагентов или каких-либо других воздействий на структуру белка можно наблюдать потерю чувствительности фермента к аллосте-рическим эффекторам. Для выявления аллостерических свойств иногда необходимо изменить условия определения активности сместить pH реакционной среды в кислую или щелочную область от рН-оптимума или исследовать влияние эффектора при ненасыщенной концентрации субстрата. [c.215]

    Влияние концентраций реагирующих веществ. Уравнение, показывающее зависимость скорости реакции от концентрации реагируюй1их веществ и известное под названием закона действия масс, является основным законом химической кинетики. Рассмотрим приложение этого закона для различных реакций  [c.106]

    В многочисленных исследованиях было изучено влияние различных факторов на нормальную скорость горения газовых смесей. Все эти исследования приводят к заключению, что основным фактором, определяющим скорость распространения пламени в газовых смесях, является химическая реакция горения, служащая тем источником тепловой и химической энергии, который поддерживает горение и обеспечивает распространение пламени. Впервые мысль об основной роли химической реакции, ее кинетики в механизме распространения пламени была высказана Пей-мгном и Уилером [1015] (1929), которые на этой основе дали качественное истолкование установленной на опыте зависимости скорости пламени от состава горючих смесей. Влияние состава газа на скорость пламени, по мнению этих авторов, сводится к изменению скорости реакции горения и к изменению температуры пламени, обусловленным изменением концентраций реагир тощих веществ. Так, например, представленной на рис. 191 зависимости скорости пламени в кислородно-азотных смесях метана от их состава, из которой следует резкое уменьшение скорости пламени при добавлении метана или кислорода сверх стехиометрии (отвечающей составу СН4 -Ь 20г) или при добавлении азота, Пейман и Уилер дают следующее объяснение. По их мнению, влияние избыточной концентрации реагирующих веществ, как и влияние азота, прежде всего сводится к уменьшению скорости реакции из-за понижения температуры пламени, особенно сильного при добавлении метана ввиду его большой теплоемкости (по сравнению с теплоемкостью О2 и Nг). Заметно менее сильное влияние кислорода по сравнению с азотом, имеющим практически ту же теплоемкость, что и кислород, объясняется тем, что одновременно с понижением температуры и связанным с этим уменьшением скорости реакции избыточная концентрация кислорода, являющегося участником реакции, вызывает и обратный эффект, т. е. относительное увеличение скорости реакции. [c.587]

    Рассмотрим теперь некоторые формы кинетических уравнений простых стадий, порядок которых отличен от первого. Изучая кинетику сравнительно простых реакций, протекающих в одну-две макростадии, например я-пентан изопентан или циклогексана метилциклопентан , исследователи стараются получить более обоснованные и поэтому более сложные кинетические уравнения. Так, если на скорость реакции влияют концентрации разбавителя, добавок к сырью или образующихся продуктов, то уравнение первого порядка не позволяет учесть, это влияние. Поэтому во многих случаях используют более сложные формы кинетических уравнений ниже охарактеризованы методы их получения и даны конкретные уравнения для наблюдаемой скорости реакции. [c.53]

    С использованием методов вольт-амперометрии (при непрерывном изменении потенциала) и гальваностатического метода на вращающихся и стационарных электродах из N1, Р1, Р(1, С(1, М , Со, Ре, никелевой черни, палладированной платины, двускелетного никеля было исследовано электроокисление гидразина в щелочных растворах. Потенциалы, устанавливающиеся на электродах без тока, являются смешанными потенциалами. На потенциал электродов без тока (особенно для гладких электродов) оказывает влияние наличие окислов на поверхности металла. На скелетном никеле без тока происходит разложение гидразина на Нг и N2. При окисле1П1и гидразина во всех условиях наблюдаются нестационарные токи. Кинетика анодного окисления гидразина отличается сложным характером изменением коэффициента наклона поляризационных кривых, зависимостью скорости реакции от концентрации гидразина и 1целочи, наличием участков торможения и спада тока на кривых г — ф, г — сиг — Сщ, а также необычной зависимостью предельного тока от концентрации и др. Обсуждается механизм электроокисления гидразина. Он может меняться в зависимости от природы металла, состояния поверхпости, потенциала и концентрации реагентов. [c.374]

    Исследована кинетика реакции н.-пропшшагнийбро-мида с пинаколином в анизоле. На основании найденной зависимости псевдомономолекулярной константы скорости реакции от концентрации реактива Гриньяра сделан швод, что анизол относительно слабо сольватирует пропилмагнийбромид. С привлечением ранее полученных экспериментальных данных показано, что влияние среды на скорость изученной реакции определяется полярностью, основностью и стерическим эффектом растворителя. [c.61]

    Изучена кинетика конденсацш этицианацетата с формальдегидом в абсолютном этаноле. Установлено что данная реакция удовлетворительно описывается до 10 0 глубины преобразования исходных реагентов уравнением скорости второто порядка. Исследовано ингибирующее влияние кислот и каталитическое действие органических оснований на скорость реакции конденсации. По зависимости скорости реакции от концентрации катализатора определены некаталитическая и каталитическая составляющие скорости, установлено наличие предельной эффективной концентрации катализатора. Изучено влияние свойств катализаторов на их эффективность и установлено, что общая скорость процесса в присутствии катализатора удовлетворительно описывается двухпараметровым линейным уравнением, учитавающим влияние их основное и полярности. [c.79]

    Изучение кинетики димеризации пропилена под влиянием я-кротилникельхлорида в сочетании с Ti U показало, что скорость реакции пропорциональна концентрации я-кротилникельхлорида и квадрату концентрации пропилена [208]. Энергия активации составляет 63,7 кДж/моль (15,2 ккал/моль). [c.72]

    При протекании каталитической реакции через промежуточные комплексы влияние растворителя будет обусловлено его снособ-ностью образовывать комплексы с активными атомами поверхности катализатора. Если растворитель обладает высокой электронной донорно-акцепторной способностью или высокой л-электронной плотностью, то он сам будет входить в сферу лигандов комплекса и может понижать активность катализатора. Наоборот, достаточно инертные, неполярные растворптелп типа парафинов и циклопарафинов будут мало влиять на механизм комплексообразованпя. На кинетике процесса все это будет отражаться в виде ускорения или замедления скорости реакции при замене растворителя или усложнения формального уравнения кинетики вследствие изменения концентрации пли характера растворителя по ходу реакции. [c.50]

    Результаты расчетов представлены в виде кривых на рис. 4.1. Границы кинетической области, которая расположена выше кривых, приведены в координатах входная температура-начальная концентрация кислорода Как видно из рисунка, выжиг кокса в кинетической области может быть реализован не для любых условий. Например, при начальной закоксованности 3% (масс.) и температурах ни ке 500 °С (при = = 10% (масс.) и Тг< 510 °С) регенерация катализатора будет проходить в области внутренней диффузии даже в атмосфере чистого кислорода. Аналогичная ситуация возникает при низких концентрациях кислорода. Так, при q = 3% (масс.) и концентрации кислорода ниже 6,5% (об.) (при 10% масс, и X <9% об.) даже при температурах 750 °С кинетические условия выжига кокса реализовать невозможно. Этот результат согласуется с выводом Ч. Саттерфилда [75] скорость горения прямо пропорциональна концентрации кислорода в окислительном газе, но так как реакция лимитируется диффузией, то влияние температуры на скорость реакции незначительно . Иногда в литературе медленную скорость удаления кокса, например, для условий qt = 6% (масс.), х = 2% (об.) и 7 = 487 °С [153] объясняют протеканием процесса исключительно в кинетической области. Однако из того факта, что скорость выжига мала, вовсе не следует, что процесс лимитируется кинетикой. Как видно из рис. 4.1, единственно возможная область протекания процесса при таких условиях-внутридиффузионная или переходная. [c.77]

    Сопоставление вышеприведенных работ по кинетике гидрогено-лиза глюкозы, сорбита и глицерина показывает различие (иногда существенное) в полученных результатах, которое, очевидно, объясняется (помимо отличий в методике кинетического эксперимента) использованием разных концентраций катализатора и крекирующего агента. Таким образом, полученные в каждой из работ константы скорости, значения энергии активации, предэкспоненци-альные множители имеют локальное значение, так как привязаны к фиксированным значениям остальных параметров. Дальнейшие исследования кинетики этого сложного процесса целесообразно направить на определение истинных порядков реакции каждой из стадий, исследование щелочного ретроальдольного расщепления глюкозы, взаимного влияния концентраций катализаторов гидрирования, расщепления и гомогенных сокатализаторов, влияния дезактивации катализатора в ходе процесса и других факторов. Когда математическая модель будет учитывать влияние всего десятка факторов, воздействующих на выход целевых продуктов при гидрогенолизе, ее можно будет применить для целей оптимизации и управления. [c.131]

    Опубликованные данные по кинетике низкотемпературной реакции паровой конверсии СО на медных катализаторах обобщены в табл. 22. Во всех уравнениях скорость реакции возрастает с уве личением концентрации окиси углерода и пара. Уравнения содержат компоненту, которая увеличивает скорость с возрастанием температуры, и компоненту, которая уменьшает скорость до нуля при приближении к равновесию. Остальные компоненты уравнений И и П1 связаны с механизмом реакции и с методом, корректирующим влияние давления. В соответствии с этим Мо опубликовал графическую Зависимость между активностью и давлением, тогда как Кэмпбелл и Миткалф вывели уравнение И в частной форме для реакции, которая лимитируется диффузией и, следовательно, включающее обычное значение давления. [c.139]

    В. А. Шушунов и другие [343—345] детально изучили кинетику разложения гидроиерекисей изопропил- и втор.бутилбензолов и установили, что скорость реакции сернокислотного расщепления гидроперекиси изопропилбензола на фенол и ацетон пропорциональна концентрации серной кислоты в первой степени и при концентрации гидроперекиси ниже 0,02 молей подчиняется уравнению первого порядка относительно концентрации гидроперекиси [343]. Наблюдается самоускорение и тем большее, чем выше концентрация гидроперекиси изопропилбензола, что объясняется влиянием образующегося ацетона, добавки которого ускоряют реакцию. Бензофенон и фонол не влияют на скорость реакции. [c.301]


Смотреть страницы где упоминается термин Скорость реакции влияние концентрации. Кинетика: [c.270]    [c.429]    [c.89]    [c.359]    [c.66]    [c.177]    [c.321]    [c.45]    [c.219]    [c.126]   
Смотреть главы в:

Органическая химия -> Скорость реакции влияние концентрации. Кинетика




ПОИСК





Смотрите так же термины и статьи:

Влияние концентрации

Концентрация влияние на скорость реакции

Основной закон кинетики. Влияние концентрации на скорость реакции

Химическая кинетика Теоретическая часть Влияние концентрации, температуры и катализаторов на скорость реакции



© 2025 chem21.info Реклама на сайте