Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заместители в ароматическом кольце, влияние на реакционную способность

    Вопрос о влиянии заместителей, уже имеющихся в ароматическом кольце, на реакционную способность кольца в отношении дальнейших электрофильных атак и места последующих замещений, изучен довольно хорошо. Предложено большое число эмпирических правил, касающихся этих влияний легче всего эти правила могут быть интерпретированы исходя из электронодонорных или электроноакцепторных свойств уже присутствующего заместителя. [c.154]


    Для выяснения возможности влияния заместителей в ароматическом кольце на реакционную способность а-углеродного атома изучено формилирование 6- и 7-нитро-2,3-триметилен-3,4-дигидро- [c.73]

    Бейли детально изучил влияние заместителей в кольце на реакционную способность ароматических моно- и диизоцианатов и на основании полученных данных составил табл. 10.2, в которой показано относительное влияние заместителей на реакционную способность изоцианата. Кроме того, он сообщил, что после того как прореагирует первая изоцианатная группа, реакционная способность второй изоцианатной группы становится меньше, чем у первой. Оказалось, что активирующий эффект уретановой группы равен 2, тогда как у изоцианатной группы он равен 6. [c.360]

    Влияние типа заместителя в кольце на реакционную способность ароматического изоцианата [c.360]

    Охарактеризуйте влияние заместителей в бензольном кольце на скорость нитрования ароматического соединения. Расположите следующие соединения в порядке возрастания их реакционной способности а) толуол б) бензол в) хлорбензол г) нитробензол д) ж-ди нитробензол е) фенол. [c.148]

    Охарактеризуйте влияние заместителей в кольце первичного ароматического амина на константу скорости диазотирования. Следующие амины расположите в порядке возрастания их реакционной способности а) анилин б) п-броманилин в) л-толуидин г) л<-метоксианилин д) 2,4,6-тринитроанилин. [c.161]

    Положительный заряд в их катионах в основном локализован на атоме азота, связанном с ароматическим кольцом, но вследствие индуктивного эффекта и показанного в формуле эффекта сопряжения частично передается и на смежный атом азота. Частичный положительный заряд на нем возрастает под влиянием электроноакцепторных заместителей в ароматическом кольце и уменьщается под действием донорных заместителей, что существенно сказывается на реакционной способности катиона. [c.250]

    В реакциях нуклеофильного замещения в ароматическом ряду, так же как и при электрофильном замещении, влияние заместителя на реакционную способность обусловлено его способностью притягивать или подавать электроны при нуклеофильном замещении в ароматическом ряду, так же как и при электрофильном, заместитель оказывает влияние главным образом в орто- или мара-положениях кольца. При нуклеофильном замещении в ароматическом ряду оттягивание электронов вызывает активацию, а подача электронов — дезактивацию. [c.794]


    Поскольку практически все заместители обладают как индукционным эффектом, так и эффектом сопряжения, то при определении реакционной способности соединения следует учитывать сумму электронных взаимодействий. Так, индуктивное влияние таких заместителей первого рода, как гидроксигруппа, аминогруппа и атом хлора, приводит к появлению на атомах углерода ароматического кольца положительных зарядов. Однако участие неподеленных пар электронов кислорода, азота и хлора в сопряжении приводит к обогащению орто- и пара-положений ароматического ядра электронами. При этом у гидрокси- и аминогруппы эффект сопряжения больше индукционного эффекта и поэтому атомы углерода в орто- и пара-положениях к заместителю имеют некоторый отрицательный заряд, тогда как атомы углерода в мета-положении заряжены положительно  [c.26]

    Молекула бензола является сопряженной системой с равномерным распределением электронной плотности. Однако это равномерное распределение тг-электронного облака нарушается, если в бензольное кольцо вводится какой-нибудь заместитель. Под влиянием заместителя происходит перераспределение электронной плотности в бензольном кольце. В результате этого меняется реакционная способность ароматического кольца, прежде всего в реакциях электрофиль-чого замещения. [c.125]

    Это влияние заместителей на реакционную способность ароматического ядра становится особенно заметным при вторичном электрофильном замещении у различных производных нафталина. Так, в 1-нитронафталине второй заместитель направляется в еще не замещенное, а в 1-метилнафталине — в уже замещенное кольцо. [c.281]

    Из работ, посвященных изучению относительной скорости алкилирования алкил- и галоидбензолов, нельзя сделать однозначного вывода о влиянии имеющихся в ароматическом кольце заместителей на реакционную способность алкилируемых соединений (табл. 1,2). В исследованиях [3, 8, 19] показано, что относительная скорость алкилирования алкилбензолов выше, чем бензола. Из результатов других [7, 9, 20] следует, что в реакциях со [c.22]

    Закономерности, описывающие влияние химической активности реагента на реакционную способность неравноценных атомов в кольце при ароматическом замещении, аналогичны закономерностям кислотно-основного взаимодействия, прн котором наблюдается нивелирование различий в силе протолитов, если в реакции участвует сильная кислота или сильное основание. Атомы углерода ароматического кольца, отличающиеся по степени своей электроотрицательности ввиду присутствия заместителя, ведут себя при реакции с кислотоподобным веществом подобно основаниям разной силы. [c.344]

    Сходство реакций металлирования и изотопного обмена водорода с сильными основаниями было прослежено в первой главе раздела III, посвяш,енной углеводородам как кислотам, а во второй главе того же раздела отмечалась близость реакционной способности углеводородов при необратимых реакциях электрофильного замещения водорода и при его изотопном обмене с кислотами. Это свидетельствует об общих чертах в механизмах названных реакций. О том же говорит одинаковое влияние заместителей в ароматическом кольце на течение каждой из этих реакций. Теперь, после того как мы познакомились со взглядами на механизмы химических реакций замещения водорода, обратимся к сопоставлению их закономерностей с закономерностями обменных реакций. Это будет способствовать обоснованию механизмов последних. [c.347]

    Гаммет вывел свое уравнение для описания изменений реакционной способности функциональной группы при ароматическом кольце под влиянием природы заместителей у этого кольца в мета-или па]оа-положениях. У таких соединений влияние заместителей складывается из эффектов сопряжения, индукционного [209] и стерического влияния [210], а константы сг (константы Гаммета) [c.51]

    И гидроксильная группа оказывает влияние на фенильный радикал, заметно усиливая реакционную способность атомов водорода в орто- и пара-положениях бензольного кольца. С объяснением этого явления с точки зрения электронной теории мы уже знакомы на примере анилина, в котором с ароматическим ядром связан аналогичный электронодонорный заместитель — аминогруппа (стр. 211). [c.234]

    Нитрогруппа вызывает повышение реакционной способности других заместителей, находящихся в ароматическом кольце, как уже было показано при разборе нуклеофильного замещения. Это же влияние хорошо видно на примере легкого отщепления СО2 из карбоксильной группы тринитробензойной кислоты. Нитрогруппа значительно повышает кислотные свойства фенолов, по-видимому посредством индукционного эффекта  [c.38]


    Помимо синтетического аспекта использования полифторированных ароматических соединений в книге затронуты вопросы количественного описания некоторых процессов. Основное внимание при этом уделяется количественным аспектам влияния по-лифторированного ароматического кольца на реакционную способность связанных с ним различных заместителей, что позволяет глубже понять особенности влияния атомов фтора на химические свойства полифторированных ароматических соединений. Достаточно подробно анализируются данные по С—Н и К—Н кислотности реакционных центров связанных с полифторированным ароматическим ядром. [c.4]

    В 1902 г. Флюршайм [16] попытался объяснить правила замещения с более современных позиций. Он ввел понятие относительно слабого и сильного распределения химического сродства в ароматическом кольце. Различие реакционной способности отдельных атомов кольца, вызванное влиянием J te7 гiг-(N02) и орто-пара-(С ) ориентирующих заместителей, показано на примере соединений 4 и 5 соответственно  [c.46]

    Химические свойства ароматических соединений. Реакции присоединения и окислеши. Реакции электрофильного замещения в ароматическом раду. Механизм электрофильного замещения. Влияние заместителей на ориентацию в бензольном кольце и реакционную способность. Цу клеофильное и свободно-радикальное замещение в ароматическом кольце. [c.190]

    Охарактеризуйте влияние заместителей в бензольном кольце на реакционную способность ароматических альдегидов и кетонов в реакциях нуклеофильного присоединения. В каждой паре укажите наиболее активное соединение а) бензальдегид и rt-толуиловый альдегид б) п-толуиловый альдегид и и-метокси-бензальдегид в) ацетофенон и п-нитроацетофенон г) бензофенон и п-диметиламинобензофенон д) бензофенон и 2,2 -диметилбен-зофенон. [c.177]

    Это очень напоминает ситуацию, имеющую место при элек-трофильном замещении в хлорбензоле (стр. 160), когда преимущественное орто-пара-ориентирующее влияние заместителя (преимущественная стабилизация переходных состояний, соответствующих орто- и пара-замещению, за счет взаимодействия пеподеленных электронных пар атома хлора с системой зх-орби-талей ароматического кольца) сопровождается общим уменьшением скорости замещения по сравнению со скоростью замещения в самом бензоле (сильный индуктивный эффект атома хлора способствует общей дезактивации ароматического кольца и снижению его реакционной способности в отношении реакций электрофильного замещения). [c.181]

    В этой главе рассматриваются реакции, с помощью которых вводя или обменивают заместители в ароматических кольцах. На первом месг среди них стоят реакции электрофильиого замещения в ароматической ядре, но существуют также важные реакции, которые протекают ш механизму нуклеофильного или радикального замещения. Обсуждень примеры синтетически важных реакций каждого типа. Реакции электро фильного замещения в ароматических соединениях изучены очень по дробно и с точки зрения механизма реакцин, влияния структуры н реакционную способность эти исследования описаны в гл. 9 ки. 1. В дан ной главе внимание обращено ыа синтетические аспекты электрофиль ыого замещения в аренах. [c.228]

    Экспериментальные данные незначительно отличаются отряда, полученного на основании расчета МЭСП Имеющиеся расхождения могут быть связаны с проявлением стерических эффектов в случае орто-заме-щенных ДФА Возрастание числа конформеров при введении заместителей в молекулу ДФА и наличие свободного вращения ароматических колец вокруг связей -N в молекулах реагентов ДФА ряда могут привести к некоторому изменению распределения МЭСП по сравнению с рассчитанным дпя одной конформации Тем не менее, проведенный расчет позволяет четко выявить тенденции изменения МЭСП при введении в ароматические кольца молекулы ДФА замещающих групп различной природы и констатировать решающее влияние эффекта поля на реакционную способность органических реагентов дифениламинового ряда Расчет распределения МЭСП оказывается полезным при полуколичественном объяснении экспериментальных данных, характеризующих процесс окисления изучаемых аминов и имеет большую прогностическую ценность в определении аналитических свойств этой группы фотометрических реагентов [c.213]

    Полученная зависимость относительной реакционной способности в ряду незамещенного и замещенных бензальдегидов в реакции с бутилгипобромитом (Уо /Уо ) от природы заместителя хорошо коррелирует со значениями о-констант заместителей и описывается уравнением Гаммета (lgVo =lgVo + ро) (рис. 1), с константой реакционной серии рвг = -1,4. Полученная величина рвг свидетельствует о том, что природа заместителя в ароматическом кольце оказывает значительное влияние на скорость реакции. [c.11]

    Для ароматических кислот влияние заместителей аналогично группы СНд, ОН и NHa уменьшают силу бензойной кислоты, а группы С1 и NOa ее увеличивают. Таким образом, среди групп, ослабляюш их силу кислоты, находятся те группы, которые активируют кольцо по отношению к электрофильному замещению (и дезактивируют по отношению к нуклеофильному замещению). Среди групп, увеличивающих силу кислоты, находятся группы, которые дезактивируют кольцо по отношению к электрофильному замещению (и активируют по отношению к нуклеофильному замещению). Более того, группы, оказывающие наибольший эффект — активирующий или дезактивирующий — на реакционную способность, оказывают наибольшее влияние на кислотность. [c.573]

    Заместители в ароматическом кольце субстрата относительно мало влияют на скорость процесса ио сравнению с их влиянием на аналогичные реакции электрофильного замещения некоторые парциальные факторы реакции замещения фенильными радикалами приведены при формулах (34) — (36). Более высокую реакционную способность орто- и пара-положений можно объяснить способностью заместителя X делокализовать иеспаренный электрон [в (37)]. Однако возможно также, что циклогексадиенильный радикал является плохой моделью переходного состояния для экзотермического присоединения реакционноспособных радикалов типа Ме- или РЬ-, когда в переходном состоянии можно ожидать слабого связывания. Данные по ориентации в различных субстратах коррелируют с рассчитанными энергиями локализации [ЗЗа]. Заместители в арильном радикале оказывают вторичный эффект как на реакционную способность по отношению к субстрату, так и на соотношение изомеров за счет полярных эффектов, например и-МОгСбН4- реагирует с нитробензолом медленнее, чем /г-СНзСбП4-. Были рассчитаны величины р Гаммета для реакций замещения большим количеством замещенных арильных и других радикалов [ЗЗа]. [c.583]

    Он привел доводы в пользу того, что синглетные карбены присоединяются путем синхронного образования обоих новых о-связей, давая только (74) и сохраняя таким образом стереохимию исходного алкена, в то время как триплетные карбены присоединяются по радикальному двухстадийному механизму с образованием в первую очередь бнрадикала (75), в котором может происходить вращение вокруг связи до инверсии спина и замыкания кольца, что приводит к обоим диастереомерам (74) и (76). Несмотря на широкое обсуждение справедливости теоретических предпосылок, правило Скелла исключительно успешно объясняет многие экспериментальные данные, полученные для этих реакций присоединения. Однако при использовании правила следует соблюдать определенную осторожность, так как в его основе лежат некоторые предположения об относительных скоростях стадий схемы (48), которые могут соблюдаться не во всех случаях [38]. Таким образом, прежде чем однозначно приписать определенную реакционную способность одному из спиновых состояний карбена, следует выяснить свойства обоих состояний. В ряде случаев, когда это требование было точно соблюдено, например в случае метилена, бисметоксикарбонилкарбена, флуоренилидена и др., результаты всегда соответствовали предсказаниям Скелла. Расчет поверхности потенциальной энергии присоединения синглетного метилена к этилену [40, 70] подтверждает синхронность реакции и свидетельствует, что она осуществляется по принципу наименьшего движения через разрешенный орбитальной симметрией подход (77), при котором вакантная р-орбиталь (НСМО) карбена взаимодействует с занятой я-молекулярной орбиталью алкена, причем карбен расположен так, чтобы перекрывание было максимальным, а пространственные взаимодействия минимальны. Более симметричный подход (78), когда занятая о-орбиталь карбена взаимодействует с я-системой, запрещен орбитальной симметрией и по расчету обладает более высокой энергией, чем (77). Расчеты (77) указывают на наличие я р-переноса заряда в переходном состоянии (79), что согласуется с экспериментально наблюдаемым ускорением присоединения большинства карбенов к алкенам, содержащим электронодонорные заместители, и свидетельствует об электрофильной атаке карбена. Многочисленные исследования относительной реакционной способности карбенов с целью выяснения влияния пространственных и электронных эффектов различных заместителей в алкенах и карбенах критически оценены Моссом [48], который показал недавно, что селективность многих карбенов типа СХУ при реакции с олефинами коррелирует как с резонансными, так и с индуктивными параметрами X и V [71]. Большинство карбенов, в том числе сильно я-стабилизованный Ср2 (49), ведут себя как типичные электрофилы, однако ароматические карбены, такие как (80) и (47), проявляют нуклеофильные свойства, например (80) присоединяется через переходное состояние, поляризованное противоположно (79) [72]. Полагают, что это обусловлено [c.596]

    Следовательно, между заместителями в разных кольцах нет существенного прямого взаимодействия. Корреляционный анализ показывает, что замещенное пятичленпое ароматическое кольцо (—С5Н4Х) и реакционный центр (железо) взаимодействуют аналогично взаимодействию w-замещенного фенильного кольца (— gH X) п реакционного центра (карбоксил), отделенного от ядра препятствующей сопряжению СПз-группой. Отсюда вытекает предположение, что па реакционную способность железа в реакции окисления замещенных ферроценов не оказывают влияния эффекты, подобные эффекту сопряжения между замещенным ароматическим ядром и реакционным центром в других реакционных сериях. Взаимодействие 2р-я-орбиталей колец друг с другом и с 4s- и Зй-орбиталями металла носит а-характер. Поэтому ароматическое пятичленпое кольцо не передает эффекты, подобные эффекту сопряжения, на железо п в другое кольцо. Корреляционный анализ [c.21]

    Влияние заместителей при сульфировании аналогично таковому при других реакциях электрофильно1ю замещения в ароматическое кольцо, причем для сульфирования характерна средняя селективность в отношении ориентации сульфогруппы и относительной реакционной способности. [c.467]

    Не имея возможности даже перечислить хотя бы часть многочисленных исследований (их сотни), которые связаны с уравнением (II, 52), его видоизменением и развитием, отметим лишь некоторые работы. Тафт (см. [436]) осуществил количественное разделение влияния заместителей на составляющие, соответствующие эффектам сопряжения, индуктивному и стерическому. Браун и Окамото [437—-439] модифицировали уравнение Гамметта и показали, что при изменении значения константы а, уравнение (II, 52) может быть использовано для описания реакций элек-трофильного замещения водорода в бензольном кольце ароматических соединений. В работе [440] осуществлена проверка уравнения Гамметта, а в [441—445] показано, что это уравнение находится в соответствии с выводами квантово-механического подхода к оценке реакционной способности. М. М. Кабачник с соавторами применил уравнение Гамметта для выявления таутомерии [446—448] и протолиза [449]. А. А. Баландин и М. Л. Хидекель [450] описали уравнение, являющееся аналогом (II, 52). [c.99]

    Из приведенных данных можно сделать вывод реакционная способность метинового атома водорода в 2-арилпн-дандионах-1,3 определяется полярным влиянием заместителей в ароматических кольцах. [c.152]

    Кинетика реакций диизоцианатов обычно сложнее, чем реакций моноизоцианатов. Реакционная способность одной группы диизоцианатов одинакова с реакционной способностью моноизоцианата, имеющего заместитель, который увеличивает его активность. Таким заместителем в случае диизоцианата является вторая изоцианатная группа. Как только одна изоцианатная группа прореагирует со спиртом, другая группа приобретает такую же реакционную способность, как и изоцианатная группа в моноизоцианате, имеющем в качестве заместителя урета-новую группу. Как показано в табл. 12, уретановая группа в мета- или пара-положении оказывает очень незначительное активирующее влияние, гораздо меньшее, чем изоцианатная группа в тех же положениях. Поэтому реакционная способность диизоцианата, имеющего обе изоцианатные группы в одном ароматическом кольце, должна значительно уменьшиться по достижении степени завершенности реакции примерно 50%. [c.188]

    Несмотря на то что химия ароматических соединений, давно выделилась в самостоятельную область органической химии и имеет очень большое значение, в современной литературе нет монографии на эту тему. Настоящая книга преследует цель рассмотреть теоретические и прикладные аспекты химии ароматических соединений в тесной взаимосвязи, уделив внимание реакциям и рааработанным на из основе методам синтеза. В первой части книги обсуждается электронное строение ароматических соединений (проблема ароматичности) и общие черты реакционной способности, включая влияние структуры ароматического субстрата, реагентов и растворителей, механизмы реакций ароматического замещения и квантово-химическую трактовку реакционнбй способности. Последующие части посвящены реакциям электрофильного, нуклеофильного и сво-боднорадикального ароматического замещения, квалифицированным по типу реагентов (например, 5-, С, 0-электрофи-лы и т. д.), реакциям, приводящим к потере ароматичности (присоединение, превращения в хиноидные системы, размыкание цикла), и реакциям в заместителях, примыкающих к ароматическому кольцу. При описании каждого типа реакций приводятся сведения о конкретных механизмах, описываемые методы синтеза иллюстрируются примерами с указанием условий (реагенты, среда, температура, длительность) и выхода. От-меч тся реакции, используемые в промышленном масштабе, с краткой характеристикой технологии в сопоставлении с альтернативными вариантами. , [c.8]

    Важно знать как можно больше о природе переходного состояния в реакциях ароматического замещения, а изотопный эффект дает информацию о том, в какой момент происходит разрыв С — Н-связи. Можно предположить, что общий профиль энергии будет в широком интервале одинаковым для всех реакций электрофильного замещения, т. е. что промежуточное соединение будет ограничено с обеих сторон двумя энергетическими максимумами, но детали, в частности относительные высоты максимумов, будут различаться в зависимости от природы электрофильного агента и ароматического субстрата. Наличие промежуточного соединения еще не означает, что переходное состояние будет всегда сходно с ним, и можно предположить, что различные реакции замещения будут отличаться рядом деталей. Эти различия не всегда можно предвидеть так, в недавних качественных электронных теориях большое внимание обращалось на влияние заместителей в ароматическом субстрате, а не на замечающий агент. Большинство правил ориентации, включая и те, которые были установлены до принятия электронной теории, было преимущественно получено из данных по реакции нитрования без учета отличий замещающих агентов и относительных скоростей различных реакций. Наблюдаемые в различных реакциях особенности часто приписывали стерическим эффектам электрофильного агента или субстрата. В 50-х годах начали признавать, что замещающий агент должен оказывать значительное влияние на относительные скорости реакций и начальную ориентацию [159—161]. Для некоторых реакций были получены качественные результаты, указывающие на такое влияние так, соотношение общих реакционных способностей толуола и бензола равно примерно 25 при нитровании, около 600 при бромировании и менее 5 при алкилировании. Далее, нитрование приводит к большим количествам лге/па-замеЕценных, чем бромирование, а при алкилировании лге/па-замещенные почти не образуются. Было предположено, что ион нитрония представляет собой очень сильный нитрующий агент, для которого, в частности, не требуется наличия активированных положений в ароматическом кольце. При бромировании мы имеем дело с менее сильным электрофильным агентом. Кроме того, связь Вг — Вг в отличие от иона нитрония расщепляется в переходном состоянии, поэтому процесс замещения при бромировании затруднен. Процесс бромирования требует максимальной подачи электронов заместителем, поэтому он избирателен по отношению к различным субстратам и различным положениям. [c.477]

    В начале нашего рассмотрения мы принимали, что на реакционную способность органических соединений воздействуют три фактора полярный, пространственный и сопряжение, причем предполагалось, что мы в состоянии отделить их друг от друга. Сейчас уже ясно, что это положение не всегда справедливо. Рассмотрим экспериментальные данные Ноулеса и Нормана [45[ по нитрованию а-замещенных толуолов. Как следует из рис. 3, реакционная способность лгета-замещенных соединений хорошо коррелируется с помощью констант oj (выпадает лишь Hz — Н-заместитель). То, что эта корреляция не является простой случайностью, становится очевидным после сравнения константы р рассматриваемой реакции с константой реакции нитрования замещенных бензолов при тех же условиях, равной 6,7 [74]. Если допустить, что метиленовая группа, находящаяся между заместителем и ароматическим кольцом в замещенных толуолах, ослабляет индуктивный эффект в 2,8 раза, то в случае рассматриваемой реакции константа р должна равняться —2,4. Наклон линии на рис. 3, а действительно дает р = —2,4. Точка заместителя СНг — И находится на 0,4 логарифмической единицы ниже линии, определяемой другими точками. Причиной этого не может быть сверхсопряжение, поскольку оно может вызвать отклонение лишь в противоположную сторону. Поляризуемость также не может быть причиной этого явления, поскольку трудно ожидать одинакового влияния на все [c.518]

    Реакционная способность пространственно-затрудненных фенолов в щелочной среде является одной из наиболее характерных особенностей химического поведения соединений данного типа. Пространственное влияние орто-алкильных групп сказывается не только на процессах образования солей фенолов, но и на реакционной способности фенолят-ионов. Отрицательный заряд в фенолят-ионе вследствие делокализации электронной плотности может быть сосредоточен не только на атоме кислорода, но и в орто- или параположениях ароматического кольца. Возможность такого рассредоточения заряда приводит к возникновению амбидентного ( двухзубого ) аниона, в котором имеются два нуклеофильных реакционных центра — атом кислорода и ароматическое кольцо. Следовательно, в реакциях с участием фенолят-ионов возможно образование производных как по атому кислорода, так и по атомам углерода в орто- или пара-положениях молекулы фенола. Подобная двойственная реакционная способность фенолят-ионов, являющаяся общим свойством молекул с сопряженными связями максимально проявляется в случае анионов пространственно-затрудненных фенолов, чему в значительной степени способствует пространственное экранирование одного из нуклеофильных реакционных центров — атома кислорода. Кроме того, орто-заместители, особенно трет-ал-кильные группы, значительно уменьшают сольватацию атома кислорода, что в случае анионов пространственно-затрудненных фенолов приводит к большей делокализации отрицательного заряда, а следовательно, к повышению реакционной способности второго нуклеофильного центра — ароматического ядра. Эти особенности поведения анионов пространственно-затрудненных фенолов в различных процессах проявляются по-разному. В связи с этим в данной главе отдельные типы реакций, протекающих с участием анионов пространственно-затрудненных фенолов, рассмотрены самостоятельно. [c.73]


Смотреть страницы где упоминается термин Заместители в ароматическом кольце, влияние на реакционную способность: [c.334]    [c.168]    [c.40]    [c.393]    [c.352]    [c.12]    [c.199]    [c.206]    [c.188]    [c.199]    [c.14]    [c.25]   
Теоретические основы органической химии Том 2 (1958) -- [ c.507 ]




ПОИСК





Смотрите так же термины и статьи:

Заместителей влияние



© 2025 chem21.info Реклама на сайте