Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спиральные структуры в полипептидах и белках

    Вторичная структура белка — форма полипептид-ной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипеп-тидные цепи природных белков находятся в скрученном состоянии — в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали (на рис. 18.1, а обозначены пунктиром). Подобная вторичная структура получила название а-спирали (рис. 18.1, а). Водородные связи в ней направлены параллельно длинной оси спирали (а-спирали чередуются с аморфными частями). [c.352]


    СПИРАЛЬНЫЕ СТРУКТУРЫ В ПОЛИПЕПТИДАХ И БЕЛКАХ [c.604]

    В соответствии с терминологией, предложенной Линдер-стрём-Лангом [ ], можно сказать, что молекулы обычных полимеров в растворе не обладают вторичной структурой, тогда как молекулы биологически активных полимеров и их синтетических аналогов могут ее иметь. При этом первичной структурой макромолекулы называется число и расположение химических связей в молекуле, а вторичной — регулярная пространственная спиральная структура с определенной периодичностью, стабилизуемая водородными связями. Исследованию вторичных структур биологически активных макромолекул посвящено громадное количество работ, в которых были определены параметры спиральных конформаций для большого числа синтетических полипептидов и полинуклеотидов, а также для природных нуклеиновых кислот и белков. В последнем случае, наряду с вторичной структурой, большую роль играет также третичная структура молекул, т. е. взаимное расположение спиральных и неспиральных участков, обусловленное взаимодействием боковых групп цепи, в частности, связями 5—8. Наиболее известные примеры вторичных сгруктур представляют собой а-спираль Полинга — Кори [2> ] для полипептидов и двойная спираль Крика — Уотсона [ ] для дезоксирибонуклеиновой кислоты (ДНК). Эти структуры [c.291]

    Очень чувствительным методом исследования конформаций белков и полипептидов является спектрополяриметрия. В неупорядоченной конформации характер оптического вращения белков определяется прежде всего аминокислотным составом, причем кривые дисперсии оптического вращения имеют плавный характер. Когда белок принимает конформацию а-спирали, то появляется большой дополнительный вклад этой спиральной структуры, дисперсия оптического вращения может стать аномальной, появляется эффект Коттона [c.637]

    По-видимому, спиральная структура полипептидов, белков и нуклеиновых кислот ответственна за холестерическую винтовую-структуру мезофаз. [c.279]

    Избирательное поглощение стенками кровеносных сосудов -аланина и асимметрическая адсорбция на материалах растительного или животного происхождения объясняются, по-видимому, адсорбцией на белке, генетически связанном со спиральной структурой полипептидов дезоксирибонуклеиновых кис- [c.178]

    Замечательным явилось сходство рентгенограмм (перечисленных фибриллярных белков и той структурной формы синтетических полипептидов, которая оказалась нечувствительной к их химической структуре. Речь идет об а-спирали. Получены убедительные признаки существования а-спиральной конфигурации в полипептидных цепях фибриллярных белков. Из меренный по рентгенограммам шаг спирали (около 5 А) и величина проекции одного остатка на ось волокна (около 1,5 А) согласуются с расчетными данными для а-спиральных структур. Дихроизм поляризованных инфракрасных спектров поглощения перечисленных фибриллярных белков указывает на то, что. водородные связи в этих белках [c.542]


    NH—СО— HR—, спираль образует правый винт. Широкое распространение а-спиральных структур среди синтетических полипептидов дает основание полагать, что такие спирали являются наиболее характерными и устойчивыми конфигурациями полипептидных цепей. Впоследствии это подтвердилось многочисленными физико-химическими исследованиями, в которых изучалась стабильность а-спиральной конфигурации полипептидов в самых различных условиях. Было обнаружено, что а-спираль стабильна в сравнительно широком диапазоне условий (pH, температура), а также в условиях, при которых многие белки остаются нативными. [c.540]

    Методы исследования пространственного строения белков и пептидов в растворе. Конформационные состояния белков и пептидов в растворе исследуются различными методами, каждый из которых имеет свои достоинстаа и ограничения. Информацию о вторичной структуре можно получить из ультрафиолетовых спектров поглощения в области ISO — 210 нм как показали исследования регулярных полипептидов (например, полилизина), а-спираль имеет меньшее (гипохромизм), а Р-структура большее (гиперхромизм) поглощение, чем неупорядоченный клубок. В течение долгого времени процентное содержание а-спиральных структур оценивали по кривым дисперсии оптического вращения (уравнение Моф-фита, 1956). В настоящее аремя содержание различных типов аторичных структур определяется из спектров кругового дихроизма (КД) на основе сравнения спектров пептидов и белков с кривыми КД канонических вторичных структур, полученных для регулярных полипептидов (Э. Блоут, 1961) (рис. 64) или выведенных на основе анализа кривых КД ряда белков с установленной пространственной структурой в кристалле. [c.111]

    В табл. 1 аминокислоты классифицированы по двум признакам — по полярности их боковой цепи и по их склонности к образованию в полипептидах и белках а-спиралей или других структур. Полярные Н-группы содержат неразветвленные цепи, неполярные проявляют тенденцию к образованию разветвленных. Такую классификацию, однако, не всегда можно провести достаточно четко. Обсуждению особенностей спиральных структур [c.13]

    Уравнение (XVI. 4) можно получить на основании приближенной теории, исходя из модели связанных осцилляторов. В этом уравнении фигурируют три (а не четыре, как в двучленном уравнении Друде) параметра, определяемых экспериментально. В отличие от параметра параметры о и Яо почти не зависят от природы растворителя. Поскольку второй член в уравнении (XVI. 4) описывает вклад спиральной структуры в дисперсию оптического вращения, параметр Ьо может служить мерой содержания спиральных форм в макромолекуле. В большинстве случаев данные по дисперсии дают возможность достаточно точно определить эти три параметра. Параметр >о определяют по наклону кривой зависимости [/га ](Я —Хо) от построенной на основании уравнения (XVI. 4). Значение Яо подбирают методом проб й ошибок так, чтобы получить прямую линию. Поскольку как для хаотического клубка, так и для а-спиральной конфигурации многих белков и полипептидов Яо 212 ммк, вклад а-спиральной конфигурации характеризуется только величиной параметра Ьо- [c.289]

    Класс II включает молекулы определенной структуры, модели которых были определены по крайней мере опытным путем. В эту группу входят синтетические полипептиды, некоторые из фибриллярных белков, амилоза крахмала (комплекс с иодом) и дезоксирибонуклеиновая кислота. В каждом из этих случаев кристаллическая структура, по-видимому, определяется сильной тенденцией к образованию водородных связей, которые могут быть внутримолекулярными, что приводит к спиральным структурам, или межмолекулярными, что приводит к состоящим из многих тяжей спиралям или к пластинчатым структурам. [c.149]

    Длинные цепи из пептидных групп, с которыми мы встречаемся в полипептидах высокого молекулярного веса и в белках, могут принимать различные конформации в зависимости от природы остатков и условий изучения (полярность растворителя, pH, температура и др.). Из всех возможных конформаций наиболее интенсивно изучались две — а-спираль и беспорядочные клубки. Переход упорядоченной спиральной структуры в беспорядочную приводит к изменению оптической активности. [c.242]

    Перечисленные выше эффекты могут играть существенную роль при исследовании структуры полипептидов и белков. Поэтому при оценке степени спиральности полипептидов и белков желательно  [c.142]

    В этой главе мы последовательно рассмотрим проблему изучения химического строения, или структурной формулы, белка, исследование вторичной спиральной структуры цепи и в этой связи — опыты с модельными синтетическими веществами полипептидами, без которых нельзя было бы столь быстро научиться понимать белки. Далее мы рассмотрим третичную структуру белковых макромолекул и наиболее совершенный метод ее изучения — рентгеноструктурный анализ, а также многочисленные физикохимические свойства белков, зависящие от макромолекулярной структуры — гидродинамические, оптические, электрические. Наконец, мы остановимся па современных методах разделения, очистки и идентификации белков. [c.10]


    Открытие аномальной дисперсии а-спиральных полипептидов показало существование конформационного вращения, обусловленного спиральной структурой [44, 45, 49—55, 587]. Известно, что нативные белки обладают гораздо меньшим отрицательным вращением, чем денатурированные белки. Это позволило предположить, что такие изменения во вращении связаны с потерей спиральности. Уравнение, выражающее свойства ДОВ а-спиральных полипептидов, было использовано в качестве основы для оценки содержания а-спиралей во многих типах синтетических полипептидов и белков. Рассмотрение этой проблемы с теоретической точки зрения допускает связывание экситонов и показывает, что сильные эффекты Коттона противоположных знаков (куплет) должны возникать в результате каждого сильного электронного перехода, такого, как л °- я-переход при 190 нм. Подобные электронные переходы имеют параллельную и перпендикулярную поляризации относительно оси а-спирали [44, 45, 588, 589]. Позднее показано, что для неопределенно длинной спирали они вызывают появление другого куплета. Такой более точный подход с точки зрения экситонной теории позволяет предсказать четыре полосы для каждого сильного поглощения. Для а-спирали их появление ожидается при 185, 189 и 193 нм. Кроме того, как показано в разд. 4.1, для п—>-я -пере-хода пептидной связи оптическая активность ожидается около 215 нм [69, 70, 554—557]. Современные приборы не [c.92]

    Вискозиметрический метод находит очень широкое применение, о чем можно судить, просматривая разного рода научные публикации, посвященные исследованию синтетических полимеров, очищенных полисахаридов, нуклеиновых кислот, белков и полипептидов. Этот метод особенно эффективен при определении мол. веса полимеров, содержащих спиральные структуры, или молекул, имеющих конформацию статистического клубка. Решающими преимуществами вискозиметрии по сравнению с методами седиментации являются ее простота и дешевизна аппаратуры. [c.425]

    Предшествующее обсуждение имеет достаточно общий характер, так что оно должно быть применимо к большинству возможных структур полипептидов и белков. Однако в остальной части этого раздела мы специально обсудим применение этих методов к системам, содержащим лишь клубкообразную и а-спиральную конформации [42, 63] Ч Это ограничение, а именно то, что присутствуют только лишь а-спиральная и клубкообразная конформации, составляет предположение V. [c.265]

    Главным источником большинства существующих в настоящее время дилемм, касающихся методов оценки а-спиральности в полипептидах и белках, является отсутствие критерия того, что имеется 100%-пая спиральность. К сожалению, никакой из принятых сегодня гидродинамических методов [49, 71, 72] (двулучепреломление в потоке и вязкость) не способен отличить 90%-ное содержание спиралей от 100%-ного. Чаще всего применяется [49, 71, 72] внутренний критерий , т. е. получение плато на зависимости параметра спиральности от параметра возмущения, вызывающего переход. Однако единственно правильный вывод, какой можно сделать при таких обстоятельствах, это то, что для данной системы было достигнуто максимальное или минимальное содержание структуры. [c.279]

    Конформация цепей полимеров виниловых мономеров определяется конфигурацией последоват. асимметрич. атомов С, фрагмента — HR—. В изотактич. полимерах (—СН — HR—) плоская зигзагообразная конформация цепи невозможна из-за стерич. отталкивания соседних групп R. Вследствие этого происходит последоват. транс-гош-ориентация связей и цепь приобретает спиральную конформацию, закрученную влево или вправо. Изотактич. макромолекулы могут образовывать спирали разных видов, а синдиотактические-могут существовать не только в виде спирали, но и в виде плоского зигзага. В тех полимерах, у к-рых радикалы не слишком объемны, спираль содержит три мономерных звена на виток (тип 3,), как, напр., у изотактич. полипропилена (табл. 2). В случае полимеров, содержащих объемные боковые группы, образуются более развернутые спирали. Так, спираль в макромолекуле поли-винилнафталина содержит четыре звена в витке (тип 4,). Спирально-упорядоченные структуры макромолекул характерны для полипептидов, белков, нуклеиновых к-т. Форма и размер заместителей в мономерном звене С.п. определяют не только параметры спиральной конформации цепей в решетке, их т-ры плавления, но и скорость кристаллизации, р-римость и осн. деформац.-прочностные св-ва. Изотактич. полимеры, содержащие очень объемные заместители, характеризуются высокими т-рами плавления и стеклования (табл. 2). [c.429]

    Однако при определенных условиях полипептиды могут образовывать определенные пространственные (трехмерные) структуры. Эти структуры образуются вследствие внутримолекулярного взаимодействия друг с другом и с растворителем различных групп мономерных звеньев полимерной молекулы. Например, в 1951 г. Лайнус Полинг и Роберт Кори теоретически предсказали, что полипептиды могут образовывать спиральную структуру вследствие наличия водородных связей между карбонильным атомом кислорода г-го фрагмента и амидным атомом водорода (г + 4) го фрагмента, что в дальнейшем нашло подтверждение на большом экспериментальном материале. Каждый белок с определенной нерегулярной последовательностью аминокислот может образовать уникальную пространственную структуру. Следует отметить, что любая тонкая биологическая функция, выполняемая белком, реализуется только при наличии такой структуры. Любое ее нарушение нагреванием или изменением pH среды (денатурация), не сопровождающееся расщеплением ковалентных связей, приводит к полной потере функциональной активности белка. Лишь небольшие белки могут легко претерпеть обратное превращение в исходное состояние. Обратное превращение денатурированного высокомолекулярного белка в исходную биологически активную структуру (ренатураци.ч) возможно, только если использовать специальную процедуру, т.е. в том случае, если ни мономерные компоненты, ни полимерные цепи не были повреждены в процессе денатурации. [c.15]

    Спираль 2,2 (2,2 остатка иа виток, семичленный Н-связанныи цикл) оказывается весьма напряженной и в природных полипептидах и белках не реализуется. Спираль 3, хотя и является напряженной, тем не менее существует в природе, в частности найдена в миоглобине и лизоциме. Спирали 4,4 , или л-спирали, в белках практически не встречаются. В силу ограничений, вносимых структурой пролина (фиксированный угол ), полипролин может существовать в специфических спиральных конформациях, обозначаемых как спираль полнпролина I н спираль полипролнна 11 (рнс. 45). Такие спирали во многом подобны спирали коллагена. Параметры спиральных структур (рис. 42) приведены в таблице 4. [c.95]

    Еще полгода или год назад казалось, что в науке о конформациях пептидов было достигнуто определенное насыщение. Конформации небольших фрагментов или регулярных полипептидов можно было предсказывать с неплохой точностью и сравнивать с имеющимися опытными данными, а поскольку модельных соединений было синтезировано много, то поток работ, посвященных конформационным расчетам, постепенно увеличивался, хотя явно ощущалось отсутствие новых идей. Создавалось впечатление, что пространственные структуры глобулярных белков и конформации модельных полипептидов разделены непреодолимым барьером, и, следовательно, последние оставались вещью в себе . Параллельно развивались статистические исследования белков, с тем чтобы иметь возможность получить представление о спиральных и неспиральных участках в белках на основании знания аминокислотной последовательности. Однако недавно Котель-чук и Шерага [21] установили важные свойства взаимодействия аминокислот друг с другом и пептидной цепью. Эти свойства открывают новые возможности для анализа про-стракственной сгруктуры белков или, по крайней мере, нерегулярных пептидов с относительно большим числом остатков, и потомку мы на них подробно остановимся. [c.94]

    Дисперсия оптического вращения. Доля спирализованных участков в молекуле белка — важный параметр его структурной характеристики. В парамиозине, например, более 90% аминокислотных остатков вовлечены в спиральную структуру, тогда как в Р-лактоглобулине участки со структурой а-спирали, вероятно, вообще отсутствуют. Большинство белковых молекул содержит спирализованные участки различной длины, чередующиеся с элементами структуры типа беспорядочно свернутого (статистического) клубка. Долю спирализованных участков можно определить несколькими методами. Чаще всего пользуются методом, оспованным на изучении дисперсии оптического вращения модельных полипептидов. На фиг. 35 схематически показана зависимость оптического вращения синтетического полипептида поли-Ь-глутамата от длины волны при pH 7 и 4. Такое изменение оптического вращения носит название дисперсии оптического вращения. Легко видеть, что кривые дисперсии оптического вращения для двух значений pH резко отличаются одна от другой как в области менеду 250 и 190 ммк, так и в области между 350 и 700 ммк. Эти различия коррелируют с изменениями в структуре полипептида если при pH 4 структура поли-Ь-глутамата является полностью спиральной, то при pH 7 полипептид имеет структуру беспорядочно свернутого клубка. Поскольку спираль представляет собой в основном асимметрическую структуру, вполне естественно, что наличие спирализованных участков усиливает способность полипептидов вращать плоскость поляризации (обусловленную присутствием в цепи остатков асимметрических аминокислот). Важный, но еще не решенный вопрос состоит в том, можно ли, исходя из данных по дисперсии оптического вращения, количественно оценивать долю спиральных структур. В принципе такие оценки можно делать на основе данных по оптическому вращению, полученных в двух разных областях спектра. Для более длинноволновой области Моффит и Янг предложили следующее эмпирическое выражение, описываю- [c.101]

    Для синтетического полипептида поли-р-бензил-Ь-аспартата, растворенного в хлороформе, 6o=-f611. Следовательно, его молекулы имеют структуру левой а-спирали. Это заключение согласуется с малой стабильностью а-спирали в данном случае. Достаточно добавить в раствор этого полипептида в хлороформе дихлоруксусную кислоту в концентрации примерно 10%, чтобы вызвать переход к конформации хаотического клубка. В случае поли- -бензил-Ь-глутамата, имеющего структуру правой спирали, для перехода спираль — клубок требуется, чтобы отношение концентраций дихлоруксусной кислоты и хлороформа было равно приблизительно 70 30. Если в молекуле содержание левых и правых спиралей одинаково, то Ьо О. В отсутствие других форм вторичной структуры параметр Ьо служит мерой избыточного содержания спиральных форм одного из двух типов. Большая часть белков спирализуется, по-видимому, только в форме правой а-спирали. В этих случаях Ьо может служить непосредственно мерой содержания спиральных структур .  [c.290]

    Конформация полипептида в растворе частично определяется прямым взаимодействием пептидных групп друг с другом. То обстоятельство, что синтетические по-липептидй имеют высокорегулярную, кристаллическую структуру, тогда как многие другие- полимеры аморфны, т. е. обладают структурой беспорядочного клубка, в принципе свидетельствует о наличии некой естественной конформации для полипептидов. Результаты тщательной оценки длины связей и валентных углов, основанной на размерах, установленных для планарных пептидных связей в кристаллах небольших пептидов, существенно ограничили число возможных моделей конформации полипептидов. Дальнейшие ограничения в выборе возможной конформации были связаны с тем, что, согласно исходным предположениям, каждая карбонильная и каждая амидная группа пептида участвует в образовании водородной связи и что конформация полипептида должна соответствовать минимальной энергии вращения вокруг одинарной связи. Этим требованиям для пептидов, в которых имеются внутримолекулярные связи, отвечала правая спираль, содержащая 3,6 аминокислотных остатка на один виток (так называемая а-спираль) [1].. Существование спиральных структур предсказанных размеров в синтетических полипептидах было подтверждено с помощью самых различных физических методов, в том числе и методом рентгеноструктурного анализа. Такая а-спираль, в которой каждая пептидная группа соединена водородной связью с третьей от нее пептидной группой, считается наиболее вероятной моделью отдельных участков остова молекулы глобулярных белков, к которым относятся и ферменты. Нужно подчеркнуть, однако, что конформация глобулярного белка в целом отличается от простой регулярной а-спиральной структуры из-за наличия, в белке дисульфидных связей и остатков пролина, которые нарушают спиральное строение и изменяют ориентацию цепи, а также из-за взаимодействия боковых цепей, ответственного за третичную структуру. Действительно, рентгеноструктурный анализ с высоким разре- [c.25]

    Если ковалентные силы вдоль цепи — это силы номер 1, то водородные связи — это силы номер 2 (по величине энергии связи), и навязываемая ими спиральная структура макромолекулы называется вторичной структурой белка. В белках, как и нуклеиновых кислотах, мы встречаемся с особым случаем макромолекул с большими внутримолекулярными (нехимическими) силами. Вызываемая силами водородной связи правильная пространственная организация цепи часто называется внутримолекулярной кристаллизацией. И де11Ствительно каждая такая макромолекула напоминает кристалл. Спиральная структура придает ей как ближний, так п дальний порядок. Кроме того, ее механические свойства оказываются исключительными подобная цепь жестка, как палочка. Как мы увидим дальше, аналогия с кристаллизацией может быть продолжена — вторично структуре свойственна точка плавления. Вторичная структура, образуемая системой водородных связе , может быть лучше всего зучена ie на белках, а на модельных пол мерах — простых полипептидах. [c.33]

    Остальные 20 не способны обмениваться вплоть до температуры плавления вторичной структуры — вблизи 60°. На рис. 12 нанесены кривые плавления спиралей рибонуклеазы как в обычной, так и в тяжелой воде, когда происходит разрыв связей между СО—NH -группами. Для исследования процесса распада о-спиральной структуры белков и полипептидов в данном эксперименте, как и во многих других, было использовано измерение удельного вращения плоскости поляризации света (при D-ли-нии натрия, Я, = 589 Ш л), или так называемой оптической активности [alo- Оптическая активность измеряется при серии температур, когда наблюдается резкий переход. Напомним, что аминокислоты, (кроме глицина), содержат асимметрический а-атом углерода и вращают плоскость поляризации света. Величина оптического вращения полимера состоит из алгебраической суммы двух величин из отрицательной величины, представляющей собой вклад всех асимметрических атомов углерода и из положительной величины, являющейся вкладом а-спи-ральной структуры как це- [c.50]

    В табл. 3 приведены результаты изучения ряда белков методом гинохромного эффекта. Для калибровки использован белок мышц моллюсков парамиозин, степень спиральности которого принята равной 100%. (По всем данным вторичная структура этого белка не менее совершенна, чем у простых полипептидов). Для сравнения в табл. 3 приведены цифры по проценту снирализации, найденные методом изотопного обмена и методом рентгеноструктурного анализа. Последние являются самыми надежньши и точными. [c.64]

    Спрашивается 1) можно ли с уверенностью пользоваться критерием оптической активности, чтобы судить о наличии спиральной конфигурации внутри макромолекулы и 2) можно ли прокалибровать изменение оптической активности при денатурации на ряде модельных веществ и пользоваться им для количественного измерения степени спиральности в бедках На оба вопроса мы не можем сейчас дать утвердительный ответ без ряда оговорок. Несомненно, что а-спиральная структура Полинга—Кори может быть безупречно доказана только рентгеноструктурньш анализом. В этом смысле мы уверены в ее наличии у ряда синтетических полипептидов (в пленках) и у двух хорошо изученных глобулярных белков — миоглобина п гемоглобина. Мы можем заключить отсюда, что эта структура типична для белков вообще, однако сегодня эта гипотеза еще не доказана. Что мы можем утверждать с уверенностью, — это наличие в макромолекулах полипептидов и глобулярных беЛков упорядоченной структуры, со.здающей большой вклад в оптическую активность. Без большого положительного инкремента, создаваемого структурой белка, нево.зможно объяснить явления оптической активности белков. [c.69]

    Из рис. 30 мы видим, что вблизи полосы поглош,ения оптическая активность становится чрезвычайно большой, проходит через максимум, стремительно падает и затем, пзменнв свой знак, проходит через такой же глубокий экстремум. Подобное изменение оптической активности с сопровождаюш,им его дихроизмом носит название Коттон-эффекта. Для белков, у которых полоса поглощения лежит вблизи 190 П1 л, всю кривую получить не удалось. Однако часть кривой, а именно максимум оптической активности при 230 тц, достигающий огромной величины (12 000° у полипептидов и парамиозина), была получена для всех белков и полипептидов со спиральной структурой. У протамина, в котором спиральная структура полностью отсутствует, максимум не наблюдается, а у белков в 8М мочевине, т. е. реагенте, расщепляющем водородные связи, высота максимума уменьшается в 10 раз. Видно, что эта величина пропорциональна содержанию спиральных областей. Следовательно, измерением Коттон-эффекта в белках при 230 т л можно пользоваться для характеристики вторичной структуры белков, однако необходимо помнить, что количественной теории этого явления пока не существует. [c.74]

    Белки, -спираль — пространственное расположение последовательности аминокислот (один из вариантов вторичной структуры белка), при котором полипептид образует регулярную спираль о шагом 5,44 А и диаметром 10,5 А. На каждый виток а-спирали прюЕодится по 3,7 аминокислотного остатка, а на один аминокислотный остаток — 1,5 А длины спирали. Между атомом водорода в каждой пептидной группировке и карбоянльным атомом кислорода третьей ло счету от нее аминокислоты возникают внутрицепочечные водородные связи, направленные вдоль оси спирали. Водородные связи появляются после образования спиральной структуры, закрепляют ее и стабилизируют. [c.15]

    Альфа-спираль Полинга — Корея, таким образом, дала решение вопроса о вторичной структуре белковых молекул. Но необходимо отметить, что это были чисто расчетные построения точных, прямых экспериментальных доказательств, несмотря на всю убедительность теоретической базы, в течение некоторого времени получено не было. В пользу этой теории говорили только опыты с синтетическими полиаминокислотами, проведенные Бамфор-дом с сотрудниками, в которых была доказана а-спиральная структура у нескольких синтетических полипептидов (см. [34]). Кроме этого, сторонники а-спиральных конфигураций белковых молекул обладали лишь косвенными рентгеноструктурными данными, свидетельствующими в пользу а-спирали, полученными на фибриллярных белках (например, из игл дикобраза). Но несмотря на это, гипотеза стремительно раопространялаеь и находила все большее и большее число сторонников из-за того, что она позволила объяснить и систематизировать многочисленные факты, связей между которыми раньше установить не удавалось, например денатурация белков и др. При помощи определенных методов дейтеро-водородного обмена получены многочисленные качественные характеристики числа водородных связей в спиралях, термодинамических переходов, происходящих при деспира-лизации полипептидной цепи и некоторые другие данные. Все они очень хорошо укладывались в рамки теории Полинга — Корея. И все же это были лишь косвенные доказательства, но несмотря на это, представление об а-спирали, как основной конфигурации полипептидных цепей, общей для всех белков, получило повсеместное признание. Переломным годом в распространении признания наличия а-спиралей в белках необходимо считать 1952 г. Д. Кендрью на Конференции по структуре белка в Пасадене в 1953 г. сказал Нельзя сказать, что в мае 1952 г. спираль была основой наших представлений о структуре белка. В самом деле, тогда имелись серьезные разногласия по вопросу о существовании спиральных цепей. Конференция в Пасадене показала, что спиральная структура вступила в свои права... Из обсуждения, имевшего место на Конференции, можно было заключить, что а-спираль является основной конфигурацией цепи, имеющейся в а-полипептидах (см. [150]). [c.147]

    В первые на поли-у-бензил-Ь-глутамате было показано, что переход спираль — клубок можно проследить достаточно эффективно, пользуясь методом измерения оптического вращения [80]. Этот конформационный переход обычно совершается в присутствии добавок, которые способствуют ослаблению водородных связей, стабилизирующих спиральную структуру. Например, в смешанных растворителях, состоящих из дихлорэтана (растворитель, способствующий образованию спирали) и дихлоруксусной кислоты (способствующей образованию конформации клубка), этот полипептид претерпевает обратимый переход первого рода при содержании кислоты в смеси приблизительно 76 об. % (или 80 вес. о) (рис. 58). Такой резкий переход наблюдали также и в случае других пар растворителей он может даже происходить при добавлении небольших количеств нерастворителя, например воды, к раствору полипептида в хорошем растворителе задолго до осаждения полипептида (Доти и Янг, неопубликованные данные). Конформационный переход можно осуществить, не изменяя состав растворителя, просто понижением или повышением температуры раствора, состав которого близок к составу, при котором наблюдается переход в нормальных условиях. Более ярко конформационный переход показан на рис. 59, на котором приведены дисперсионные кривые, нормальная для конформации клубка и аномальная для спиральной формы. (Направление перехода в этом случае противоположно направлению аналогичного перехода при денатурации белков в последнем случае повышение температуры способствует возникновению разупорядоченной формы. Причину этого обращения направления конформационного перехода можно объяснить исходя из данных по термодинамике [80].) Поскольку а-спирали стабилизованы кооперативным влиянием водородных связей, можно ожидать, что резкость перехода должна зависеть от молекулярного веса и распределения по молекулярным весам полипептида, что в действительности было обнаружено для поли-у-бензил-Ь-глутаматов [80]. Кроме того, было показано, что включение в Ь-полипептид небольшого количества В-остатрюв приводит к ослаблению спиральной конформации, в результате чего при увеличении количества О-остатков до [0/(Ь + О) С 0,5] точка перехода сдвигается в направлении меньшей объемной доли дихлоруксусной кислоты [81]. [c.113]

    Согласно существовавщей до недавнего времени традиционной точке зрения для поддержания внутримолекулярной структуры полимеров в растворах необходимо наличие специального типа взаимодействий, в частности — водородных связей. Именно этого типа внутримолекулярные взаимодействия считали ответственными за спиральную конформацию молекул полипептидов, белков и нуклеиновых кислот (см., например, [251, 510]). Лишь в последнее время стали допускать, что ван-дер-ваальсовы взаимодействия между гидрофобными группами цепи также участвуют в стабилизации спиральной структуры молекул указанных полимеров 538—540]. [c.264]

    Полимерные цепи, к которым относятся указанные выгие замечания, могут принимать множество форм беспорядочных клубков , ни одна из которых не обладает какими-нибудь иреимуществами перед другими. Однако ограниченный класс линейных цепных молекул способен принимать в растворе строго определенные конформации, соответствующие свернутым в спираль стержневидным структурам. Такое поведение типично для некоторых белков, нуклеиновых кислот и их синтетических аналогов. Переход формы цепи из беспорядочного клубка в спиральную конформацию можно рассматривать как одномерный аналог кристаллизации, и, таким образом, значение принципов, лежащих в основе такого явления, выходит за рамки профессиональных интересов химика, имеющего дело с полимерами. Кроме того, очевидно, что только большие молекулы с такими точно определенными пространственными соотношениями, какие, например, следуют из упорядоченных конформаций белков и нуклеиновых кислот, могут проявлять высокую специфичность молекулярных взаимодействий, являющихся неотъемлемой частью жизненных процессов. Это соображение, несомненно, послужило причиной огромных усилий, затраченных в последние годы на детальное выяснение условий, способствующих стабилизации упорядоченных образований в растворах полипептидов и полинуклеотидов. Возникающая в связи с этим проблема определения сил, ответственных за складывание полипептидных ценей, состоящих из спиральных и неспиральных участков, в своеобразную третичную структуру нативных белков (см. раздел Б-5) остается предметом будущих исследований. [c.86]


Смотреть страницы где упоминается термин Спиральные структуры в полипептидах и белках: [c.253]    [c.363]    [c.253]    [c.23]    [c.102]    [c.294]    [c.102]    [c.158]    [c.93]    [c.121]    [c.179]   
Смотреть главы в:

Физическая химия -> Спиральные структуры в полипептидах и белках




ПОИСК





Смотрите так же термины и статьи:

Белки полипептиды

Белок белки структура

Полипептиды

Спиральные структуры

Структура белка

Структуры в белках и полипептидах



© 2024 chem21.info Реклама на сайте