Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальные методы и спектры

    Энергия расщепления А может быть рассчитана теоретически методами квантовой механики и определена экспериментально по спектрам поглощения комплексных соединений. [c.124]

    Наряду с обменом колебательной, вращательной в поступательной эпергии при столкновениях молекул, находящихся в основном электронном состоянии, значительный интерес представляет обмен энергии электронновозбужденных молекул. Практически единственным экспериментальным методом определения вероятности или констант скорости этих процессов является оптический метод, основанный на измерениях интенсивности электронных спектров испускания (флуоресценции). [c.100]


    Энергия. Система МО молекулы Н2 используется для построения электронных конфигураций двухатомных гомонуклеарных молекул. Заполнение молекулярных орбиталей происходит в соответствии с принципом наименьшей энергии и принципом Паули, по два электрона размещаются на а- и по четыре на вырожденных я- и 8-орбиталях. Порядок, в котором возрастают энергии МО, устанавливается при исследовании молекулярных спектров и другими экспериментальными методами, а также при помощи квантовомеханических расчетов. Для гомонуклеарных молекул, более тяжелых, чем N3, установлена последовательность орбиталей по энергии  [c.74]

    При угловой структуре радикала спектр ЭПР в зависимости от общего числа электронов в системе и анизотропии образца имеет характерный вид, позволяя определять спиновую плотность на центральном атоме и оценивать валентный угол. Так, например, для радикала NO2 было получено значение валентного угла 133°, совпадающее в пределах ошибок с установленным прямыми экспериментальными методами (134°). В ион-радикале СО2" идентифицированном методом спектроскопии ЭПР в облученном формиате натрия, локализация неспаренного электрона на оказалась больше сравнительно с N в NO2 , что соответствует большему значению валентного угла (ближе к 180°). Эти выводы согласуются с особенностями реакционной способности этих частиц большая склонность ион-радикала O2 к димеризации, присоединение водорода к атому углерода, а не к кислороду, как в радикале NO2, и т. д. [c.69]

    Как видно из уравнений (6.4) и (6.8), данные электронографического эксперимента представляют собой систему трансцендентных уравнений относительно исходных структурных параметров. Ввиду отсутствия методов решения таких уравнений в газовой электронографии общепринятым является определение структуры молекулы на основе уточнения предварительно оцененных или приближенно измеренных параметров (предварительная модель). При поиске предварительной модели широко используют результаты исследований, полученные другими экспериментальными методами, электронографические данные для родственных соединений, а также закономерности теории химического строения. Так, например, данные по дипольным моментам и колебательным спектрам позволяют установить тип симметрии исследуемой молекулы. Ценную информацию можно получить из анализа функций [c.148]

    В зависимости от того, в какой области располагается спектр, его называют ультрафиолетовым, видимым, инфракрасным (ИК) или микроволновым. Спектры в первых трех областях называют оптическими. Их объединяют общие и экспериментальные методы получения. [c.158]


    В основу классификации экспериментальных методов рентгенографии можно положить либо способ регистрации дифракционного спектра (фотографический или ионизационный), либо агрегатное состояние исследуемого объекта (поли- или монокристалл, аморфное вещество, жидкость или газ). Несмотря на существование единого физического подхода к проблеме дифракции рентгеновских лучей (см. Введение и гл. I), различия в методических особенностях экспериментальных исследований различных объектов весьма существенны и приводят к появлению специальных областей рентгеноструктурного анализа. Например, значительная информация о белках, полимерах и ряде других объектов сосредоточена в области малых углов рассеяния от нескольких угловых минут до 3—5 градусов. С позиций физики рассеяния рентгеновских лучей между этой и всей остальной частью дифракционного спектра нет никакой принципиальной разницы, однако, специфические экспериментальные трудности, в первую очередь — малая интенсивность рассеянного излучения, привели к созданию специального рентгеновского оборудования — малоугловых рентгеновских камер и дифрактометров [1]. [c.111]

    Экспериментальный метод исследования атомов. Экспериментальной основой теории строения атомов служат главным образом данные, полученные при изучении атомных спектров испускания или поглощения излучения, регистрируемые спектральными методами. Эти методы использовали вначале (после их разработки в 1859 г.) для химического исследования атомного (элементного) состава веществ (спектральный анализ), в дальнейшем они были усовершенствованы и теперь являются мощным средством для изучения строения вещества. [c.10]

    Разработаны различные экспериментальные методы определения энергии связи (путем измерения энергетических э( ктов процессов, анализа спектров и др.). Зная энергию того или иного химического процесса и энергию всех связей, кроме одной, можно вычислить последнюю. Так, при сгорании водорода по реакции [c.65]

    Рассмотренное деление спектроскопии по диапазонам длин волн и частот излучения определяется различием экспериментальных методов исследовання отдельных областей спектра. В табл. 6.2 приведены названия спектров, соответствующих различным типам излучения. Все эти спектры можно классифицировать в рамках четырех видов спектроскопии ядерной, атомной, молекулярной и спектроскопии конденсированных систем. [c.214]

    Предполагая, что в пламени существует локальное термодинамическое равновесие (ЛТР), зная состав топлива и окислителя, а также их соотношения, можно рассчитать температуру пламени. Существуют различные экспериментальные методы определения температуры пламени. Например, хорошо известным методом является метод обращения спектральных линий атома натрия, в котором пламя, содержащее следы натрия, просвечивается источником излучения с известной температурой. Линии натрия в спектре пламени будут видны на фоне спектра источника излучения как линии испускания, если температура источника ниже температуры пламени, -и как линии поглощения, если температура источника выше температуры пламени. При равенстве температур интенсивность линий натрия не будет отличаться от интенсивности источника излучения с известной температурой. [c.56]

    Из уравнения (11.1) следует, что, зная а и измерив к, можно вычислить порядковый номер элемента. Это экспериментальный метод проверки правильности распределения элементов в периодической системе по возрастанию заряда ядра. Закон Мозли показал, что Д. И. Менделеев правильно расположил элементы в периодической системе, позволил установить общее число элементов в каждом периоде, а главное, направил усилия ученых на открытие предсказанных им элементов. Вскоре несколько элементов было открыто с помощью анализа рентгеновских спектров (гафний, 2 =72 рений, 2=75 и др.). [c.29]

    При отсутствии какого-либо из этих свойств приходится изменять экспериментальные методы регистрации спектров. Некоторые из них приведены ниже. [c.78]

    Дисперсионные кривые для многих твердых тел, фононный спектр которых содержит акустические и оптические ветви, были найдены экспериментальным методом, основанным на когерентном рассеянии нейтронов и рентгеновских лучей [16]. [c.113]

    Поскольку некоторое нормальное колебание может принадлежать к различным типам симметрии в разных точечных группах, его свойства будут сильно зависеть от симметрии молекулы. Приведем здесь всего один пример. Симметричное валентное колебание V, молекулы АХ не наблюдается в ИК-спектрах, если молекула плоская (Оз ) если же молекула имеет пирамидальную форму (С ), то это колебание наблюдается. Очевидно, что колебательная спектроскопия - один из лучших экспериментальных методов установления симметрии молекул. [c.237]


    Расчетно-теоретическим способом можно получить многие химические и физические характеристики молекул, включая конформацион-ные свойства, барьеры внутреннего вращения, относительные устойчивости различных изомеров или же различных электронных состояний. Можно рассчитать также некоторые константы, относящиеся к электронным и колебательным спектрам, а также другие параметры. Мы рассмотрим только одну из возможных характеристик молекул-ее равновесную геометрию. На сегодняшний день высококачественные расчеты геометрического строения молекул, состоящих из относительно легких атомов, обладают такой же достоверностью, как и наилучшие экспериментальные данные. Однако следует иметь в виду, что расчеты дают нам равновесную геометрию, в то время как различные экспериментальные методы приводят к некоторой эффективной геометрии молекулы, усредненной по внутримолекулярным колебаниям. В зависимости от величины этих колебаний и от их влияния на строение молекулы равновесная и усредненная структуры могут различаться в разной степени. Результаты расчетов становятся менее достоверными, [c.308]

    Вся область электромагнитного спектра не может быть исследована при помощи одного типа приборов. Экспериментальные методы, используемые в спектроскопии, значительно изменяются при переходе от одной области к другой, однако основные принципы остаются теми же. [c.8]

    В течение последних восьми лет был достигнут значительный прогресс в изучении влияния растворителей на химические реакции и спектры поглощения органических соединений, а в литературе были описаны многочисленные интересные примеры влияния растворителей. В частности, ставшее возможным благодаря новым экспериментальным методам изучение ионных реакций в газовой фазе позволило непосредственно сравнивать реакции в газовой фазе и в растворе, что в свою очередь привело к лучшему пониманию механизмов реакций в растворах. По этой причине в главы 4 и 5 включено описание ряда газофазных реакций в сравнении с соответствующими реакциями в растворах. [c.8]

    Разработанные в течение последних двадцати лет три новых экспериментальных метода позволили изучать в газовой фазе и ионные реакции. К ним относятся импульсная масс-спектро-метрия с ионным циклотронным резонансом (ИЦР), импульсная масс-спектрометрия высокого давления и изучение послесвечения [469—478] (см. также литературу, приведенную в разд. 4.2.2). Хотя в основе этих методов лежат различные независимые физические принципы, полученные с их помощью результаты изучения кислотно-основных и других ионных реакций хорошо согласуются между собой (погрешность не превышает 0,4—1,3 кДж-моль или 0,1—0,3 ккал-моль ) и считаются не менее достоверными, чем результаты изучения реакций в растворах. [c.183]

    Для реальных систем именно такая ситуация типична, и сложный релаксационный процесс представляют как суперпозицию независимых идеальных релаксационных процессов со своими временами релаксации, вводя функцию распределения времен релаксации (релаксационный спектр). В третьей части мы рассмотрим различные экспериментальные методы исследования релаксационных свойств полимеров и покажем, что наиболее эффективны методы, основанные на воздействии на полимер периодическими механическими силами и электрическим и магнитным полями с определенной частотой. Пока же остановимся на вопросе об особенностях перестройки структуры в полимерах, определяющих специфику их релаксационных свойств. [c.29]

    Но так или иначе именно наличие множественных максимумов на промежуточных или окончательных релаксационных спектрах неминуемо вызывает сомнения и дискуссии — и вот теперь, независимо от ТВЭ или ТВА, возникает действительная потребность тщательного сканирования или зондирования отдельных областей температурного или частотного релаксационного спектра разными методами, но специально настроенными на эту область. Подчеркнем, что теперь это делается уже не для сшивания полного спектра, а для экспериментальной коррекции спектров q(x) в области опасных частот (длительностей импульсов) или температур. [c.306]

    Было отмечено [6], что концепция изомерии приобретает практический смысл только тогда, когда имеется экспериментальный метод, позволяющий сделать выбор между изомерами. В этой связи представляется важным вопрос о том, в какой временной шкале проводится эксперимент. Если изомеры могут быть выделены физически, то обычно их можно различить с помощью спектроскопических и (или) дифракционных методов. Даже если они настолько неустойчивы, что выделить их не удается, их иногда можно наблюдать с помощью спектроскопии ЯМР (см. с. 27). В ИК-спектре хлорциклогексана при комнатной температуре [60] обнаруживаются частоты валентных колебаний как аксиальной, так и экваториальной связей С—С1, хотя в спектре Н-ЯМР присутствие обеих диастереомерных конформаций хлорциклогексана удается обнаружить только при температуре ниже —100 °С. Наконец, при —150 °С удается разделить аксиальную и экваториальную конформацию хлорциклогексана соответственно в виде жидкого и кристаллического образцов. [c.44]

    Использование этих стандартных спектров КД для подсчета соотношений а-спирали, -формы и неупорядоченных конформаций глобулярных белков с попыткой воссоздания экспериментально измеренного спектра КД белка по алгебраической сумме различных долей спектра из трех чистых конформаций стало главным применением этого спектроскопического метода в данной области. Достигаемая при этом точность зависит от того, насколько конформационно чистым является стандарт, и для этой цели были рекомендованы и несколько поли ( -аминокислот). Неопределенностью, однако, является то, в каких условиях эти поли (аминокислоты) становятся полностью конформационно неупорядоченными. В качестве стандарта с неупорядоченной конформацией предложен поли ( -серин) при высоких солевых концентрациях [23]. КД-спектры, вычисленные для миоглобина, лизоцима и рибонуклеазы на основе их третичных структур, которые ранее были установлены для этих глобулярных белков по данным рентгеноструктурного анализа, согласуются по всем характеристическим точкам с экспериментальными спектрами КД при использовании в качестве одного из стандартов поли ( -серина) [35]. Подобные данные по анализу соответствия кривых по нативным белкам и полипептидам многочисленны, и они дают информацию о степени конформационной упорядоченности этих веществ в растворах [36]. Эти данные не дают, конечно, ответа на вопрос, какая именно часть первичной структуры а-спирализована, какая отвечает -форме и какая— неупорядоченной, однако основываясь на последовательности аминокислотных остатков белка или полипептида, можно строить рискованные предположения о том, где эти конформации локализованы. Как отмечалось в разд. 23.7.2.4, аминокислоты белков разделяются на те, которые при включении в полипептиды способствуют принятию упорядоченной конформации, и те, которые тому не способствуют. Такая информация получена при рассмотрении [c.437]

    В многоатомных молекулах, в отличие от двухатомных, в колебательных движениях участвуют одновременно все атомы и химические связи. Поэтому в случае многоатомной молекулы линия в ИК-спектре определяет не частоту колебания какой-либо связи в ней, а всей молекулы в целом, всех ее связей, каждая из которых вносит в колебание свой вклад, т. е. имеем сложные колебания. Приведенная на рис. 4.8 кривая колебательных состояний характерна только лишь для двухатомной молекулы. В сложных молекулах подобные кривые существуют дня каждой из связей форму же сложной молекулярной кривой потенциальной энергии представить достаточно сложно. Можно лишь сказать, что для сложной молекулы существует система колебательных уровней энергии для валентных (симметричных и асимметричных), а также деформационных колебаний. Не все колебания проявляются в ИК-спектре по различным причинам. Поэтому полная расшифровка ИК-спектров является труднейшей задачей и требует привлечения теоретических расчетов колебательных состояний. Кроме того, существуют многочисленные экспериментальные методы, помогающие отнесению полос в ИК-спектрах молекул к отдельным связям и группировкам атомов. Твердо установлено, что колебания таких связей, как С-Н, М-Н, 0-Н, 8-Н, -С=С-, -С=С-, —С—С—, -N=0, —С=М— и др., а также функциональных [c.116]

    А В тетраэдрическом окружении составляет 4/9 ее величины в октаэдрическом поле. Его определяют экспериментально по спектрам поглощения комплексов или рассчитывают теоретически методами квантовой химии. [c.268]

    Существование и некоторые особенности инверсии циклогекса-нового кольца были по дтверждены экспериментально методом ПМР. Теоретически резонанс атомов е-Н и а-Н должен пооисходить в разных полях, и можно было бы ожидать появления двух разных линий химического сдвига, вероятно, с тонкой структурой за счет спин-спинового взаимодействия. На самом деле в соответствующей области ПМР-спектра циклогексана протону отвечает лишь одна линия. Это можно объяснить только очень быстрой инверсией кресловидной формы. Тогда каждый протон половину времени экваториален, а половину — аксиален, и все они дают один общий усредненный сигнал. Но при понижении температуры инверсия должна замедляться, и действительно при температуре около —100 °С наблюдаются уже две группы полос, отвечающих экваториальным и аксиальным протонам [62, 63]. При —66,7 °С полосы сливаются. Расчет на основании этих данных показал, что скорость инверсии циклогексана составляет 105 с- при —66,7°С [63]. [c.40]

    Молекулярная структура водных растворов. Ознакомимся теперь с некоторыми основными результагами экспериментального изучения молекулярной структуры полярных растворителей и ионных растворов. Основными экспериментальными методами являются рентгеноструктурный анализ, изучение спектров поглощения и другие оптические методы. [c.421]

    Для изучения связи размеров и числа надмолекулярных частиц в коллоидных системах используют метод спектра мутности. В основу метода положены результаты теории Ми [50], получившие развитие в работах Кленина с сотрудниками [51]. Достоинством метода является возможность получения информации с помощью простой экспериментальной техники, когда ограничены предварительные сведения о струк- [c.83]

    Значения квадрупольных моментов ядер обычно известны, и экспериментальные исследования спектров ЯКР проводятся для получения частот переходов, констант квадрупольного взаимодействия, а значит, е ипараметров асимметрии градиента электрического поля Т1 (см. ниже), т. е. структурных данных, информации о распределении зарядов и характере химических связей. Например, чем больше ионный характер связи с данным атомом, тем меньше величина градиента поля и e qQ. Обратно, чем более ковалентной является химическая связь, тем выше соответствующая константа квадрупольного взаимодействия. Данные ЯКР предоставляют возможность экспериментальной проверки результатов квантово-механических расчетов и приближенного рассмотрения ряда проблем, связанных с внутри- и межмолекулярными взаимодействиями. Метод спектроскопии ЯКР важен как аналитический при работе с твердыми веществами, для которых не представляет трудности выращивание больших монокристаллов. [c.91]

    В XX в. развитие физической химии ускорилось благодаря возникновению статистической и квантовой механики, со аданию новых экспериментальных методов изучения спектров, получению глубокого вакуума, высоких давлений и низких температур применению электроники, радиотехники и автоматики, использованию метода меченых атомов и др. Крупнейшим достижением этого периода является создание [c.7]

    На явлении рассеяния основаны экспериментальные методы получения спектров плотности в структурном анализе. Эти методы применимы к определению функций распределения плотности независимо от агрегатного состояния вещества. В газе нет корреляции в расположении частиц, поэтому складываются интенсивности волн, рассеянных отдельными частицами. Из картины рассеяния, в случае одноатомного газа, путем фурье-преобразова-ния находят распределение электронной плотности в атомах. Для многоатомного газа с помощью модельных расчетов определяют строение газовых молекул, в растворах изучают форму и размеры макромолекул, частиц вирусов и т. д. В жидкостях и аморфных телах существует корреляция в расположении ближайших соседей. Анализ картин рассеяния в этом случае позволяет определить ближний порядок. В кристаллах, как следствие периодичности структуры, имеется как ближний, так и дальний порядок. Дифракционная картина, получаемая от кристалла, является по содержащейся в ней информации наиболее богатой. Из этой картины, даже для таких сложных объектов, как биополимеры, можно определить координаты всех атомов кристалла [8]. [c.14]

    Энергия. Уже говорилось, что система молекулярных орбиталей молекулы Н2 используется для построения электронных конфигураций двухатомных томонуклеарных молекул, аналогично тому, как система орбиталей атома Н используется для построения электронных конфигураций многоэлектронных атомов. Как и для атома, заполнение молекулярных орбиталей происходит в соответствии с принципом наименьшей энергии и принципом Паули. Порядок, в котором возрастают энергии молекулярных орбиталей, устанавливается при исследовании молекулярных спектров и другими экспериментальными методами, а также при помощи квантовомеханических расчетов. Для ориентировки при использовании метода ЛКАО можно считать, что МО, образованные крмбинацией АО первого квантового слоя (и= 1), энергетически ниже, чем орбитали, образованные комбинацией АО второго квантового слоя (п =2). Как и для атомов, величина зарядов ядер может влиять на очередность заполнения орбиталей. Для гомонуклеарных молекул, бо- [c.108]

    Основные экспериментальные методы определения потенциалов ионизации основаны на нахождении предела сходимости спектральных линий в атомных спектрах или применении метода фотоэлектронной спектроскопии. Для вычисления потенциала ионизации атома следует рассчитать его энергию до и после ионизации и взять их разность. Такая процедура получила сокращенное название АССП, если расчет проводится методом Хартри—Фока. Более простой путь расчета /х заключается в использовании теоремы Купманса. [c.73]

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]

    Многоквантовое ИК-поглощение дает уникальный способ получения высокой степени внутреннего возбуждения молекул, обеспечивая новые экспериментальные методы для исследования мономолекулярной диссоциации. К тому же при ИКМКД продукты обычно образуются в основном электронном состоянии, что не всегда обеспечивается стандартной однофотонной диссоциацией под действием ультрафиолетового или видимого излучения. Продукты, образующиеся при ИКМКД, схожи с получаемыми при термической диссоциации или пиролизе, однако при этом нет необходимости нагревать весь образец до высоких температур. Этот метод привлек особое внимание теми возможностями, которые можно реализовать в изотопно-селективной химии. Во многих экспериментах показана решающая роль нескольких первых дискретных стадий поглощения во всей схеме возбуждения. Так как изотопный сдвиг в колебательных спектрах может быть относительно велик, то существует возможность селективно диссоциировать частицы, содержащие выбранный изотоп, настроив лазер на соответствующий переход v = l- v = 0. Двухчастотные эксперименты продемонстрировали, что маломощный, но имеющий узкую линию лазер может быть использован для прохождения первых уровней области I, тогда как мощный лазер, частота излучения которого часто несущественна, обеспечивает возбуждение молекулы в области И и последующую диссоциацию. Например, диссоциация UFe осуществляется накачкой полосы V3 (615 см- ) излучением маломощного лазера и использованием более мощного СОг-лазера, облучение которым само по себе не приводит к диссоциации. Потенциальные применения лазерных методов разделения изотопов очевидны они дополняют стандартные методы, представленные в разд. 8.10. [c.78]

    Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое "второе рождение" в результате широкого привлечения квантово-химических методов, зонной модели энергетического спектра электронов, открытия валентно-химических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу — создание новых неорганических веществ с заданными свогютвами. Из экспериментальных методов химии важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического ст(юения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Кроме того, по химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на исполь зо-вании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез дос- [c.6]

    На рис. IX. 15 показан ИНДОР-спектр 2,3-дибромпропионо-вой кислоты (ср, разд. 2.2), где в качестве линий захвата использованы линии Al и Аг. Наблюдаемый экспериментально ИНДОР-спектр можно легко интепретировать на основе спиновой диаграммы II (рис. IX. 10, а). Если учесть близко расположенные линии 6 и 7 (Мг и Мз), то интерпретация этого спектра является более простой и ясной, чем в случае эксперимента по спин-тиклингу. Очень важно отметить, кроме того, что в противоположность экспериментам по спин-тиклингу или селективному двойному резонансу точкой наблюдения в методе ИНДОР всегда является линия захвата. Так, например, линии М и X могут быть перекрыты линиями других ядер, не принадлежащими к той же спиновой системе тем не менее их частоты легко могут быть определены с использованием метода ИНДОР. В этом случае не следует записывать поглощение в области ядер А для каждого выбранного значения V2, как в экспериментах по спин-тиклингу, а достаточно локализовать или идентифицировать все переходы, связанные с линией захвата, с помощью одной развертки частоты поля Вг. [c.324]

    Для термодинамического описания растворов углеводов используется широкий спектр разнообразных экспериментальных методов денсиметрия, калориметрия, дилатометрия, растворимость, тензи-метрия и др. На основе получаемых этими методами данных с использованием математического аппарата классической термодинамики рассчитывают многие интегральные и парциальные молярные термодинамические свойства. Значительный интерес представляет использование формализма теории Кирквуда-Баффа для нахождения параметров межчастичных взаимодействий в предельно разбавленных растворах на основе экспериментально получаемых объемных характеристик. [c.48]

    Полная матрица, необходимая для решения общей задачи трехпротонной системы типа АБС, была вычислена [37], но она диагонализуется несколько труднее, так как в ней присутствуют три субматрицы 3X3. Тем не менее значения энергетических уровней удается определить с лйбой требуемой степенью точности методом цифровой подстановки. Например, вполне удовлетворительное совпадение вычисленных значений с экспериментально наблюдаемым спектром винильной группы в стироле (X) было получено [39] при следующих параметрах  [c.301]

    Кислотность и основность растворителей можно определять различными методами [49]. Помимо обычных экспериментальных методов измерения констант кислотно-основного равновесия, основность и кислотность растворителей можно определять, контролируя изменение какого-либо физического параметра (например, поглощения в ИК-, УФ- или видимой областях или химических сдвигов в спектрах ЯМР) молекул стандартного соединения при переходе от стандартного к изучаемому растворителю. Например, определив смещение волнового числа полосы валентного колебания =С—Н в фенилацетилене при переходе от тетрахлорметана к 19 другим растворителям, удалось оценить относительную основность последних — от самой низкой в случае тетрахлорметана до самой высокой в случае гексаметилфосфотриамида [61], В качестве критерия основности растворителей использовали также разность химических сдвигов в спектрах ЯМР Н протона хлороформа Абоо(СНС з), определяемых путем экстраполяции до бесконечного разбавления в изучаемом растворителе и в инертном стандартном растворителе (циклогексане). Приведенные в табл. 3.5 данные позволили выяснить порядок изменения основности растворителей относительно стандартного растворителя — хлороформа [62]. [c.108]

    Излучение источника фокусируется зеркалами на диспергирующее устройство (призма из высококачественного кварцй фракционная решетка). Там пучок разлагается в спектр, изображение которого тем же зеркалом фокусируется на выходной щели монохроматора. Выходная щель из полученного спектра вырезает узкую полосу спектра чем уже щель, тем более монохроматична выходящая полоса. С помощью зеркала монохроматизированный пучок разделяется на два одинаковых по интенсивности луча один проходит через кювету сравнения, а другой - через кювету с образцом. Вращающейся диафрагмой перекрывают попеременно то луч сравнения, то луч образца, разделяя эти лучи во времени. После прохождения кювет световой поток зеркалами направляется на детектор, которым обычно служит фотоэлемент или фотоумножитель. После детектора сигнал усиливается и поступает на специальное электронное устройство -разделитель сигналов, где он раздваивается на два канала сигнал образца и сигнал сравнения. В обоих каналах сигналы усиливаются и подаются на самописец, который регистрирует отношение степени пропускания световых лучей через кювету образца к пропусканию светового потока через кювету сравнения. Логарифм данного отношения равен разности оптических плотностей образца и эталона эту величину можно записать, если перед самописцем установлено логарифмирующее устройство. В этом случае спектр будет представлять зависимость оптической плотности от длины волны или волнового числа и зависит от концентрации измеряемого образца. Для получения спектра, не зависящего от концентрации раствора, экспериментально полученный спектр перерисовывают по точкам, пользуясь законом Бугера-Ламберта-Беера, в спектр в координатах lg (или )- X (или V), Нерегистрирующие спектрофотометры - однолучевые приборы, измеряющие по отдельным точкам (спектрометрический метод). В сочетании с измерительной системой по схеме уравновешенного моста это наилучшие приборы для точных количественных измерений, которые осуществляются путем сравнения сигналов при попеременной установке в световой пучок образца и эталона. Основной их недостаток состоит в большой затрате времени для записи спектра, а не полосы поглощения при единственном значении длины волны. [c.185]


Смотреть страницы где упоминается термин Экспериментальные методы и спектры: [c.18]    [c.299]    [c.659]    [c.167]    [c.145]    [c.138]   
Смотреть главы в:

Успехи спектроскопии -> Экспериментальные методы и спектры




ПОИСК







© 2025 chem21.info Реклама на сайте