Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение молекулярных сит в катализе

    Можно привести еще ряд примеров возможного использования молекулярно-ситовых эффектов. Ниже мы остановимся на них более подробно. Следует, правда, отметить, что далеко не все они нашли промышленное применение. В одних случаях этому мешает малая стабильность катализаторов, -в других — внедрение катализаторов для непрерывных процессов пока невозможно из-за интенсивного коксообразования, приводящего к блокировке пор. Однако потенциальные возможности применения молекулярно-ситовых эффектов в катализе значительно шире, чем это известно в настоящее время. [c.301]


    К, Фукуи развил теорию граничных молекулярных орбита-лей в применении к катализу осуществил расчеты и анализ поверхностей потенциальных энергий каталитических реакций с участием металлокомплексных систем. [c.700]

    Вторая группа явлений, закономерности и молекулярный механизм которых в некоторых отношениях сходен с первой, связана с теплоотдачей. Ее интенсивность определяет появление и величину саморазогрева и самоохлаждения катализатора в целом и отдельных наиболее активных его участков. Для экзотермических реакций медленность теплоотдачи может приводить не только к общему разогреву шихты, но и к появлению отдельных раскаленных частиц у нанесенных катализаторов, а в динамике — также к образованию неподвижных и движущихся раскаленных зон. Эти явления, однако, не типичны для хроматографии и при ее применениях в катализе влияние их до сих пор никем не наблюдалось, поэтому мы ограничимся здесь рассмотрением массоотдачи, которая, напротив, играет в хроматографии существенную роль. [c.63]

    Водородные формы привлекают внимание исследователей с нескольких точек зрения. Эти формы цеолитов отличаются от катионированных адсорбционными и молекулярно-ситовыми свойствами, они обладают повышенной кислотностью, поэтому их можно использовать в кислых средах. Водородные формы цеолитов находят все более широкое применение в катализе, так как во лшогих каталитических процессах щелочные катионы оказывают неблагоприятное действие. [c.61]

    Молекулярные системы и проще кристаллов (так как содержат меньше атомов) и сложнее (так как их группа симметрии беднее). Это следует иметь в виду, рассматривая применение молекулярных моделей в теории электронной структуры твердых тел введение молекулярной модели необязательно связано с упрощением расчета и должно быть обусловлено физической сущностью рассматриваемой задачи. Применение молекулярных моделей целесообразно прежде всего при исследовании явлений в твердых телах, которые не поддаются описанию в рамках зонной теории. К таким явлениям относятся адсорбция и катализ, связанные с процессами на поверхности кристаллов существенные для практических применений свойства твердых тел, обусловленные наличием примесей или дефектов структуры (локальных центров) и др. [c.86]

    ПРИМЕНЕНИЕ МОЛЕКУЛЯРНЫХ СИТ В КАТАЛИЗЕ [c.383]

    Второе направление квантовохимического прогнозирования катализаторов связано с построением квантовохимических моделей поверхностей твердых тел, структуры хемосорбированных комплексов субстрат — катализатор или непосредственным изучением акта реакции на различных контактах. Молекулярные модели нашли широкое применение для решения различных задач теории твердого тела, в том числе связанных с адсорбцией и гетерогенным катализом. Их достоинствами являются относительная простота, наглядность, возможность точного учета геометрии решетки и химической природы атомов, а недостатками — трудности адекватного учета непрерывного спектра зонных состояний твердых тел. [c.61]


    Этот метод основан на постепенном упрощении нефтяных фракций как но молекулярному весу, так и групповому составу с последующим установлением их индивидуального состава по спектрам комбинационного ра( сея-ния света. В основу метода наряду с применением комбинационного рассеяния света положены точная ректификация, хроматографическая адсорбция и дегидрогенизационный катализ, описанные в соответствующих главах книги. [c.503]

    Материал учебника несколько шире рамок действующей программы. В него вошли такие разделы физической химии, как основы учения о строении вещества и химической связи, теория спектральных методов исследования. Несколько более широко, чем в обычных курсах физической химии, даны такие разделы, как свойства электролитов, электрохимия, экстракция, перегонка с водяным паром, адсорбция, катализ, получение и стабилизация золей и эмульсий, мицеллообразование и солюбилизация в растворах поверхностноактивных веществ (ПАВ), применение ПАВ в фармации. Рассмотрено влияние дисперсности на свойства порошков. Принимая во внимание аналитическую направленность специальности Фармация и важное значение методов молекулярной спектроскопии для исследования и анализа лекарственных веществ, авторы уделили большое внимание изложению теории физико-химических методов анализа (рефрактометрия, поляриметрия, фотометрия, спектрофо-тометрия, кондуктометрия, потенциометрия, полярография, хроматография, электрофорез и др.). [c.3]

    Большой литературный материал, частью полученный теоретически, частью явившийся результатом опыта, был систематизирован В. Гутманом и приобрел все признаки концепции, претендующей на широкое применение. В, Гутман интерпретировал на этой основе строение молекулярных аддуктов, явления на межфазных границах, ассоциацию молекул в жидкостях, сольватацию, устойчивость комплексных соединений, окислительно-восстановительные свойства, катализ и др. Излагая идеи этих авторов по книге Гутмана, мы обращаем внимание на приложение их к вопросам ассоциации молекул в жидкостях. [c.262]

    Основы физической и коллоидной химии позволяют заложить фундамент развития качественных и количественных представлений об окружающем мире. Эти знания необходимы для дальнейшего изучения таких специальных дисциплин, как агрохимия, почвоведение, агрономия, физиология растений и животных и др. Современное состояние науки характеризуется рассмотрением основных физико-химических процессов на атомно-молекулярном уровне. Здесь главенствующую роль играют термодинамические и кинетические аспекты сложных физико-химических взаимодействий, определяющих в конечном счете направление химических превращений. Выявление закономерностей протекания химических реакций в свою очередь подводит к возможности управления этими реакциями при решении как научных, так и технологических задач. Роль каталитических (ферментативных) и фотохимических процессов в развитии и жизни растений и организмов чрезвычайно велика. Большинство технологических процессов также осуществляется с применением катализа. Поэтому изучение основ катализа и фотохимии необходимо для последующего правильного подхода к процессам, происходящим в природе, и четкого определения движущих сил этих процессов и влияния на них внешних факторов. Перенос энергии часто осуществляется с возникновением, передачей и изменением значений заряда частиц. Для понимания этой стороны сложных превращений необходимо знание электрохимических процессов. Зарождение жизни на Земле и ее развитие невозможно без участия растворов, представляющих собой ту необходимую среду, где облегчается переход от простого к сложному и создаются благоприятные условия для осуществления реакций, особенно успешно протекающих на разделе двух фаз. [c.379]

    В то время как в гомогенных реакциях в жидкой фазе требуется применение одного и более эквивалентов краун-эфира с высокой молекулярной массой по отношению к неорганической соли, для межфазного катализа достаточно каталитических количеств краун-соединений. Эго послужило причиной значительного развития работ по изучению применения краун-соединений для органического синтеза. Особый интерес представляет способность кра-ун-соединений действовать в качестве межфазных катализаторов не только в обычных системах жидкость - жидкость, например при катализе между водным раствором неорганической соли и органической фазой, но и в качестве катализаторов на границе твердой и жидкой фаз, например при ката- [c.208]

    Книга представляет собой очередной том серии Катализ , хорошо известной советскому читателю. В настоящий, двенадцатый, том включено шесть обзорных статей, посвященных новым теоретическим и экспериментальным методам изучения катализа. В них рассматриваются следующие вопросы использование краев полосы поглощения К-серии рентгеновского спектра для изучения каталитически активных твердых веществ, применение нового метода дифракции электронов для изучения катализаторов, молекулярная специфичность в физической адсорбции. Весьма интересна статья, посвященная технике магнитного резонанса в каталитическом исследовании автор рассматривает отдельно ядерный магнитный резонанс и электронный парамагнитный резонанс — методы, которые позволяют получить ценные сведения о микроскопических свойствах твердых тел. [c.4]


    Молекулярные модели нашли широкое применение для решения различных задач теории твердого тела, в частности связанных с адсорбцией и гетерогенным катализом. Их достоинствами являются относительная простота, наглядность, возможность точного учета геометрии решетки и химической природы атомов, а недостаткам — неадекватная передача непрерывного спектра зонных состояний твердых тел. [c.55]

    Новый этап в развитии физической химии, охватывающий четыре последних десятилетия, характеризуется установлением связи между макроскопическими характеристиками процесса и их микроскопической основой. Конкретным результатом этой связи является создание более совершенных методов исследования — статистических и квантово-механических. Применение этих методов привело не только к дальнейшему расширению и углублению основных положений физической химии, но и к созданию ряда новых ее разделов, важнейшими из которых являются статистическая термодинамика, теория атомной и молекулярной спектроскопии, теория химической связи, теория цепных реакций, теория гетерогенного катализа и др. На основе законов современной физической химии можно предвидеть не только конечный результат физико-химического процесса, но и скорость, с которой может быть достигнут этот результат. В этом состоит огромное практическое значение физической химии. [c.7]

    Цеолиты типа А. В цеолитах типа А внутренние полости, имеющие приблизительно сферическую форму диаметром 11,4 А(а-ячейки), соединены друг с другом шестью 8-членными окнами. Эффективный диаметр этих окон в цеолитах КА, NaA и СаА составляет соответственно 3, 4 и 5 А. Таким образом, поры цеолита КА недоступны почти для всех органических молекул, а в порах СаА могут диффундировать н-парафины и другие линейные молекулы. При исследовании каталитических превращений на цеолите СаА было обнаружено много примеров молекулярно-ситового катализа. Ни NaA, ни СаА не обладают значительной кислотностью. Из-За низкого соотношения кремния и алюминия Н-форма цеолита А не стабильна и поэтому не нашла широкого применения в качестве катализатора. [c.299]

    Основное направление научных работ — исследование сверхбыстрых химических реакций разработанными им методами химической релаксационной спектрометрии. С помощью метода температурного скачка исследовал кинетику реакций ионов водорода и гидроксила с кислотно-основными индикаторами в водном растворе. Для изучения быстрых реакций в растворах слабых электролитов предложил метод наложения сильного электрического поля, увеличивающего степень диссоциации электролита. Благодаря применению созданных им методов, использующих периодическое возмущение системы, получены данные об образовании ионных пар и десольватации ионов в водных растворах электролитов, о реакциях переноса протона, о кинетике ассоциации карбоновых кислот в результате образования водородных связей и др. Изучал ферментативный катализ, механизм передачи информации и другие вопросы молекулярной биологии. [c.589]

    Возникший в органической химии с конца 70-х годов катализ с применением солей — галогенидов алюминия, хлористого цинка, ртутных солей и т. п.— нашел впервые объяснения также в теории промежуточных соединений. При этом промежуточные соединения в реакциях, осуществляемых посредством солей, были в некоторых случаях выделены в кристаллическом виде. И хотя все эти соединения представляли собою молекулярные комплексы переменного состава, т. е. являлись не обычными определенными соединениями — дальтонидами, все-таки это не помешало исследователям ввести также и новый вид катализа в стехиометрическое русло. [c.74]

    К настоящему времени в основном уже завершен первый этап экспериментальных исследований поверхности твердых тел и адсорбции с применением инфракрасной спектроскопии и выяснены возможности этого метода. У же довольно четко определился круг вопросов и направлений в области химии поверхности, адсорбции и катализа, в которых применение спектральных методов дает наибольший эффект. Выяснилось, что сами спектральные методы и получаемые с их помощью результаты не могут заменить или уменьшить значение термодинамических методов изучения адсорбции и получаемых с их помощью данных. Однако спектральные данные служат весьма важным дополнением к результатам термодинамических исследований, позволяя углубить наши представления о химии поверхности и процессах адсорбции на молекулярном уровне. [c.434]

    Для анализа продуктов нефти может быть использовано ценное свойство масс-спектров полевой ионизации-—их малолинейча-тость и обязательное присутствие интенсивного пика молекулярного иона. Отсюда появляется хорошая возможность применения молекулярных ионов [193, 194]. В рассматриваемых работах проведено сравнение метода полевой ионизации с низковольтной масс-спектрометрией электронного удара [193] и с методом характеристических сумм [194]. Метод полевой ионизации был применен для количественного анализа легких бензиновых фракций [195] и тяжелых нефтяных фракций с температурой кипения 300—350°С и молекулярной массой до 700 [196]. К сожалению, из-за повышенной и сильно зависящей от условий съемки интенсивности пика [М -f Н]+ (взаимодействие с парами остаточной воды, катализ) затруднено использование пиков изотопных ионов. [c.135]

    КИНЕТИЧЕСКОИ МОДЕЛИ ДАННЫХ ПРОЦЕССОВ. МЕТОДЫ ИССЛЕДОВАНИЯ И АППАРАТУРА БЕЗГРАДИЕНТНЫЕ СИСТЕМЫ, ПРОТОЧНО-ЦИРКУЛЯЦИОННАЯ УСТАНОВКА, РЕАКТОР С ВИБРООЖИЖЕННЫМ СЛОЕМ КАТАЛИЗАТОРА ХРОМАТОГРАФИЯ, ФОТОКОЛОРИМЕТРИЯ. ИССЛЕДОВАНА КИНЕТИКА ГЛУБОКОГО ОКИСЛЕНИЯ АНИЛИНА И ПРЕДЛОЖЕН МЕХАНИЗМ ОБРАЗОВАНИЯ МОЛЕКУЛЯРНОГО АЗОТА В ЭТОЙ РЕАКЦИИ. ПОЛУЧЕНЫ ДАННЫЕ О КИНЕТИКЕ ГЛУБОКОГО ОКИСЛЕНИЯ ФЕНОЛА И ИЗУЧЕНЫ КИНЕТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ СОВМЕСТНОГО ОКИСЛЕНИЯ АНИЛИНА И ФЕНОЛА В СМЕСЯХ, СООТВЕТСТВУЮЩИХ РЕАЛЬНО СУЩЕСТВУЮЩИМ В ПРОМЫШЛЕННОСТИ. ПОЛУЧЕННАЯ КИНЕТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА СЛУЖИТ ОСНОВОЙ ДЛЯ РАСЧЕТОВ РЕАКТОРА САНИТАРНОЙ ОЧИСТКИ ВОЗДУХА. ОБЛАСТЬ ПРИМЕНЕНИЯ ГЕТЕРОГЕННЫЙ КАТАЛИЗ. УСТАНОВЛЕНА ОПТИМАЛЬНАЯ ОБЛАСТЬ ПО ТЕХНОЛОГИЧЕСКИМ ПАРАМЕТРАМ ПРОЦЕССА ГЛУБОКОГО ОКИСЛЕНИЯ АНИЛИНА, КОГДА ОБРАЗУЮТСЯ ЛИШЬ МИНИМАЛЬНЫЕ КОЛИЧЕСТВА ОКИСЛОВ АЗОТА. ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ РАБОТЫ МОГУТ БЫТЬ ИСПОЛЬЗОВАНЫ ДЛЯ МОДЕЛИРОВАНИЯ ПРОМЫШЛЕННОГО РЕАКТОРА. [c.88]

    На современном этапе развития народного хозяйства нефтехимическая и нефтеперерабатывающая промышленность заняла очень важное место. Научные основы современных процессов переработки углеводородов нефти и газа заложены в трудах видных отечественных химиков. Были открыты и изучены пути превращения одних углеводородов в другие, развиты основные теоретические положения по катализу и адсорбции и таким образом была создана база для широкого осуществления промышленных процессов химической переработки углеводородного сырья. Широко распространенные каталитические методы иереработки нефти и нефтепродуктов и методы адсорбционной очистки, осушки и разделения газов связаны с применением высокоактивных и высокопрочных катализаторов и адсорбентов. Среди каталитических процессов ведущими пока являются процессы крекинга с применением алюмосиликатных катализаторов, однако в настоящее время "Йольшое значение приобретают цеолиты (молекулярные сита) и катализаторы на их основе. [c.7]

    Примеры каталитического действия в растворах многочисленны, и многие из них находят практическое применение в аналитической химии, например окисление щавелевой кислоты перманганатом гсалия катализатором являются ионы Мп в присутствии Н 2804. Механизм гомогенного катализа может включать в себя как молекулярные, так и ионные промежуточные соединения. Снижение энергии активации вызывается умень-шеп11см энергии связи соседних атомов при взаимодействии с катализатором, что облегчает разрыв связей соседних атомов и их перегруппировку. [c.288]

    Недавние исследования динамики молекулы лизоцима с помощью кристаллографических методов показали [55, 56], что атомные смещения в белке наиболее выражены в области активного центра фермента. Хотя эти исследования иока носят лишь постановочный характер, не исключено, что в будущем применение рентгеноструктурного анализа именно для изучения динамических свойств молекул белка (определение средних амплитуд смещения каждого атома от его усреднеппой позиции в кристалле), помимо зарекомендовавших себя исследований статических свойств белковых молекул в кристалле (оиределение усредненных координат всех атомов в молекуле на основе соответствующего распределения электронных плотностей), может дать важную и принципиально новую информацию о структуре ферментов н механизмах их действия. Далее, обещающими являются новые возможности прямого рентгеиоструктурного анализа промежуточных состояний в ферментативном катализе путем охлаждения кристаллов фер-мент-субстратного комплекса в подходящих водноорганических растворителях и определепия структуры образующихся молекулярных комплексов непосредственно в ходе реакции [57, 58]. Этот [c.158]

    В течение этого периода было синтезировано более 150 разновидностей цеолита. В то же время, однако, было найдено лишь несколько цеолитовых минералов в количествах и уровне чистота достаточных для промышленного применения. Из этих материалов в промышленности применяются только несколько кристаллических типов. Самыми основными, объёмными промышленными цеолитами молекулярных сит, использующимися в ишообменниках, адоорбции и катализе, являются синтетические цеолита А, X и У, а также 2SM-5 и морденит. На таблицах 1 и 2 показан рост и сюйства молекулярных сит, как результат десятилетий научных иоследований. [c.518]

    Обратимые молекулярные перегруппировки представляют большой интерес вследствие их фундаментальной значимости для изучения многих химических и биологических процессов, находящих применение в современных технологиях. В частности, фотохромные органические молекулы, являющиеся предметом интенсивных исследований в последнее время, могут быть использованы в таких областях, как оптические системы регистрации и отображения информации, сенсоры, опто- и оптобиоэлектроника, транспортные системы, аккумуляция солнечной энергии, катализ. Многообразие возможных применений органических фотохромных соединений предъявляет широкое разнообразие требований к их характеристикам. В связи с этим направленный синтез, основанный на результатах фундаментальных исследований, связанных с выявлением общих закономерностей, обуславливающих связь между молекулярной структурой и спектрально-кинетическими свойствами фотохромного соединения, приобретает большое значение. [c.325]

    Практическая ценность работы. Предложен метод гидроочистки бензина термического происхождения на основе реакции ионного гидрирования с применением доступных реагентов прямогонного бензина, серной кислоты (п-толуолсульфокислоты) и хлористого алюминия. Проведены опытные испытания гидрирования крекинг-бензинов системой ПБ-НгЗОд/ А1С1з в лаборатории серной кислоты нефтеперерабатывающего завода Уфанефтехим и на гетерофазном катализаторе в проточном режиме в лаборатории приготовления катализаторов Института нефтехимии и катализа. Показано что полученный гидроочищенный бензин по групповому химическому и фракционному составу и свойствам близок к бензину А-76. Предложенный метод может быть использован на малых заводах, где гидроочистка нефтяных фракций в присутствии молекулярного водорода не осуществляется. [c.4]

    В настоящее время цеолиты используются не только в адсорбции, но и в других самых различных областях химии, например в катализе и ионном обмене, между тем их по-црежнему называют молекулярные сита , хотя этот термин не дает представления о многих других сферах применения цеолитов и не отражает, в частности, хорошо известную способность цеолитов проявлять ситовые эффекты в каталитических и ионообменных реакциях. [c.12]

    Синтез высокомолекулярных полимеров и их исследование представляют собой второе крупное направленне в полимерной химии эпоксидов, развивающееся параллельно с олигомерным. Высокомолекулярные полиэпоксиды непосредственно проявляют тот собственно полимерный комплекс свойств, который может быть реализован олигомерным путем, и имеют самостоятельные области применения. Высокомолекулярные полиэпоксиды известны с середины. 50-х годов, когда успехи в координационном катализе позволили осуществить полимеризацию окпси этилена и окисп пропилена в длинноцепные полимеры (молекулярные массы 10 и более), тогда как предпринятые ранее такие попытки не дали результата. В дальнейшем эти полимеры были детально исследованы как типичные представители класса простых полиэфиров, а изучение процессов их образования позволило значительно расширить возможности полимерной химии и привело к синтезу новых полимеров, таких, как поли-2,3-эпоксибутан и ряд других. Практическое применение полимеров рассматриваемого типа непрерывно расширяется. [c.254]

    Каталитические реакции, применяемые в большом масштабе в качестве промышленных процессов, являются в большинстве случаев гетерогенными. Хотя каталитические реакции этого типа уже рассматривались в предыдущих главах, тем не менее здесь будут изложены некоторые специфические случаи гетерогенных каталитических реакций, чтобы показать различия между гетерогенной и гомогенной системами. Для объясне-нения ускоряющего действия катализаторов в гетерогенных системах были предложены различные механизмы, именно 1) катализатор периодически окисляется и восстанавливается [514] 2) электроны, излучаемые из катализатора, ионизируют газы (реагируюыще компоненты), делая их способными реагировать [264], 3) реагирующие компоненты адсорбируются на катализаторе, причем более быстрое превращение происходит благодаря увеличению концентрации на поверхности [154, 177, 178, 470] или созданию условий повышения скорости реакции, и 4) изменяется молекулярное состояние реагирующих компонентов (образование атомов) [55, 514]. Наиболее вероятной причиной ускорения реакции считалась адсорбция газов на катализаторе. В гетерогенном газовом катализе, например, при окислении двуокиси серы в серную кислоту с применением различных катализаторов — платины или ванадиевой и мышьяковой кислот, экспериментально измеряемая скорость реакции — это скорость, с которой сернистый ангидрид диффундирует через слой адсорбированной трехокиси серы, в то время как газы, достигая поверхности катализатора, реагируют почти мгновенно. В противоположность этой группе гетерогенных каталитических реакций имеется другая группа, в которой реагирующие вещества образуют с очень большой скоростью адсорбционный слой на катализаторе, в котором происходит химическая реакция с небольшой скоростью. [c.176]

    В современных исследовательских химических лабораториях, особенно в промышленных, немалую долю времени тратят на подбор активных и селективных гетерогенных катализаторов для новых химических реакций или уже существуюш их, но недостаточно эффективных промышленных процессов. Это связано, с одной стороны, с тем, что около 90% крупнотоннажных химических и нефтехимических производств базируются на применении катализаторов", в основном гетерогенных, а с другой стороны — с тем, что подбор катализаторов ведется большей частью чисто эмпирическими методами. Последнее обятоятельство и вызывает наибольшие нарекания в отношении теории катализа, которую обвиняют в крайней отсталости, эмпиризме и прочих грехах. Между тем, если объективно разобраться, состояние теории катализа, в том числе и гетерогенного, в настояш ее время соответствует обш ему состоянию теории химической реакционной способности, поскольку и последняя Не дает сегодня ВОЗМОЖНОСТИ определять скорости реакций чисто расчетным путем. Количественная теория химических реакций пока находится В начале своего пути. Она в значительной степени базируется на полуэмпирических закономерностях, аналогиях, качественных правилах и чисто экспериментальном материале. Химия гетерогенного катализа отличается от других разделов химии тем, что, во-первых, здесь всегда участвует в реакции на один компонент больше и моно-молекулярные реакции теоретически невозможны, а во-вторых, тем, что в ходе реализации реакций на них всегда накладываются физические явления. Физическая сторона явлений гетерогенного катализа теперь, однако, в значительной степени прояснена и поддается во многих случаях прямому расчету, а химическая, как указывалось, решается так же, как и в других разделах химии. [c.4]

    В сборнике рассмотрен вопрос о кислотном катализе разложения гидроперекисей, позволяющем обеспечить высокую селективность окисления углеводородов (например, при применении борной кислоты и других борсодержащих соединений). Излагаются результаты обстоятельных химических исследований перекисных продуктов, образующихся при окислении ацетиленовых углеводородов. Описаны новые кинетические закономерности, свойственные окислению полиеновых веществ, и явление совместного окислительно-полимерпзационного превращения фенилацетилена при его окислении молекулярным кислородом. Проведен кинетический анализ окисления пенасыщенных альдегидов. [c.4]

    Неаналитическая газовая хроматография включает методы изучения термодинамики абсорбции и адсорбции, определения диффузионных характеристик газов и жидкостей, а также методы изучения процессов хемосорбции и катализа и ряд других применений. В настоящее время упомянутые направления бурно развиваются главным образом благодаря работам Е. Глюкауфа, А. А. Жуховицкого, А. В. Киселева, С. 3. Рогинского,Т. Шая, Э. Кремер, Дж. Гиддинг-са, Р. Кобаяши, Д. Эверетта, П. Эберли и их сотрудников. Эти материалы содержатся в большом числе оригинальных публикаций. Глубокому обобщению были подвергнуты лишь данные по хроматографическому изучению термодинамики адсорбции (А. В. Киселев, Я. И. Яшин. Газо-адсорбционная хроматография ) и исследованию кинетики каталитических реакций (обзоры М. И. Яновского и Д. А. Вяхирева с сотр.). В связи с этим в настоящей книге основное внимание уделено хроматографическим методам исследования термодинамики растворов и изучения структуры и свойств катализаторов, а также освещены вопросы хроматографического определения коэффициентов диффузии, молекулярных масс и т. д. [c.3]

    Большое применение находит блокированный ионный обмен, т. е. молекулярная сорбция на К. с. в ие-диссоциированиой форме. Применяют ионообменный синтез различных реагентов, заключающийся в замене одного катиона соли на другой. К. с. используют как кислотные катализаторы при гетерогенном катализе в жидких и газообразных средах, напр, при этерификации к-т, гидролизе эфиров, копденсации, восстановлении, дегидратации спиртов, инверсии сахаров, окислепии, алкилировании ароматич. углеводородов винильными соедине1П1ями. Основные преимущества таких катализаторов — отсутствие побочных реакций, легкость регенерации и отделения катализатора, возможность многократного его использования, а также выделения промежуточхгых продуктов (см. Катализаторы полимерные). [c.500]

    Таким образом, в изданных к настоящему времени монографиях работы последних 5—7 лет не рассмотрены. Вместе с тем именно за эти годы инфракрасная спектроскопия поверхностных соединений и адсорбционных комплексов развилась особенно сильно и выявились перспективы ее количественных применений в комплексе с другими методами. Эти особенности развития инфракрасной спектроскопии авторы старались учесть в настоящей книге, посвященной исследованиям методом инфракрасной спектроскопии химии поверхности и адсорбции окислами кремния и алюминия, аморфными алюмосиликагелями, а также кристаллическими пористыми алюмосиликатами — цеолитами. Таким образом, в книге рассмотрено сравнительно небольшое число окислов — окись кремния и алюминия, а также некоторые их аморфные и кристаллические соединения. Эти адсорбенты — аэросилы, аэросилогели (силохромы), силикагели, пористые стекла, алюмогели, алюмосиликатные катализаторы и различные катионированные и декатионированные цеолиты — весьма важны как для изучения взаимодействий при молекулярной адсорбции и хемосорбции, так и для практического использования в аналитической и препаративной хроматографии, в адсорбционных разделениях, в частности в осушке, в катализе и многих других важных областях технологии. [c.8]


Библиография для Применение молекулярных сит в катализе: [c.245]   
Смотреть страницы где упоминается термин Применение молекулярных сит в катализе: [c.361]    [c.116]    [c.339]    [c.45]    [c.495]    [c.6]    [c.495]    [c.496]    [c.186]    [c.188]    [c.271]    [c.32]    [c.296]    [c.8]   
Смотреть главы в:

Целлиты, их синтез, свойства и применение -> Применение молекулярных сит в катализе




ПОИСК





Смотрите так же термины и статьи:

Применение в катализе



© 2025 chem21.info Реклама на сайте