Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость роста реакции цепи

    Интересные результаты получены при исследовании влияния температуры реакции на результаты акцепторно-каталитической полиэтерификации [224, 228, 235-239]. Оказалось, что в случае высокореакционноспособных исходных соединений в гомогенной системе зависимость молекулярной массы полиэфиров от температуры реакции имеет вид кривой с двумя максимумами (см. рис. 4.6, кривая 2). Данные кинетических исследований позволили предположить, что такая зависимость обусловлена экстремальной зависимостью константы скорости роста полимерной цепи от температуры реакции [161]. [c.51]


    Первая из рассмотренных реакций является равновесной, и, поскольку скорость роста полимерной цепи меньше ско- [c.161]

    Средняя длина полимерной материальной цепи при эмульсионной полимеризации равняется, так же как и а других цепных радикальных процессах, произведению скорости роста этой цепи Ар[Л1] на среднюю продолжительность ее формирования tф. Значение (ф определяется условиями обрыва цепи и зависит от относительной скорости протекания процессов, приводящих к обрыву. Такими процессами помимо обрыва кинетической цепи могут являться процессы передачи кинетической цепи на мономер, полимер или эмульгатор. Хотя эти реакции не учитывались три расчетах молекулярной массы полимеров при эмульсионной полимеризации [20, 29, 31—33]1, некоторые общие выводы об их влиянии могут быть сделаны при сравнении характерных времен. процессов = = N/p и to—NAV ko с наименьшим из характерных времен реакций передачи цепи ts, которое связано с константой скорости этой реакции и концентрацией агента передачи цепи в латексных частицах [5] соотношением [5]) [c.74]

    Многие экспериментальные данные о поведении пеносистем согласуются с этой гипотезой о естественном раскрытии ячеек . Например, процесс пенообразования при одностадийном способе получения пен на основе простых полиэфиров можно регулировать, меняя скорость реакции изоцианата с водой с помощью аминного катализатора (выделение газа + рост полимерных цепей) или скорость реакции изоцианата с гидроксилсодержащим компонентом с помощью оловоорганического катализатора (рост полимерных цепей). Часто можно уменьшать количество закрытых ячеек понижением концентрации оловосодержащего катализатора, т. е. понижением скорости роста полимерных цепей и тем самым эластичности в момент максимального выделения газа. Можно также ограничить образование пустот и трещин увеличением концентрации оловосодержащего катализатора или снижением концентрации амина, поскольку каждый из этих факторов должен увеличить прочность полимера (т. е. ребер ячеек) в момент максимального газовыделения (раскрытие ячеек). [c.314]

    При блочной сополимеризации индивидуальные компоненты соединяются по концевым группам. Известно несколько методов синтеза блок-сополимеров, но, вероятно, наиболее элегантным из них является способ, основанный на анионной полимеризации по механизму живых цепей [384]. Эта реакция характеризуется мгновенным образованием активного центра, постоянной скоростью роста всех цепей и отсутствием обрыва. После исчерпания первого мономера полимерная цепь остается реакционноспособной, и добавление второго мономера приводит к образованию блок-сополимера вида [c.56]


    Рост цепи на ранних стадиях полимеризации продолжается доли секунды. При этом константа скорости реакции роста остается постоянной. Энергия активации реакции роста составляет 20,95— 33,52 кДж/моль. Получение длинных макромолекул возможно благодаря тому, что скорость роста кинетической цепи значительно больше скорости инициирования. При образовании значительных количеств полимера (85—90 %) скорость полимеризации обычно снижается вследствие очень большого увеличения вязкости системы. Средняя степень полимеризации остается практически постоянной до начала снижения скорости полимеризации. Однако при наличии в системе небольших количеств примесей, способных вступать в реакцию с макрорадикалами, средняя степень полимеризации (или молекулярная масса) на начальной стадии остается низкой до израсходования примесей. [c.533]

    Так же, как и в реакциях низкомолекулярных соединений, наибольшую сложность здесь представляет проблема выделения из эффективной скорости реакции констант скорости элементарных стадий. Далеко не всегда удается получить константы скорости роста полимерной цепи, в связи с чем количественная оценка роли растворителя в процессах полимеризации весьма затруднена. В некоторых случаях в процессах полимеризации при замене растворителя удается очень резко изменить скорость протекания реакции, причем иногда до изменения механизма реакции роста цепи. Укажем, в частности, на резкое изменение скорости ионной полимеризации в полярных и сильно сольватирующих противоион средах, когда рост цепи, осуществлявшийся на ионных парах или более сложных ассоциатах, под действием растворителя происходит уже на более активных в кинетическом отношении центрах — свободных ионах. При радикальной полимеризации известны случаи изменения констант скорости роста цепи на несколько порядков при введении в систему специальных добавок, образующих комплексы с мономером, способные к специфической координации с активным центром растущей цепи. Последнее явление чрезвычайно распространено также при ионно-координационной полимеризации. [c.375]

    В работе Спирина, Гантмахер и Медведева [57] исследовалась кинетика реакции роста полимерной цепи при полимеризации стирола, изопрена и бутадиена, инициированной этиллитием. Изучение кинетики полимеризации проводили в кювете-дилатометре, позволявшей контролировать полноту инициирования спектрофотометрическим методом (рис. 65). Было установлено, что скорость роста полимерной цепи описывается уравнением [c.366]

    Облучение кристаллических мономеров при низких температурах приводит к накапливанию в них начальных катионов. С повышением температуры облученных мономеров до величины,, близкой к температуре плавления мономера, скорость роста, полимерных цепей увеличивается настолько резко, что реакция сопровождается взрывом .  [c.158]

    В результате исследований [3—5] было установлено, что при атмосферном давлении реакция полимеризации этилена протекает при нагревании (до 600° С), которое может быть уменьшено, если процесс проводится под высоким давлением [6—11] и в присутствии катализаторов. Ускорение процесса полимеризации этилена при повышении давления обусловлено увеличением не только скорости роста полимерных цепей, но и скорости инициирования. Повышение температуры приводит, как и для большинства других процессов полимеризации, к увеличению обшей скорости реакции полимеризации и уменьшению длины молек /л полимера. [c.13]

    В табл. 23 приводятся абсолютные константы скорости рост,а цепи для некоторых реакций катионной полимеризации. [c.178]

    Рост анионной цепи полифосфата не включает в себя непосредственного акта взаимодействия с катионами. Тем не менее, влияние катиона на скорость роста анионной цепи существенно. Можно было предположить, что в ряду Ыа+ (0,98-1 (Г см), Т (1,36-10г см), Сз+ (1,65 -10- см) с увеличением радиуса катиона, ввиду усиления эффекта экранирования, будет уменьшаться средняя степень поликондеисации продукта. Влияние силы поля катиона на реакционную способность ОН-групп, которое было обнаружено в случае конденсации фосфатов с органическими диолами (разд. 7.2), в рассматриваемом процессе существенным образом не проявляется. Решающим оказывается фактор снижения вязкости расплава. Влияние катиона на скорость процесса оценивалось проведением реакции поликонденсации фосфатов в одних и тех же условиях. [c.193]

    Рост полимерной цепи происходит с весьма высокой скоростью. Огромная молекула полимера, состоящая иа тысяч молекул мономера, образуется за несколько секунд. Энергия активации роста цепи значительно ниже энергии активации инициирования и составляет примерно 16,4—41,9 кДж/моль. Рост полимерной цепи — экзотермическая реакция. [c.142]


    Температура влияет на скорость процесса и молекулярную массу сополимера. С повышением температуры возрастают скорости роста и обрыва молекулярных цепей. Повышение температуры способствует увеличению вероятности протекания нежелательных вторичных реакций — разветвления и структурирования, что отражается на пласто-эластических свойствах полимера. [c.249]

    Рост цепи — это результат последовательных реакций присоединения сомономеров к активному центру. Считают, что скорость вхождения мономерной единицы в растущую цепь зависит как от химической природы мономера, так и от активности центра роста. Хотя возможно рассмотрение скорости роста на нескольких центрах, отличающихся по активности, а также влияния асимметрии реагирующих мономеров [17], однако для упрощения допускается, что активность центра роста не меняется во времени и зависит лишь от последнего звена. Учитывая эти допущения, стадия роста цепи при двойной сополимеризации будет включать четыре реакции, а при тройной — девять [18, с. 11—63]. Для обрыва растущей цепи наибольшее значение имеет дезактивация активного центра во времени — старение. Ряд исследователей считают, что старение — это бимолекулярный процесс, протекающий по реакции второго порядка, другие относят е о к реакциям первого порядка [16, 19]. Это связано, по-видимому, с различием исследованных каталитических систем, когда кажущееся изменение порядка реакции объясняется наличием нескольких видов активных центров. [c.298]

    Сильное влияние на скорость омыления мономера оказывает pH среды. Так, омыление метил- и этилакрилатов при pH 7 протекает настолько медленно, что им можно пренебречь, а в щелочной среде скорость омыления очень велика даже при комнатной температуре. Акрилаты гидролизуются быстрее, чем метакрилаты, причем скорость этой реакции падает с ростом длины углеводородной цепи спиртового остатка. [c.390]

    Процесс полимеризации (особенно возникновение и рост цепи) протекает с очень большой скоростью, поэтому реакция сопровождается значительным выделением тепла. Если реакция осуществляется при температуре кипения мономера, то наиболее эффективное охлаждение достигается использованием обратного холодильника. [c.390]

    Как видно из выражения (3.46), диффузионный поток зависит от коэффициентов молекулярной диффузии мономера в водной фазе и частице О ) от размеров капель и частиц, меняющихся в ходе полимеризации (Л , Е,), а также от параметра IV, в который входят константа скорости роста цепи к , концентрация радикалов Сак- и коэффициент молекулярной диффузии в частице. Величину У можно рассматривать как параметр, характеризующий соотношение между скоростью химической реакции и скоростью диффузии молекул мономера в частице. [c.151]

    В отличие от радикальной полимеризации константы скорости роста, обрыва и передачи цепи при ионной полимеризации характерны не для того или иного мономера, а только для определенной системы мономер - катализатор - сокатализатор -растворитель, ибо противоион расположен достаточно близко, оказывая существенное влияние на реакции ионизированного конца растущей цепи, а степень ионизации зависит от природы растворителя. [c.257]

    С повышением скорости экзотермической реакции нарастает и количество тепла, сопровождаемое ростом числа горячих молекул поэтому без радиации теплоты в окружающее пространство реакция становится взрывной. Скорость цепных реакций зависит от соотношения между числом возникающих и обрывающихся цепей взрывные реакции имеют место при быстром нарастании числа возникающих цепей, затухающие цепные реакции — при преобладании числа обрывающихся цепей. Наконец, при равном соотношении возникающих и обрывающихся цепей реакция идет с постоянной скоростью. [c.183]

    Интересные результаты были получены при изучении влияния температуры на молекулярную массу полиарилатов, получаемых акцепторно-каталитической полиэтерификацией в гомогенной системе [161, 219]. Оказалось, что если в качестве исходных мономеров использовать высокореакционноспособные соединения и проводить процесс в присутствии сильного основания (например, поликонденсация дихлорангидрида терефталевой кислоты с дихлордианом в присутствии ТЭА в среде ДХЭ), то зависимость молекулярной массы полимера от температуры реакции имеет вид кривой с двумя максимумами, что, по-видимому, обусловлено поли-экстремальной зависимостью констант скорости роста полимерной цепи от температуры процесса. Переход к малоактивным исходным соединениям и малоосновным третичным аминам нивелирует эту зависимость. [c.90]

    Иногда радикалы образуются в массе полимера, при этом быстрая реакция их с кислородом обусловливает образование перекисных радикалов [уравнение (Х111-2)]. Эта реакция зависит от наличия кислорода, и поэтому ограничивается как толщиной образца, так и относительной скоростью диффузии в полимер молекулярного кислорода и летучих окисленных продуктов. Отрыв водорода перекисными радикалами [уравнение (ХП1-3) ] приводит к образованию гидроперекисей. Общая скорость роста полимерных цепей зависит от скорости отрыва водорода, которая обычно намного ниже скорости образования перекисных радикалов ( г) на предшествующей стадии процесса. [c.452]

    В последнее десятилетие фундаментальные результаты получены И. С. Ениколоповым с сотр. при изучении процессов образования и превращений полимеров в экстремальных условиях пластического течения под действием механического напряжения [51]. В этих условиях полимеризация мономеров в твердом состоянии протекает аномально быстро и практически без энергии активации. В частности, константы скорости роста полимерных цепей на 8—10 порядков выше аналогичных констант скоростей в жидкофазных реакциях при тех нее давлениях. [c.116]

    Исследования Лундберга и Доти [656] показали, что полимеризация Ы Карбангидрида у-бензил-/-глутамата, инициированная первичным амином, в отличие от вышеописанных реакций, протекает с двумя последовательными скоростями вслед за довольно быстрым инициированием. Константа скорости второй стадии распространения цепи, по крайней мере, в 5 раз больше, чем для первой стадии. Эти очень быстро растущие цепи понижают концентрацию ангидрида, уменьшая таким образом скорость роста остальных цепей. Отсюда происходит очень широкое распределение молекулярного веса. [c.235]

    Можно видеть, что катализируемая основаниями полимеризация лактамов существенно отличается от других видов полимеризации в двух отношениях. Во-первых, растущий центр не является радикалом, анионом или катионом, а представляет собой циклическую амндную связь. Во-вторых, ие мономер присоединяется к растущей цепи, а его анион — активированный мономер [36]. Этот механизм полимерпзации чрезвычайно похож на описанный выше механнзл анионной полимеризации акриламида (разд. 5.66). Для такой полимернзацин концентрации обоих растущих частиц и активированного мономера определяются концентрацией основания. Новым следствием такой реакции является то, что скорость роста каждой растущей цепп зависит от концентрации основания. Кроме того, ес.ли равновесие обмена протона [уравнения (7.61) и (7.63)] далеко сдвинуто направо, то скорость роста каждой цепи [c.439]

    Молекулярный вес полимера, получаемого ноликонденсацией, сопровождающейся выпадением полимера из раствора, в большинстве случаев определяется соотношением скоростей роста полимерной цепи и ее физического обрыва, вызываемого выпадением полимера в осадок [1]. Отсюда следует, что повышению молекулярного веса при этом будет способствовать, с одной стороны, увеличение времени пребывания полимера в растворенном состоянии и, с другой — возрастание скорости реакции образования полимера. Именно в связи с этим в последнее время все больший интерес проявляется к каталитическому полиамиди-рованию. [c.29]

    Дэйнтон и Айвин [93] при рассмотрении некоторых термодинамических и кинетических аспектов реакций полимеризации ввели представление о предельной температуре Т . Это температура, при которой скорость роста полимерной цепи равна скорости ее деструкции. Энергия активации деструкции цепи обычно много больше энергии активации роста цепи. Поэтому указанная температура обычно является верхней предельной температурой, при которой (в данных условиях) возможно образование полимера. В цитируемой работе [93] авторы предложили следующее выражение для Т  [c.336]

    Природа алкильной группы в инициирующем металлоорганическом соединении, в значительной степени определяющая скорость реакции инициирования, не влияет на скорость роста полимерной цепи 47]. В соответствии с этим показано, что микроструктура полидиенов не зависит от строения карбанионной компоненты (К) в инициаторе [42, 114], в то время как природа металлической компоненты (Ме) оказывает существенное влияние на способ присоединения мономерной молекулы. Интересно отметить, что полимеризация, инициированная дисперсией лития и литийорганическими соединениями, приводит к полимерам одинаковой структуры [41]. [c.359]

    Реакция роста при каталитической полимеризации представляет собой встраивание молекулы мономера по ак гивной связи между растущей полимерной молекулой и катализатором. Для определения характера поляризации активной связи нами был применен метод радиоактивных ингибиторов, который не применялся ранее при исследовании окисных катализаторов полимеризации. Когда взаимодействие ингибитора с центрами роста протекает количественно, этот метод позволяет определить концентрацию центров роста и вычислить константу скорости роста полимерной цепи. Знание констайт элементарных стадий необходимо для изучения связи между составом гетерогенных катализаторов полимеризации и реакционной способностью центра роста. [c.200]

    Полпдисперсность полимеров может быть количественно описана с помощью функции распределения по молекулярным массам, т. е. зависимости относительного числа или весовой доли макромолекул с данной молекулярной массой дю(М) от величины А1. Функция распределения макромолекул по молекулярным массам определяется соотношением скоростей элементарных реакций процесса полимеризации (инициирования, роста, обрыва цепей) и особенностями зависимости этих скоростей от длины цепи и условий процесса. [c.21]

    Влияние условий полимеризации на молекулярную массу и ММР в первую очередь связано с зависимостью этих молекулярных параметров от констант скоростей элементарных реакций — инициирования, роста и ограничейия растущих цепей. [c.54]

    Предполагается, что реакционная способность обеих функциональных групп бифункционального мономера одинакова и не зависит от его молекулярной массы [3, с. 46 9, с. 34]. Это предположение подтверждается тем, что константы скоростей многих реакций не зависят от продолжительности процесса и молекулярной массы полимера. Так, константы скорости реакции полиоксиэтилена (молекулярная масса 393) с концевыми гидроксильными группами и 1-бутанола с фенилизоцианатом составляют соответственно 1,5-10 3 и 1,7-10 л/(моль-с) [10]. Однако имеются экспериментальные данные, противоречащие этому. Было изучено влияние молекулярной массы линейных сложных полиэфиров с концевыми гидроксильными группами в диапазоне 400—3000 на скорость реакции их с фенилизоцианатом. При этом установлено, что реакционная способность диэтиленгликольадипината зависит от длины цепи. Константа скорости реакции резко меняется в области молекулярных масс от 400 до 1500 и асимптотически приближается к постоянной величине в диапазоне молекулярных масс от 1500 до 3000 (рис. 1). Установленные закономерности авторы связывают с возрастанием концентрации меж- и внутримолекулярных водородных связей с ростом молекулярной массы полиэфира [11]. [c.158]

    Темпцжтура. Поскольку энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, но и регулировать соотношение между скоростями распада и уплотнения, а также, что особенно важно, между скоростями реакций поликонденсацни, тем самым меняя свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию в зависимости от целевого назначения процесса. Для получения кокса с лучшей упорядоченностью структуры коксования сырья целесообразно проводить при оптимальной температуре. При пониженных температурах из-за малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые препятствуют дальнейшим реакциям уплотнения и форхшрованию мезофазы. При температурах выше оптимальной скорости реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средних (оптимальных) температурах коксования ( 480 С), когда скорости реакций деструкции и уплотнения соизмеримы со скоростью роста мезофазы. Коксующийся слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.63]

    Полученные результаты подтверждают вывод о- том, что скорость инициирования радикалов почти не зависит от размера и формы молекул (начиная с пропана), который был сделан на основе экспериментальных исследований [352]. Действительно, константы скорости реакции распада алканов увеличиваются с усложнением диссоциирующего алкана лишь до некоторого предельного значения порядка 10 сек-К Таким образом, скорость реакций инициирования алканов в термическом крекинге не зависит от числа внутренних степеней свободы распадающихся алканов. Это может показаться парадоксальным, поскольку число степеней свободы увеличивается с ростом длины цепи и сложности молекулы. [c.272]

    Как и в случае других цепных неразветвленных реакций, скорость инициирования процесса полимеризации может быть определена методом ингибиторов (см. стр. 313), константа скорости квадратичного обрыва цепей—методом прерывистого освещения (методом вращающегося сектора, см.стр. 299), а константа скорости роста цепи может быть вычислена по формуле (IX. 11) из значения скорости полимеризации (скорости расходования мономера), если известны скорость инициирования дП] и константа сгсорости квадратичного обрыва цепей. [c.360]

    Равновесной поликонденсацией называется такой процесс синтеза полимера, который характеризуется небольшими значениями констант скоростей и обратимым характером превраше-ний. Поликонденсация - многостадийный процесс, каждая ступень которого является элементарной реакцией взаимодействия функциональных групп. В качестве постулата принято считать, что реакционная способность концевых функциональных групп не изменяется при росте полимерной цепи. Процесс равновесной поликонденсации представляет собой сложную систему реакций обмена, синтеза и деструкции, которую называют по-ликонденсационным равновесием. В общем виде реакции поликонденсации могут быть представлены как реакции функциональных групп, например  [c.267]

    При малых скоростях роста трещины составляющими кинетической энергии в R можно пренебречь. Тогда сопротивленпе материала распространению трещин будет включать удельную поверхностную энергию 2у (требуемую для преодоления силы сцепления атомов или молекул, действующей поперек вновь образованной поверхности разрыва среды), энергию Vre упругого втягивания в матрицу напряженных молекул, энергию Vpi — пластического деформирования и энергию Усь. — химических реакций, вызванных разрывом цепи. Энергии снятия внутренних напряжений Ui) и химических реакций с окружающей средой U h) нужно вычесть из R  [c.337]


Смотреть страницы где упоминается термин Скорость роста реакции цепи: [c.130]    [c.347]    [c.358]    [c.221]    [c.204]    [c.53]    [c.371]    [c.241]    [c.293]    [c.360]    [c.364]    [c.94]   
Производство поликапроамида (1977) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Константы скорости реакции роста цепи

Рост цепи

Скорость роста цепи

Статистическая интерпретация не зависящих от температуры факторов (предэкспоненциальных множителей) в выражениях для скоростей реакций роста и обрыва цепей при полимеризации



© 2025 chem21.info Реклама на сайте