Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды катионы

    В нефтепереработке значительное место занимают процессы, в которых используется катализ жидкими и твердыми кислотами, каталитическое действие которых обусловлено образованием при их взаимодействии с углеводородами катионов, называемых карбоний-ионами или карбкатионами. Карбкатионы образуются при передаче протона от катализатора [c.213]

    Своеобразие электровосстановления заряженных неальтернантных углеводородов — катионов тропилия и азулена — с помощью квантовохимических расчетов обосновано в работе [78], а на роль циклического я-септета электронов в реакциях электровосстановления пиридина и его солей указано в работе [79]. [c.125]


    В результате бурного развития в нашем веке автомобильной и нефтяной промышленности, и особенно благодаря открытию термического и каталитического крекинга, из нефти стали производить огромные количества легких углеводородов. Катионная полимеризация и алкилирование играли главную роль в использовании этих легких углеводородов для получения разнообразных продуктов моторного топлива, смазочных масел, бутилкаучука, добавок к смазочным маслам, синтетических детергентов и т. д. Хотя в настоящее время все большее количество легких олефинов, этилена и пропилена, полимеризуют по анионному механизму с образованием твердых полимеров, значительно большие их количества до сих пор перерабатывают посредством катионных реакций. [c.184]

    Установка предназначена для производства смазок на мылах различных катионов (металлов), получаемых непосредственно в процессе изготовления смазок прямым омылением природного или синтетического жирового сырья, а также углеводородных смазок путем загущения нефтяных масел твердыми углеводородами. [c.100]

    Может показаться случайным неодинаковое различие в поведении соответствующих изомерных углеводородов с геминальными атомами углерода в рядах пентана и гексана, а именно неопентана и неогексана. Эти углеводороды аналогичны друг другу в том отношении, что каждый из них является для своей группы наиболее термодинамически выгодным изомером при низких температурах. Различие же между ними заключается в том, что неогексан участвует в изомеризации, катализируемой галоид-алюминием, а неопентан нет. Главные стадии обратимого ионного цепного механизма, включающие равновесие между неогексаном и 2,3-ди-метилбутаном, показаны уравнением (29). Здесь К+ обозначает или катион, полученный из одного из участвующих изомеров, или инициатор цепи, полученный из двух других источников  [c.32]

    Экспериментально установлено, что при обмене натрия на полива-ные катионы активность катализатора возрастает с увеличением заряда и уменьшением радиуса катиона. Однако платиновые и палладиевые катализаторы, содержащие трех- или четырехзарядные катионы, менее селективны и стабильны в реакции изомеризации парафиновых углеводородов. [c.60]

    Было выявлено, что в каталитических реакциях глубокого окисления органических веществ в газовую фазу десорбируются, как правило, пероксидные радикалы КО , в то время как для парциального окисления углеводородов характерны радикалы К, На основании полученных данных ЭПР спектров был предложен механизм образования углеводородных радикалов при взаимодействии исходного соединения с ионом кислорода, находящимся на катионной вакансии  [c.15]


    Катионит КУ-2 представляет собой прозрачные желтоватые шарики. В техническом продукте содержится значительное количество разрушенных шариков и примесей железа, придающих зернам бурый цвет. Катионит обладает хорошей химической стойкостью к кислотам, щелочам и окислителям. Он термостоек до 120—130 С, а в среде углеводородов — до 150—160 °С. В настоящее время катионит КУ-2 выпускают трех сортов КУ-2 технический (первого и второго сортов) и КУ-2-8чС. Последний содержит значительно меньше разрушенных шариков и фракций мелкого зернения и имеет несколько большую обменную емкость. Хорошей механической прочностью и более крупным зернением обладает также катионит КУ-23. В отличие от катионита КУ-2, имеющего гелевую структуру, катионит КУ-23 обладает макропористой структурой. [c.144]

    В результате испытания ионных эмульгаторов различного состава солей сульфопроизводных нефтяных углеводородов, алкилсульфонатов и других соединений с различными катионами (Na , к ынО, а также неионных эмульгаторов и их сочетаний в различных соотношениях были подобраны эффективные системы эмульгаторов, обеспечивающие в течение длительного периода стабильность эмульсии и латексов в условиях полимеризации непрерывным способом. [c.377]

    Видно, что при введении Ag+ скорость побочных процессов снижается, а при добавлении К+, Ba + и Со + побочные процессы вообще не идут. Сорбцию олефинов в присутствии цеолитов с этими катионами проводят в две стадии на первой стадии исходную смесь (55% олефинов Се—Ст) пропускают в паровой фазе при 105 °С над цеолитом СаА. Полученный концентрат содержит 73% олефинов и 27% парафинов. На второй стадии этот концентрат пропускают над катионзамещенными цеолитами типа X при той же температуре и получают адсорбат, полностью лишенный парафинов и содержащий 85—99% олефинов с небольшой примесью ароматических углеводородов (табл. 73). [c.198]

    Ионообменная очистка основана на способности ионообменных смол (ионитов) удерживать те загрязнения, которые в растворенном состоянии диссоциируют на ионы. Иониты получают путем полимеризации и поликонденсации органических веществ они представляют собой твердые гигроскопичные гели, не растворимые в воде и углеводородах. В высокомолекулярной пространственной решетке ионита закреплены фиксированные ионы. Заряды этих ионов компенсируются зарядами противоположного знака, принадлежащими подвижным ионам (противоионам), расположенным в ячейках решетки и способным к обмену с ионами раствора электролита. Иониты, содержащие активные кислотные группы и подвижные катионы, способные к обмену, называются катионитами, а иониты с активными основными группами и подвижными анионами — анионитами. [c.125]

    Непрерывный процесс алкилирования фенола непредельными углеводородами на катионите КУ-2 [21, 276, 277] осуществляется по следующей схеме. Непредельные углеводороды и расплавленный фенол в массовом соотношении 1 1,5 из смесителя через теплообменник при 120—130 С подают в реактор, где поддерживается температура 135—145°С, Продукт алкилирования через теплообменник направляют в отгонную колонну. Отогнанные непрореагировавшие компоненты (смесь фенола и непредельных углеводородов) поступают в холодильник конденсатор, а затем возвращаются в смеситель алкилфенол используется по назначению. [c.248]

    Затруднение в интерпретации сложных спектров ЭПР, недостаточная изученность количественной и качественной зависимости между свойствами и структурой ароматических углеводородов и катализаторов с одной стороны и структурой и свойствами образующихся при этом парамагнитных частиц, с другой, не позволяют достаточно точно установить роль катион-радикалов в процессах алкилирования. [c.82]

    Скорость внутримолекулярного гидридного переноса при перегруппировке изобутил- в грег-бутил-катион (схемы 1—3) значительно выше скорости атаки им ароматических углеводородов, и изомеризационное преврашение успевает наступить быстрее, чем произойдет присоединение к ароматическому ядру. К тому же, обратная перегруппировка третичного карбокатиона в первичный энергетически не выгодна. Именно этим можно объяснить синтез в таких условиях практически одного углеводорода — грег-бутилбензола. [c.110]

    Катализ жидкими и твердыми кислотами очень широко применяется в нефтеперерабатывающей промышленности. Каталитическое действие кислот обусловлено образованием при их взаимодействии с углеводородами катионов — радикалов с одним недостающим электроном у атома углерода, обычно называемых кар-боний-ионами или карбкатионами. Карбоний-ионы обладают очень высокой химической активностью и реагируют мономолекулярно и с углеводородными молекулами с очень большой скоростью. углеводородов карбоний-ионы образуются при передаче протона от кислоты молекуле ненасыщенного углеводорода. Протонодонор-ная активность кислоты непосредственно связана с ее силой. [c.158]


    Как следует из табл. 13.1 и 13.2, достижение предельно высоких анодных потенциалов, помимо использования тетрафтор-боратов н гексафторфосфатов, возможно при понижении температуры [59] нли при использовании таких растворителей, как трифторуксусная [60, 67, 68] и фторсульфоновая [57, 69—72] кислоты. Окисление углеводородов проводили также в ннгроме-тане, нитроэтане, пропиленкарбонате, сульфолане и дихлорме тане [73]. Наблюдавшиеся потенциалы в случае необратимого окисления постоянны, и их можио предсказать. Во многих случаях этн потенциалы хорошо коррелируют с потенциалами ионизации [56, 58, 74] и с константами о+ [63, 64] в последнее время потенциалы ио11нзации обычно измеряют методом фотоэлектронной спектроскопии. Общая тенденция изменения потенциалов окисления может быть выведена исходя нз структур углеводородов на основе механизма, включающего перенос электрона с последующим быстрым разрывом связей углерод—водород или углерод—углерод Для таких случаев на наблюдаемый потенциал влияет скорость последующей реакции. С этим связаны относительно низкие потенциалы окисления напряженных углеводородов, катион-радикалы которых, как можно ожидать, способны подвергаться фрагментации (см табл 13 4) Таким же образом можно объяснить низкий потенциал окисления циклогексадиена-1,4 (см. табл. 13.3) в этом случае быстрое отщепление протона катион-радикалом приводит к циклогексаднениль-ному радикалу. [c.409]

    Кислотный катализ. Катализ жидкими и твердыми кислотами широко применяют в нефтеперерабатывающей промышленности. Каталитическое действие кислот обусловлено образованием при их взаимодействии с углеводородами катионов, называемых карбоний-ибнами или карбкгГтионами. Обычно карбкатионы образуются при передаче протона от катализатора (кислота НХ) к молекуле ненасыщенного углеводорода  [c.330]

    В настоящее время насчитывается несколько десятков разно — видностей природных и синтетических цеолитов, отличающихся структурой, типом катионов Ме, силикатным модулем и числом молекул кристаллизационной воды. Структура цеолитов характеризуется наличием большого числа полостей, соединенных между собой окнами, или микроканалами, размеры которых сравнимы с размерами реагирующих молекул. Обычно полости имеют больший диаметр, чем каналы (или окна). Например, в цеолите типа шабазит имеется 3-10 ° полостей диаметром 11,4 А, в каждую полость которого может вместиться 24 молекулы воды. Диаметр окон шабазита составляет 4,9 X. При нагреве цеолита вода удаляется, и образуется ячеистая структура. Удельная поверхность цеолитов достигает 700 — 1000 мVг. Обезвоженные цеолиты способны избирательно адсорбировать молекулы различных веществ в зависимости от размеров каналов. Разумеется, если диаметр адсорбируемого вещества больше, чем сечение канала, то оно не может проникнуть во внутренние поры цеолита (ситовой эффект). Так, при диаметре канала (окна) 4 Л цеолит не может адсорбировать углеводородов норма/ 1ЬНого стро — еиия, диаметр молекул которых равен 4,9 Л. [c.110]

    Этот ион химически связан с поверхностью носителя, в частности с AI2O3 в состав такого активного центра входит и хлор (L — катион носителя или структурного промотора). С помощью двух координационных связей (обозначены пунктиром) активный центр образует циклический комплекс, в котором молекула углеводорода играет роль лиганда [191]  [c.256]

    Образование изобутана (18,8 вес.% от превращенного этилена) вместе со смесью других парафиновых, олефиновых, нафтеновых и ароматических углеводородов в результате полимеризации этилена при температуре 330° С в присутствии 90%-ной фосфорной кислоты может быть объяснено по этому же механизму [27]. Катион н-бутила, полученный в результате димеризации этилена, изомеризуется до катиона трет-бушлй, который способен отнимать гидридный ион от другой молекулы, например. [c.226]

    Каталитическое алкилирование. Каталитическое алкилирование изопарафиновых углеводородов олефинами происходит по цепному механизму, предполагающему образование из изопарафина третичного алкильного катиона. Последний, присоединяясь к олефину (правило 1), образует катион большего молекулярного веса, который после перегруппировки (правило 3), отнимает гидридный ион от молекулы изопарафина (правило 5), образуя соответствующий продукт алкилирования и новый третичный алкильный ион, начинающий новую цопь [I, 52]. [c.230]

    Небольшое различие в реакционной способности между цис- и транс-дихлорэтиленами в реакциях, индуцированных перекисями, в противоположность реакциям, катализируемым хлористым алюминием, свидетельствует о различной способности радикалов и катионов mpem-бутила реагировать с затрудненными (экранированными хлором) двойными связями. Все прочие различия между реакциями, индуцированными перекисями, и реакциями, катализируемыми галогенидами металлов (например, получение высоких выходов ненасыщенных хлоридов как с нормальными, так и с и.чопарафиповыми углеводородами при индуцированной перекисями конденсации, в то время как при катализируемой хлористым алюминием конденсации получаются высокие выходы пасыщенных хлоридов, но только с изопарафинами) объясняются основными правилами для реакций свободных радикалов и ионов карбония. [c.233]

    Следы некоторых галоидалкилов нромотируют изомеризацию метилциклопентана так же, как олефины [уравнение (38)]. Например, и- и изо-пропилбромиды и втор- и т эет-бутилбромиды эффективны нри 25°. Однако никакой изомеризации не наблюдалось, когда пытались исполь зовать в качестве инициатора бромистый метил или бромистый этил [54] при той же температуре. Это отсутствие реакционной способности бромистого метила и бромистого этила было объяснено как результат возможной трудности при отрыве первичным ионом карбония атома водорода от углеводорода. Эффективность к-нропилбромида не противоречит такой интерпретации, так как, по-видимому, катионы к-пропила легко переходят в катионы изонропила. [c.44]

    Алкилирование бутеном-2 включает образование триметилпентил-катиона в результате присоединения т/)ет-бутила к олефиновому углеводороду  [c.326]

    В результате этой реакции катализатор переходит в К-форму — раствор СбН1з5ЬР вНР. Следующим актом является образование цикло-гексильного иона, который претерпевает перегруппировку в метилцик-лопентильный катион и отрывает гидрид-ион от нейтральной молекулы углеводорода  [c.33]

    Из представленной схемы видно, что изомеризация циклогексана сопровождается образованием изогексанов. Реакция протекает до тех пор, пока все гексильные катионы в комплексе К МР не будут замещены на циклогексильный или метилциклопентильный ион СбН " , что хорошо согласуется с экспериментальными результатами. Водород не участвует в образовании гексанов, скорость реакции не изменяется в отсутствие водорода (табл. 1.11). Отсюда можно сделать вывод, что влияние нафтенов на превращение парафиновых углеводородов определяется характером взаимодействия нафтенов с катализатором. В сверхкислотных средах НР - ЗЬР нафтены образуют комплекс ЯМР , как и парафиновые углеводороды. Скорость образования этого комплекса для различных углеводородов неодинакова и убывает в ряду С Н 2 = С5 Н12 > Сз Н) 4 > СбН] 4. Эта закономерность объясняет, почему при добавлении циклогексана скорость изомеризации н-гексана увеличивается, а для и-пентана остается неизменной. [c.33]

    Влияние содержания и способа внесения металлического компонента на активность, селективность и стабильность катализаторов. Декатионированные и поликатионные формы цеолита типа фожазит обладают некоторой активностью в изомеризации парафиновых углеводородов в отсутствие металлов, но при температурах на 60-100 °С выше, чем в их присутствии. Декатионированная и некоторые катионные формы морденита обладают высокой начальной активностью в реакции изомеризации нормальных парафинов в присутствии водорода, однако в отсутствие металла активность их быстро снижается. Введение платины до оптимального содержания в цеолит типа фожазит приводит к линейному увеличению выхода изопарафиновых углеводородов (рис. 2.9). Введение плат1шы в Н-морденит несколько уменьшает его активность, но увеличивает селективность и стабильность. [c.62]

    Аро.матические углеводороды, функциональные соединения спирты, гликоли, органические основания — пиперидин, кодеин, бруцин 2,7-диаминофлуорен) III Способность силикатов этого типа образовывать соединения включения зависит и от количества воды, уже находящейся в пустотах, и от характера катионов (1Ма+, Са+2) [c.91]

    Если общее взаимодействие адсорбат—адсорбент включает взаимодействие, сильно зависящее от температуры (например, специфическое взаимодействие ненасыщенных и ароматических углеводородов с гидроксильными группами или катионами поверхности, см. главу XV11I), то повлиять на последовательность выхода компонентов можно, изменяя температуру колонки. Из рис. 12 видно, что последовательность выхода -jrana, пропана и этилена из колонки, заполненной цеолитом типа X (см. стр. 515 сл.), с ростом температуры изменяется. В соот- [c.566]

    Принципиальное значение имеет изучение влияния природы ионообменного катиона на каталитическую активность и селектиниость цеолитных катализаторов. Было высказано предположение, что одно- и двухвалентные катионы оказывают поляризующее действие на молекулы углеводородов, облегчая протекание исследуемых реакций. В случае двухвалентного катиона отмечался определенный вклад в каталитическую актпнпость некоторой некомпенсированности положительного заряда на катионе, возрастающий по мере увеличения расстояния от катиона до алюмосиликатного тетраэдра. [c.14]

    Совместно с П. И. Галичем и с участием О. Д. Коповальчикова и Ю. Н. Сидоренко исследованы реакции алкилирования метилзамещенных ароматических углеводородов метиловым спиртом па цеолитах типа фожазитов и ионообменными катионами щелочных и щелочноземельных металлов. Выявлено принципиальное различие превращений углеводородов в присутствии аморфных и кристаллических алюмосиликатов с катионами I и II групп. В присутствии аморфных алюмосиликатов и цеолитов типа X и с катионами щелочноземельных металлов, а также лития и натрия алкилирование толуола, ксилолов и метилнафталинов метанолом происходит в ароматическое ядро с образованием соответствующих полиметилбензолов и нафталинов различного изомерного состава. Те же цеолиты с катионами калия, рубидия и цезия селективно метилируют боковую цепь, и получаются соответствующие этил-и винилзамещенные ароматические углеводороды. Эта неизвестная ранее реакция может служить новым общим методом одностадийного получения этил- и винилзамещенных ароматических соединений путем конденсации метилзамещенных ароматических углеводородов и метанола. [c.14]

    Ири переходе к рубидиевой форме цеолита, т. е. о увеличением радиуса обменного катиона, активность и селективность катализатора возрастают. Так, па KNaX (при 425 °С, объемной скорости ч и до.[ярном соотношении метанол углеводород, равном 20) степень нревраше[ ия а-метилнафталина составляет 48,3, а на RbNaX в этих же условиях — 94 %. В продуктах реакции увеличивается содержание а-винилнафтадипа и селективность процесса на углеводород достигает 94—97 %. Возрастает также целевая конверсия [c.330]

    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]

    Введение в катионзамещенный цеолит другого катиона методом пропитки или катионного обмена [54] меняет активность катализатора во всех реакциях превращения бутенов, причем это изменение зависит и от метода введения добавки. Введение никеля методом пропитки ингибирует побочное образование пропилена и высших углеводородов. Введение никеля методом катионного обмена, наоборот, повышает выход пропилена с 29 до 36% и понижает активность катализатора в изомеризации н-бутенов. Так, на цеолите СаУ с 5% N1, полученном пропиткой, отношение буте-ны-2 бутен-1 составляет 3,1, а на катализаторе, полученном обменом, оно равно 2,7. (Лттимальным, по данным [54], оказалось содержание N1, равное 1%). [c.164]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]

    Большое значение оказывают количество и активность катализатора, При небольших количествах катализатора и мягких условиях образуются в значительной,степени орто- и пара-то-меры. С увеличением количества катализатора возрастает содержание мета-томера. Кроме того, образование лега-изомера при мягких условиях наблюдается при высокой реакционной способности и низкой избирательности карбокатионов. В присутствии больших количеств катализатора ароматические углеводороды почти количественно превращаются в 1,3-диалкил- и 1,3,5-триалкилбензолы, что объясняется их большой основностью и соответственно стабильностью соответствующих сг-комплексов. Многочисленными примерами показано, что чем выше энергия у реагента (больше дефицит электронов), тем меньше его селективность как при атаке различных по основности ароматических углеводородов, так и отдельных положений монозамещенных ароматических соединений. Например, молекулярный бром (слабая кислота Льюиса) реагирует с толуолом в 600 раз быстрее, чем с бензолом, тогда как бром-катион из гипобромида (сильная кислота Льюиса) лишь в 36 раз. Подобный же эффект наблюдается для этих реагентов и при атаке различных положений толуола. В табл. 2.4 приведены факторы парциальных скоростей нитрования и галогенированЕя толуола и трет-бутилбензола. [c.42]

    Реакция внутримолекулярного циклоалкилирования привлекает внимание исследователей как метод синтеза индановых и нафталиновых углеводородов, потребность в которых для промышленных целей заметно возрастает. На преимущественное образование бензоцикленовых углеводородов с пяти-, шести- или семичленными циклами основное влияние оказывает длина и строение углеродной цепочки алкильного заместителя, а также природа активного центра — наличие двойной связи, галогенов или гидроксильных групп. Заметную роль в направленности атаки ароматического ядра и структуры образующегося кольца играют стерические эффекты и эффекты взаимодействия арома -тической группы с катионным центром. Катализаторами такой реакции могут быть как протонные кислоты, так и кислоты Льюиса. [c.123]

    На основании зависимости скорости реакции внутримолекулярного алкилирования фенилалкилхЛоридов [183] от расстояния между фенильным радикалом и реакционным центром, авторы работы [171] считают, что поскольку стабилизация заряда в углеводороде VIII за счет ароматического ядра затруднена, электронный дефицит катионного центра снижается за счет взаимодействия с метиленовой группой, увеличивая тем самым в ней дейтерообмен. В углеводороде IX ароматическое ядро участвует в делокализации заряда и в первую очередь дейтерообмен происходит в этом центре, хотя его степень за счет участия фенильного ядра несколько падает. [c.126]

    При введении алкильных заместителей в индановое кольцо заметно изменяется степень конверсии и направленность превращения исходных углеводородов [198]. При контакте с АШгзпри 100 °С 1,1-диметилиндан незначительно олигомеризовался, ноне нзомеризовался, тогда как 2,2-диметилиндан с 93%-ным выходом изомеризовался в 1,2-диметилиндан. Подобное превращение может быть связано с легким отщеплением гидрид-иона от а-углеродного атома заместителя с последующей миграцией метильной группы. Такой механизм менее приемлем для 1,1-диме-тилиндана, так как образование а-катиона является более предпочтительным [c.166]


Смотреть страницы где упоминается термин Углеводороды катионы: [c.96]    [c.375]    [c.326]    [c.329]    [c.340]    [c.714]    [c.326]    [c.198]    [c.130]    [c.108]    [c.117]    [c.126]   
Реакции координационных соединений переходных металлов (1970) -- [ c.226 ]




ПОИСК







© 2025 chem21.info Реклама на сайте