Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация органических мономеров

    Эмульсионная полимеризация метилметакрилата принципиально не отличаются от эмульсионной полимеризации других мономеров. В качестве эмульгаторов применяют соли органических и сульфокислот. Инициаторами процесса являются окислительно-восстановительные системы. Соотношение воды и мономера обычно принимается (1- 3) 1, количество эмульгатора составляет примерно 3%, а инициатора и ускорителя по 0,1—1% от массы мономера. Полимеризатором служит реактор обычного типа с рубашкой и мешалкой. В него из мерников загружают деионизированную [c.139]


    В жидкой фазе—константа равновесия Кк изменяется так же, как и в газовой, по формуле (49). Однако Av для жидкостей обычно невелико и потому незначительно влияние давления. Несмотря на малую сжимаемость жидкостей, скорость многих реакций в жидкой фазе сильно увеличивается при весьма высоких давлениях. Так, при давлениях в несколько тысяч атмосфер скорость процессов полимеризации некоторых органических мономеров увеличивается в десятки и сотни раз. Возрастает молекулярный вес полимеров. Также значительно, увеличивается скорость соединения некоторых углеводородов и их производных, причем с повышением давления меняется состав продуктов реакций. [c.89]

    До СИХ пор МЫ рассматривали только органические мономеры. Имеется ряд элементорганических и неорганических циклических соединении, способных к полимеризации. [c.311]

    Радиационная полимеризация. Кинетика, а в ряде случаев и природа одного из важнейших в практическом отношении процессов химической технологии — полимеризации органических мономеров — существенно изменяются под действием излучения. Как правило, полимеризация заключается в переходе кратных связей мономеров в одинарные связи полимеров. Очевидно, что подобные процессы характеризуются большей или меньшей энергией активации. Обычно для осуществления цепной реакции полимеризации реакционную среду -подвергают действию видимого УФ-света либо вводят различные катализаторы, благодаря чему в сфере полимеризации образуется некоторое количество свободных радикалов. [c.209]

    Предпринималось много попыток изучения полимеризации органических мономеров на поверхности силикагелей или алюмосиликатных гелей под воздействием радиации. Помимо того что происходит процесс иолимеризации, образуются свободные радикалы, а полимеры распадаются с укорачиванием длины цепей, никаких других неожиданных результатов не было получено. Прививка полимера к поверхности частиц кремнезема, по-видимому, мало отличается от тех случаев, когда используются катализаторы полимеризации [491]. Однако введение диспергированного кремнезема, состоящего из чрезвычайно тонких частиц, в мономеры еще до процесса полимеризации, вероятно, могло бы привести к созданию новых разновидностей смешанных неорганических и органических полимеров с полезными свойствами. [c.990]

    В последние годы большое внимание привлекают быстрые процессы полимеризации органических мономеров, протекающие при низких температурах в твердой фазе.— Прим. общего редактора. [c.391]


    ПОЛИМЕРИЗАЦИЯ ОРГАНИЧЕСКИХ МОНОМЕРОВ [c.341]

    В качестве катализаторов радикальной полимеризации часто применяют перекись водорода, перекись ацетила, перекись бензоила и персульфат натрия. Нагревание и облучение также способствуют началу полимеризации. Гипотеза о радикальном инициировании полимеризации подтверждается использованием в качестве катализаторов соединений, являющихся источниками свободных радикалов (диазосоединения, алкилметаллы и др.). Если процесс полимеризации, катализируемой перекисями, прервать до ее завершения, то смесь содержит исходный мономер и полимер с высоким молекулярным весом полимеры с промежуточным молекулярным весом при этом не образуются. Так как следы перекисей присутствуют во многих органических соединениях, полимеризация часто может происходить самопроизвольно. Поэтому для предотвращения самопроизвольной полимеризации к мономеру обычно добавляют антиоксиданты — фенолы, амино- и нитросоединения. Наиболее распространенным антиоксидантом является гидрохинон, который оказывает эффективное действие лишь в присутствии кислорода полагают, что при этом образуется хинон, который и является истинным стабилизатором. [c.522]

    В настоящее время насчитывается несколько десятков тысяч патентов и множество статей, посвященных полимеризации органических мономеров только с применением указанных катализаторов. В течение последних лет число исследований по применению алюминийалкилов в качестве катализаторов или исходных веществ для различного рода органических и неорганических синтезов резко увеличилось, и большинство из них носит прикладной характер. [c.10]

    Полимеризация органического соединения может быть проведена или путем электрического разряда в среде паров только мономера, или в среде смеси мономера с газом (Не, Аг, N2, Н2). Механизм полимеризации, по-видимому, также зависит от того, используется или нет плазма газа. [c.78]

    Кроме изучения полимеризации чисто органических соединений было исследовано влияние давления на реакции некоторых элементорганических мономеров. При давлении порядка 600 МПа и температуре 120...130°С были выдержаны вместе с катализаторами (пероксиды) кремнийорганические соединения, в углеводородных группах которых имелись ненасыщенные (двойные) связи. Наблюдалась полимеризация кремнийорганических мономеров, причем в зависимости от числа углеводородных групп с двойными связями в молекуле мономера менялся характер полимерного продукта. Чем больше таких групп, тем выше степень полимеризации. [c.201]

    Наряду с исследованием нитрилов метод ВД+ДС применялся и для полимеризации других твердых органических мономеров. Если мономер при комнатной температуре является жидким, то опыты проводились при пониженных температурах ниже температуры плавления соответствующего мономера. [c.226]

    Синтез полимеров очень часто (даже, вероятно, чаще, чем синтез обычных органических соединений) проводится в запаянных ампулах. Ампулы применяются как для получения конденсационных полимеров в расплаве, так и для полимеризации винильных мономеров [c.15]

    Наряду с указанными способами изготовления ТФЭ формование трубчатых мембран на опорной поверхности каркаса предложено проводить последовательным нанесением двух слоев органических мономеров с последующей тепловой полимеризацией, обеспечивающей образование тонкого селективного слоя и прочного пористого подслоя, а также полимеризацией наносимого мономера под воздействием без-электродного тлеющего. раз1ряда или плазменного разряда (см. стр. 76). [c.135]

    В органической технологии радикально-цепные реакции занимают важное место в процессах галогенирования, крекинга, пиролиза, окисления молекулярным кислородом органических соединений, олигомеризации и полимеризации виниловых мономеров и т. д. [c.212]

    Важно установить, где происходит полимеризация полярных мономеров в органической фазе или в водном растворе По этому поводу высказываются различные мнения. [c.90]

    В последнее время для инициирования радикальной полимеризации нри низкой температуре (вплоть до —80°) в гомогенной среде с успехом применяются перекисные производные элемент-органических соединений. Высокие скорости инициирования достигаются при полимеризации различных мономеров, в особенно- [c.213]

    Благодаря этому оба типа ионных процессов, несмотря па противоположный заряд растущих цепей, имеют общие черты. Это проявляется в существенном влиянии полярности среды на кинетику полимеризации и в зависимости скорости элементарных стадий процесса и микроструктуры полимера от природы противоиона. Известная аналогия между катионной и анионной полимеризацией имеется и в другом отношении, а именно, в возможности полного исключения реакций обрыва, что в свою очередь приводит к близости кинетики процесса в определенных системах анионного и катионного характера. Б то же время различие в заряде активных центров обусловливает избирательную способность многих мономеров полимеризоваться только по одному из двух ионных механизмов. Склонность к анионной полимеризации типична для мономеров ряда СН2=СНХ, содержащих заместители X, понижающие электронную плотность у двойной связи, например КОз, СК, СООК, СН=СН2. В наибольшей степени к анионной полимеризации способны мономеры, содержащие два подобных заместителя, например СН2=С(СК)2 или СН2=С(М02)з. Анионная полимеризация возможна также для насыщенных карбонильных производных и для ряда циклических соединений — окисей, лактонов и др. Инициаторами анионной полимеризации являются щелочные металлы, некоторые их органические и неорганические производные (металлалкилы, алкоксиды, амиды и др.), а также аналогичные соединения металлов II группы. Заключение об анионной природе активных центров основывается не только на качественных соображениях, но и на количественном анализе экспериментальных данных с помощью правила Гаммета. Это правило связывает значения констант скоростей реакци производных бензола с характеристиками их заместителей. Оно формулируется в виде уравнения [c.336]


    Комплексные металлорганические соединения используются не только как катализаторы полимеризации олефинов, диеновых углеводородов и других органических мономеров. Они являются также катализаторами димеризации, олигомеризации и циклизации различных углеводородов. В последние годы появились сообщения об использовании этих соединений в качестве катализаторов гидрирования, изомеризации и алкилирования многих алифатических и ароматических соединений. Известны работы как по применению этих комплексов или отдельных их компонентов при получении карбонилов металлов и я-комплексов переходных металлов, так и по химической фиксации молекулярного азота. Все опубликованные работы представляют значительный интерес и заслуживают специального рассмотрения. [c.175]

    Полимеризация жидкого мономера в отсутствие растворителя называется полимеризацией в блоке или блочной полимеризацией. При этом полимер получается в виде сплошной массы, имеющ,ей форму реактора, в котором он был получен. В качестве примеси полимер содержит незаполимеризовавшийся мономер. При блочной полимеризации возможны местные перегревы, что обусловливает образование полимерных молекул с различной массой. Кроме того, полимер прилипает к стенкам реакционного сосуда, что затрудняет его извлечение. Поэтому в промышленности блочная полимеризация не находит широкого применения. Используется этот метод, например, для получения листового органического стекла в результате полимеризации метилметакрилата. В лабораторных исследованиях блочная полимеризация часто применяется при изучении скорости и механизма полимеризации. [c.159]

    Иониты. Иониты — нерастворимые высокомолекулярные вещества, способные к реакциям ионного обмена с окружающим раствором благодаря наличию ионогенных групп. Ионообменными свойствами обладают очень многие вещества самой различной природы, но наибольшее практическое значение и применение, имеют иониты, получаемые из органических мономеров йо реакциям полимеризации или поликонденсации. Наиболее часто иониты применяются в качестве загрузки ионитовых фильтров, в которых очистка воды или раствора достигается пропуском их через слой ионита. [c.88]

    На практике предпочтение отдается ионитам, искусственно получаемым из органических мономеров полимеризацией и по-ликонденсацией. По сравнению с природными ионитами такие высокомолекулярные вещества имеют более высокую емкость и проявляют значительную устойчивость к действию различных сред и нагрузок.  [c.113]

    Триорганилбораты являются хорошими катализаторами полимеризации многих мономеров, их применяют в качестве присадок к углеводородным маслам, в качестве защитной среды от окисления металла в процессе литья, в органическом синтезе. [c.591]

    Полистирол — бесцветный прозрачный материал, хорошо известный в виде различных изделий из органического стекла. Если атактический полистирол имеет температуру размягчения около 85 °С, то изотактический полистирол размягчается лишь при 230 °С это позволяет использовать его при более высоких температурах. Большое применение имеют и сополимеры стирола с другими мономерами — акрилонитрилом СН-2=СН— N, метилметакрилатом СН2=С(СНз)—СООСНд, а-метилстиролом СвНа—С(СНд)=СН2. Сополимеры имеют более высокие физико-механические показатели, чем чистый полистирол. Особенно ценный материал — ударопрочный полистирол получают методами блок-сополимеризации участки (блоки), возникшие путем полимеризации одного мономера, чередуются с блоками из другого мономера. [c.330]

    Подобная снлоксановая сетка геля может возникать при условиях, когда деполимеризация, вероятно, протекает в наименьшей степени, и поэтому процесс конденсации необратим, а силоксановые связи не могут гидролизоваться сразу же после их образования. Таким образом, мономер Si(0H)4, приготовленный растворением безводного ортосиликата в безводной смеси метанол—соляная кислота или же гидролизом метилсиликата в метаноле с теоретическим количеством воды, будет медленно превращаться в гель. Вследствие нерастворимости кремнезема в системе (это является дополнительным подтверждением того, что силоксановые связи разрываются с трудом) силоксановые цепочки сконденсированного полимера не могут претерпевать перестройку, приводящую к образованию частиц. Даже если н формируются отдельные единичные образования чрезвычайно малых размеров, они не подвергаются процессу созревания по Оствальду . При таких особых условиях, вероятно, полимеризация мономера Si(0H)4 может близко напоминать полимеризацию полпфункционального органического мономера и подчиняться соответствующим теориям, которые были развиты в органической химии полимеров. [c.302]

    Органические соединения щелочных металлов, а также сами металлы (см. разд. 15.1.2.2) и катализаторы типа алфин (гетерогенные вещества, получаемые взаимодействием алкенилиат-риевых соединении с алкоксидами и галогенидамц натрия [53]), часто применяют для инициирования полимеризации различных мономеров — бутадиена, изопрена и стирола. Регио- и стереоселективность этих реакций зависят от природы противоиона (наряду со щелочными металлами используют также металлы второй группы) и аниона , растворителя, а также от температуры, давления и концентрации. Физико-химические проблемы этих процессов трудно разрешимы относительный прогресс достигнут лишь при исследовании стадии инициирования в гомогенных растворах [63] однако н в этой области многое еще не ясно. [c.33]

    При ионной полимеризации можно выделить те же элементарные стадии, что и при радикальной инициирование, рост, обрыв и передачу цепи. Полимеризация под влиянием ионных катализаторов обычно происходит с большими, чем при радикальной, скоростями и приводит к получению полимера большей молекулярной м ссы. Реакционная система в случае ионной полимеризации часто является гетерогенной (неорганический или металлоргани-ческий твердый катализатор и жидкий органический мономер). [c.49]

    Наиболее важным промышленным применением таких окислительно-восстановительных реакций является низкотемпературная эмульсионная полимеризация смеси стирол — бутадиен при получении каучука в присутствии гидроперекиси кумола и ионов железа в качестве катализатора. Органические мономеры полимеризуются, превращаясь в маслообразные капли в водной эмульсии, которая стабилизируется добавлением мыла и щелочей. Типовой промышленный рецепт приведен в табл. 11.1. Как видно, смесь эта сложная, и в деталях неизвестно назначение каждого ее ингредиента. Из них представляют интерес гидроперекись, ион железа, пирофосфат Na4P207-IOH2O (который необходим для растворения железа), и тиол (его добавляют в качестве переносчика цепи для уменьшения выхода продуктов с низким молекулярным весом и чтобы обеспечить получение полимера, легко поддающегося обработке). [c.133]

    Развитие механохимических методов переработки полимеров, и особенно появление и практическое высокоэффективное использование механохимических явлений в новых областях (обработка металлов и сплавов, смазка, формование металлов, полимеризация органических соединений, не являющихся типичными мономерами, и т. д.) вызвало необходимость обобщения результатов новых работ и критическую переоценку содержания старых. Это научное направление сохраняет самостоятельность и новизну, захватывая новые классы соединений и новые области дримене-ния. [c.6]

    При лаковой полимеризации акриловых мономеров в качестве растворителей применяют бензол, изопропилбензол, хлорбензол, толуол, циклогексанои и др Инициаторами служат органические пероксиды и динитрил азо-бис (изомасляной) кислоты Процесс полимеризации ведут при температурах около 70 °С Окончание полимеризации устанавливается по содержанию мономера в полимере, которое не должно превышать 2% В том случае, когда процесс получения полимера проводится в среде растворителя, не растворяющего полимер, последний выпадает в осадок в виде тонкого порошка, подвергаемого затем очистке и сушке [c.169]

    Количество публикаций по получению ПО полимеризацией непредельных оксимов ограничено из-за весьма узкого набора исходных мономеров. Полимеризация акролеиноксима впервые выполнена в 60-е годы прошлого столетия. Процесс проводили без растворителя в присутствии радикальных инициаторов, гамма-облучения и под влиянием трехфтористого бора [1]. Наиболее однородный ПАО с температурой плавления 70-100 °С и максимальным выходом получен в присутствии трехфтористого бора. Полимер растворим в ДМФА, пиридине, в кислых и щелочных водных средах. При восстановлении оксимных групп полимера был выделен растворимый в воде и этаноле воскообразный продукт, содержащий в макромолекулах до 80% аминогрупп. В 70-е годы появился ряд работ по исследованию полимеризации акролеиноксима, свойств и структуры полученных полимеров [3-5, 20-23]. В результате установлено, что термическая полимеризация этого мономера при 80 X приводит к образованию ПАО с М. м. 1000-2000, которые растворимы в щелочных и кислых средах, но не растворимы в органических растворителях [3]. Авторы показали, что в полимере реализовано пять различных способов присоединения мономерных звеньев. Так в результате полимеризации в положении 1,2 3,4 1,4 образуются структуры I, П, П1, соответственно, а появление структур IV, V обусловлено переносом протона  [c.147]

    Как отмечалось выше, свободно-радикальная полимериза--ция виниловых соединений отличается от классической цепной реакции тем, что реакционноспособные промежуточные продукты радикальной природы хотя и являются соединениями одного и того же типа (все они представляют собой органические радикалы, построенные из одних и тех же структурных единиц), но содержат различное количество этих единиц в зависимости от числа актов роста, в которых участвовал данный первичный радикал. При кинетической обработке необходимо учитывать реакции радикалов всех размеров было сделано допущение, что реакционная способность радикала данного типа не зависит от длины цепи, поэтому, например, одна константа скорости может характеризовать все акты роста, происходящие при полимеризации данного мономера. Очевидно, что принятие этого допущения значительно упрош,ает расчеты. Вопрос о справедливости этого предположения был предметом многих теоретических работ уже в то время, когда методы кинетической трактовки полимеризации только начинали разрабатывагься окончательным подтверждением правильности этого допущения является хорошее совпадение уравнений, выведенных на его основе, с экспериментальными данными. (Как будет показано, некоторые уравнения могут быть выведены без учета этого допущения, по они, как правило, не могут быть проверены экспериментально.) Были сделаны попытки проверить эту гипотезу экспериментально другими методами [15—17], но не все эти попытки привели к однозначным результатам. [c.22]

    Широкое промышленное применение получили системы, состоящие из органических перекисей и солей металлов, компоненты которых реагируют с большой скоростью при температуре, значительно ниже 0°. Их использование для эмульсионной полимеризации различных мономеров, например при синтезе бутадиене тир ольного каучука, стало возможным лишь тогда, когда научились регулировать скорости генерирования свободных радикалов, что достигается применением комплексных солей железа, обладающих меньшей реакционноспособностью (например, пирофосфатов), или солей с очень малой растворимостью. Особенно большая роль принадлежит системам с участием еще одного компонента — восстановителя, способного возвращать ионы металла в исходное закисное состояние и тем самым обеспечивать их повторное участие в реакции с перекисями. Это приводит к обратимому окислительно-восстановительному циклу, в котором малое количество соли металла благодаря многократным актам окисления и восстановления способно разложить при низкой температуре значительное количество инициатора  [c.212]

    Способность органических соединений образовывать свободные радикалы иод влиянием излучений была широко использована для иницииро-ваипя радикальной полимеризации [288—295]. Таким образом была проведена полимеризация ряда мономеров этилена [10, 288, 296, 297, 305— 307], пропилена [298], стирола [269, 299—301], метилметакрилата [269, 299— 303], акрилонитрила [301, 304], винилацетата [299, 300], винилхлорида [295, [c.73]

    Исходя из того что в процессе вибрационного измельчения твердых неорганических веществ появляются новые активные поверхности, способные к хемосорбции, Каргин провел виброизмельчение кварца, графита, поваренной соли, железа, никеля, магния, сажи, окисей цинка и титана в присутствии стирола и метилметакрилата. Анализ продуктов реакции показал, что неорганические вещества способны инициировать полимеризацию изучавшихся мономеров, а образовавшийся полимер способен прививаться к свежевскрытой активной поверхности в процессе вибрационного измельчения. Грон, основываясь на том же принципе, осуществил механическое диспергирование олова в присутствии некоторых низкомолекулярных соединений типа хлор-бензила, бензоила и т. д., а также кварца в присутствии хлористого метила, бутанола, винилхлорида и метилметакрилата. Во всех случаях наблюдалось образование химических связей между диспергированной массой и органическими добавками [79]  [c.344]

    Для инициирования полимеризации виниловых мономеров в латексе натурального каучука были использованы персульфаты, пербораты, перекись водорода, алкилгидроперекиси, перекись бензоила, входящие в состав] окислительно-восстановительных систем органические гидроперекиси, диазоаминобензол, диазотиоэфиры и соли диазония. Наиболее пригодными оказались гидроперекиси в составе окислительно-восстановительных систем и гидроперекиси, активированные полиэтиленполиами-ном, поскольку при их применении не требуется удаления аммиака из латекса и они не ингибируются кислородом. [c.276]

    Так как в процессе эмульсионной полимеризации pH снижается, то выгодно создать в эмульсии буферную смесь. Причины, вызывающие изменения pH, очень сложны. Первоначально pH соответствует щелочной среде из-за гидролиза мыла, но этот процесс обратим при значительной степени превращения вследствие абсорбции эмульгатора на поверхности полимера. Большинство катализаторов дает побочные продукты кислого характера, что также понижает pH. Фрилинг и Харрингтон [144] изучили довольно сложное изменение pH при добавлении нейтральной органической жидкости к раствору мыла. Первоначально pH падает вследствие удаления мыла за счеч включения его в мицеллы с солюбилизирующей органической жидкостью (нанример мономером). С появлением ясно выраженной масляной фазы pH возрастает, так как при растворении жирной кислоты в органической фазе смещается равновесие гидролиза. При полимеризации органическая фаза уменьшается и в конце концов исчезает, следовательно, pH снижается. Общее изменение pH будет зависеть от того, насколько существенны в данном случаеразличные факторы. [c.223]

    Помимо соединений типа перекисей (т. е. источников свободных радикалов), имеются еще две группы соединений, легко осуществляющих полимеризацию, — катализаторы Фриделя-Кра-фтса, которые проводят не только алкилирование и изомери-т зацию, но являются также эффективными катализаторами полимеризации, и щелочные металлы или их органические производные. В последние годы эти две категории инициаторов стали объектом многочисленных исследований но механизму и кинетике. По этому вопросу было опубликовано несколько обзоров [202—205]. Наиболее интересным методом, демонстрирующим существенные различия в действии различных катализаторов и существование в основном трех различных механизмов реакции, является сополимеризация [206] эквимолекулярной смеси стирола и метилметакрилата. Результаты опытов такого типа приведены в табл. 23, из которой видно, что, когда применяются кислые катализаторы, первоначально образуется почти чистый полистирол, тогда как щелочные металлы производят почти чистый полиметилметакрилат. Катализаторы, обычно считающиеся источниками свободных радикалов, образуют сополимеры в отношении 50 50. Таким образом, подобные опыты служат превосходным критерием механизма полимеризации. Однако при гетерогенных реакциях такой метод, возможно, не приведет к успеху, если геометрические ограничения каталитической поверхности благоприятствуют полимеризации одного мономера в большей степени, чем другого. [c.245]

    Полимерь], содержащие органические соединения олова, образуются при полимеризации оловоорганических оксидов или гидроксидов с эфирами акриловой кислоты или их смесями с органическими мономерами. В качестве мономеров для получения попиакрилов можно использовать акриловую или метакриновую кислоту. Для того чтобы ввести органическое соединение с оловом в полиакрил, кислотная группа этерефицируется с оловоорганическим соединением с последующей полимеризацией мономеров кислоты. [c.124]

    Такие антиоксиданты , как гидрохинон, пирогаллол и наф-тиламины, легко отдают водород и мгновенно соединяются со свободными радикалами. Поэтому даже следы этих веществ препятствуют полимеризации олефинов, разрущая активные центры цепного процесса. На практике они постоянно применяются для стабилизации органических мономеров, обеспечивая тем самым контро ль в процессе синтеза. [c.216]

    Согласно Коршаку и Петрову, легкость полимеризации винильных и аллильных соединений возрастает в порядке 5п, Ое, С и 51 [194]. Это полностью согласуется с данными Нолтса, Бад-динга и Ван-дер-Керка [186], изучавшими полимеризацию п-(СНз)зМСбН4СН=СН2 в присутствии азо-быс-изобутиронит-рила как катализатора (М = С, 81, Ое, 5п и РЬ). Авторы обнаружили достаточно заметное увеличение скорости полимеризации в ряду соединений 5п, Ое, С, 51 и РЬ. Высокую скорость реакции в случае свинцовоорганического соединения связывают со склонностью последнего к образованию свободных радикалов. Это предположение подтверждается высокой степенью сшивания цепей, наблюдаемой в свинцовоорганическом полимере. Объяснить необычайно высокую реакционную способность кремний-органического мономера каким-либо аналогичным образом нельзя. [c.213]

    При физическом модифицировании поверхность адсорбента покрывают небольшим количеством сильносорбируемой жидкой фазы так, чтобы для анализируемых компонентов поверхность адсорбента была недоступна, а адсорбция происходила на слое жидкой фазы (порядка емкости монослоя) [5]. Поверхность адсорбента может быть блокирована путем отложения слоя твердого тела (как органического, так и неорганического), в частности различных неорганических солей, фталоцианинов различных металлов [2]. Кроме чисто механического отложения твердых тел на поверхности осуществляют полимеризацию нанесенных мономеров с образованием плотной полимерной пленки [6]. [c.96]


Смотреть страницы где упоминается термин Полимеризация органических мономеров: [c.36]    [c.102]    [c.416]    [c.19]    [c.149]    [c.19]    [c.42]   
Смотреть главы в:

Введение в радиационную химию -> Полимеризация органических мономеров




ПОИСК





Смотрите так же термины и статьи:

Полимеризация мономеров органических на поверхности кремнезема



© 2025 chem21.info Реклама на сайте