Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тип связи и свойства веществ. Межмолекулярное взаимодействие

    Тип связи и свойства веществ. Межмолекулярное взаимодействие [c.105]

    Это объясняется тем, что свойства простых веществ не всегда однозначно определяются природой образующих их атомов, а в значительной мере зависят также от структуры, типа химической связи, межмолекулярного взаимодействия, условий образования и пр. [c.235]

    Молекулы веществ, находящиеся в твердом, жидком и газообразном состоянии, взаимодействуют друг с другом с разными по энергии силами — силы Ван-дер-Ваальса, водородная связь, химическая связь и др. Такое взаимодействие определяет конденсированное состояние вещества. Эти силы приводят к появлению в жидкостях и газах сольватов и ассоциатов, обусловливают диссоциацию молекул и других частиц в любых агрегатных состояниях вещества, они же характеризуют появление структуры (полиэдры, ансамбли полиэдров или кластеры) в веществе в разных его агрегатных состояниях, определяя аморфную или кристаллическую структуру. Межмолекулярное взаимодействие частиц в системе приводит к отклонению их свойств от идеальных. Такие системы называют неидеальными или реальными. Свойства индивидуальных реальных систем (веществ в чистом виде) могут быть рассчитаны с помощью уравнений состояния вещества. Этих уравнений в литературе приведено несколько сотен. Свойства же смесей расчету пй уравнениям состоянию не поддаются. Это определяется сложностью изменения свойств смесей с изменением их состава. [c.220]


    Спектры растворов, жидкостей и кристаллов могут служить важным источником сведений о межмолекулярном взаимодействии, о его тонких деталях. Сравнивая величину низкочастотного сдвига при растворении вещества в серии растворителей, можно определить, как изменяется энергия межмолекулярного взаимодействия веществ с растворителем, электронно-донорные свойства растворителей и др. Особое значение при изучении межмолекулярного взаимодействия приобрела спектроскопия водородной связи. [c.178]

    Другие уравнения состояния получены в большей или меньшей степени на эмпирической основе, поэтому их параметры связаны очень мало или совсем не связаны со свойствами молекул. Таким образом, экстраполяция по этим уравнениям весьма рискованна, ибо они надежно описывают только ту область параметров состояния, для которой имеются экспериментальные данные. Если экстраполяция необходима, то ее лучше осуществлять с помощью уравнения, имеющего теоретическую основу. (Это утверждение не следует рассматривать как разрешение на произвольную экстраполяцию для вириального уравнения. При любой экстраполяции необходимо соблюдать большую осторожность.) Однако основное достоинство вириального уравнения состояния заключается не в возможности более обоснованной экстраполяции, а в его теоретически аргументированной связи с межмолекулярными взаимодействиями, в частности с силами, действующими между молекулами. Как известно, многие макроскопические свойства вещества в большой степени зависят от межмолекулярных сил. Для некоторых из них, например транспортных свойств разреженных газов, вириальных коэффициентов и свойств простых кристаллов, функциональная связь между межмолекулярными силами и указанными свойствами вполне понятна. Это позволяет на основании экспериментально определенных свойств рассчитывать межмолекулярные силы, и, наоборот, зная последние, рассчитывать макроскопические свойства. Однако теория уравнения состояния и транспортных свойств сжатых газов, а также свойств жидкостей и твердых веществ сложной структуры находится на начальной стадии развития, и успех в этой области зависит от нашего знания природы межмолекулярных сил, основанного на экспериментальных данных по макроскопическим свойствам. [c.9]

    Приводимые ниже данные относятся только к растворимости парафина, находящегося в крупнокристаллическом состоянии. Вследствие неоднородности парафина и множества входящих в его состав компонентов понятие о его растворимости является до некоторой степени относительным, поскольку насыщенный раствор наиболее высокоплавких парафинов будет ненасыщенным для находящихся в растворе легкоплавких компонентов.. Кроме того, легкоплавкие компоненты парафина являются растворителем по отношению к высокоплавким компонентам. Растворимость объясняется [41,42] взаимным притяжением молекул растворителя и растворяемого вещества. Современная молекулярная теория растворов базируется на том, что свойства растворов определяются в основном межмолекулярным взаимодействием, относительными размерами, формой молекул компонентов и их стремлением к смешению, которое сопровождается ростом энтропии [43]. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. Силы Ван-дер-Ваальса слагаются из следующих трех составляющих. [c.69]


    Описанная структура полимера ведет себя подобно коагуляционной структуре. Сходство в поведении этих структур заключается в том, что для них характерны химические связи внутри частиц и на порядок меньше межчастичные взаимодействия. С увеличением полярности макромолекул уменьшается их гибкость, а для межмолекулярных взаимодействий становятся характерными все три типа сил Ван-дер-Ваальса. Наличие таких функциональных групп, как 0Н, —СООН, —ЫНг, обусловливает возникновение более прочных водородных связей. С ростом межмолекулярного притяжения полимер превращается в более твердое, менее эластичное и даже хрупкое вещество, теряющее плавкость и растворимость. Полимеры с химическими связями между макромолекулам (пространственные) нерастворимы и неплавки при нагревании. По свойствам они соответствуют конденсационным структурам. [c.391]

    Селективность двух несмешивающихся фаз можно оценить по двум критериям параметру растворимости Гильдебранда [43] и критической температуре растворения [44]. Эти свойства наряду с коэффициентами активности и полярностью молекул характеризуют межмолекулярное взаимодействие. Первый критерий определяется как корень квадратный из энергии испарения 1 см чистого вещества. Критическая температура растворения Гкр является максимальной температурой бинарной жидкой системы, при которой две несмешивающиеся жидкости могут находиться в равновесии. Критическая температура растворения и параметр растворимости связаны выражением [c.214]

    Молекулы вещества, расположенные внутри фазы, отличаются по энергетическому состоянию от молекул, находящихся на границе раздела фаз. Во внутренних слоях фазы силы взаимного притяжения для каждой молекулы в среднем по времени одинаковы во всех направлениях, полностью скомпенсированы и равнодействующая их равна нулю. Произвольное перемещение молекулы жидкости или газа внутри фазы в любом направлении не связано с выделением или поглощением энергии. Иначе обстоит дело с молекулами, находящимися на границе раздела фаз. Они испытывают неодинаковое влияние сил межмолекулярного взаимодействия со стороны каждой из соседних фаз, поскольку их физические свойства (плотность, поляризуемость и т. д.) различны. [c.187]

    В реальных веществах ядерный резонанс наблюдается не строго на одной частоте, а в определенном интервале частот, что связано с взаимным влиянием магнитных моментов ядер и орбитальных электронов. Поэтому спектры ЯМР несут в себе информацию не только о свойствах ядер, но и их окружения, т. е. о строении и межатомном (межмолекулярном) взаимодействии в веществе, что и объясняет интерес химиков к этим спектрам. [c.216]

    Без знания строения атомов и молекул, природы химической связи и межмолекулярного взаимодействия сделать это невозможно. Однако эти сведения лишь необходимы, но не достаточны. Ведь свойства веществ познаются прежде всего во взаимодействии с другими веществами. Поэтому, приступая к изучению химии, нужно знать общие закономерности протекания химических реакций и сопровождающих их процессов. [c.3]

    Атом водорода в полученном димере связан с двумя атомами фтора одной ковалентной связью и одной водородной связью. Энергия водородной связи составляет 8—40 кДж/моль, т. е. обычно больше энергии межмолекулярного взаимодействия, но значительно меньше энергии ковалентной связи. Водородная связь имеет весьма широкое распространение. Она встречается в неорганических и органических соединениях. Водородная связь иногда определяет структуру вещества и заметно влияет на физико-химические свойства. Важную роль играет водородная связь в процессах кристаллизации и растворения веществ, образования кристаллогидратов, ассоциации молекул и др. Водородная связь обусловливает отклонение свойств некоторых соединений от свойств их атомов. Примером полимерных ассоциатов может служить фторид водорода  [c.68]

    Многие свойства полимеров (высокая вязкость растворов, растворение с предварительным набуханием, механические свойства, нелетучесть, неспособность переходить в парообразное состояние и т. д.) тесно связаны с большой энергией межмолекулярного взаимодействия. Именно резко возрастающая роль межмолекулярных сил является одной из важнейших особенностей полимеров, качественно отличающей их от низкомолекулярных соединений. Высокомолекулярные соединения широко распространены в природе — это животные и растительные белки, углеводы (целлюлоза и крахмал), натуральный каучук, смолы и др. С каждым годом растет число полимеров, создаваемых синтетически. Сегодня химия в состоянии не только воспроизводить многие природные полимеры, как, например, натуральный каучук, некоторые белки, но и создавать массу новых синтетических полимерных веществ, которых в природе не существует. В качестве примера можно привести элементорганические полимеры, которые обладают комплексом свойств, присущих как органическим, так и неорганическим полимерам. [c.327]


    Отличительной особенностью их, как было отмечено ранее, является межмолекулярное взаимодействие частиц растворенного вещества и молекул растворителя. В связи с этим для таких растворов резкое отличие в поведении частиц растворенного вещества и растворителя отсутствует. Образование растворов неэлектролитов, как правило, не сопровождается существенными химическими изменениями. Поэтому изучение их свойств Послужило основой для создания физической теории растворов, в которой главную роль играла не природа растворенных частиц, а их количество. [c.213]

    Физически обоснованными реакциями кислотно-основного взаимодействия являются реакции переноса протонов с изменением кислотных (основных) свойств веществ. Их протекание обусловлено межмолекулярным или внутримолекулярным переносом протона. При этом протон может быть либо локализован (наиболее частый случай), либо делокализован в пределах атомно-молекулярной частицы (более редкий случай делокализованной много-центровой связи), или его состояние может быть описано их совокупностью (конденсированные состояния). [c.288]

    Межмолекулярные связи. При изучении свойств различных веществ приходится учитывать не только взаимодействие атомов, ведущее к образованию молекул, но и межмолекулярные взаимодействия. Силы межмолекулярного взаимодействия проявляются в таких процессах, как плавление и кристаллизация, испарение и конденсация, адсорбция, растворение. [c.32]

    Большинство простых веществ существует не в виде молекул, а представляет собой более сложные макроскопические образования с немолекулярной структурой. Характерной особенностью этого состояния является агрегация большого числа атомов (порядка постоянной Авогадро) в едином ансамбле, в результате чего и возникают новые свойства, о которых нельзя говорить применительно к молекулам. Так, молекулярный пар натрия Каз (г), существующий при высоких температурах, принципиально отличается от одноатомного пара тем, что здесь возникает ковалентная <т<,- -связь (как в молекуле Из). В силу насыщенности ковалентной связи в молекуле Ка2 (г) и отсутствия межмолекулярного взаимодействия натрий в парообразном состоянии обладает диамагнетизмом (в отличие от одноатомного пара) и является диэлектриком. В то же время при конденсации пара натрия в жидкость и ее кристаллизации возникает простое вещество с металлической связью и всеми характерными для металла свойствами парамагнетизмом, высокой электрической проводимостью, пластичностью и т.п. [c.240]

    Давление насыщенных паров (ДНП) является одним из фундаментальных свойств химических веществ и важной термодинамической характеристикой равновесия жидкость - пар. ДНП, что теоретически исключительно важно, более информативно характеризует физико-химическую сущность парожидкостного состояния веществ и энергетику межмолекулярного взаимодействия в них. Оно связано со многими другими ФХС, в частности, с теплотой парообразования, широко используется в химической технологии для массовых инженерных расчетов реакторов и тепло-массообменных аппаратов. [c.74]

    Современная теория вулканизации, получившая всеобщее признание, объясняет происходящее при вулканизации изменение свойств каучука образованием сложной пространственной сетчатой структуры вулканизата. Под влиянием нагревания, а также воздействия серы, кислорода или других структурирующих веществ происходит усложнение молекулярной структуры каучука в результате образования поперечных химических связей между молекулами, т. е. структурирование каучука. Это могут быть химические связи посредством атомов серы, кислорода или валентные химические связи атомов углерода отдельных цепей. Кроме того, в результате вулканизации увеличивается межмолекулярное взаимодействие. [c.77]

    Периодическая зависимость свойств от атомного номера элемента у простых веществ проявляется сложнее, чем у свободных атомов. Это объясняется тем, что свойства простых веществ не всегда однозначно определяются природой образующих их атомов, а в значительной мере зависят также от структуры, типа химической связи, межмолекулярного взаимодействия, условий образования и пр. [c.257]

    Теперь становится понятным, почему частицы, скажем, гидрофильного кварца при наличии поверхностноактивных веществ будут медленнее оседать в органическом связующем их поверхность перестала быть гидрофильной, она стала ближе по свойствам к органическому связующему. Между хвостами молекул и этим связующим устанавливается межмолекулярное взаимодействие, силы которого и удерживают твердые частицы во взвешенном состоянии. [c.21]

    На рис. 8.22 показано, что при сопоставлении температур плавления гидридов элементов VI группы у воды обнаруживаются аномальные свойства. При наличии приблизительно однотипных сил межмолекулярного взаимодействия температуры плавления веществ возрастают по мере увеличения их молекулярного веса. Это и наблюдается для гидридов трех более тяжелых элементов VI группы. Однако температура плавления воды приблизительно на 200 превышает ожидаемую на основании ее молекулярного веса. Химики с другой планеты, где нет воды, вероятно, должны были бы предположить, что температура плавления воды равна приблизительно -100° С, что на Земле нет озер, рек и океанов и что вода на Земле существует только в газообразном состоянии даже на Северном и Южном полюсах В отличие от воды сероводород, а также НгЗе и НгТе не способны образовывать сильные межмолекулярные связи. Водородные связи значительной прочности обнаруживаются только в веществах, молекулы которых содержат наиболее электроотрицательные элементы, такие, как фтор, кислород и азот. На строение веществ, подобных воде, с высокополярными связями Н — X, например аммиака и фтористого водорода, также оказывают большое влияние водородные связи, и многие свойства таких веществ в твердом и жидком состояниях обусловлены наличием диполь-дипольных взаимодействий между их молекулами. [c.144]

    Полимерам присуще резкое различие характера связей между звеньями в цепях и между цепями. Как и у низкомолекулярных соединений, в полимерах различают два типа взаимодействий сильное химическое взаимодействие между атомами в звеньях и между звеньями в цепях - ковалентные связи слабое нехимическое взаимодействие между участками цепи (внутримолекулярное) и между цепями (межмолекулярное). По сравнению с химическими связями расстояние, на котором проявляется нехимическое взаимодействие, в два - три раза больше, а его энергия на один -два порядка меньше. Однако у полимеров при высокой молекулярной мае--се (большом числе звеньев) межмолекулярное взаимодействие приобретает особо важную роль и в значительной степени обусловливает специфический комплекс свойств, характерный для полимерного состояния вещества. [c.118]

    Вследствие сложной Зр-гибридизации 2р- и 25юрбитапей кислорода с участием вакантных юрбиталей атомов металлов образуются дополнительные донорно-акцепторные - р )-связи. Предложены классификации [82, 83] неорганических стеклообразных веществ. Однако существующие систематики предназначены для обеспечения технологических нужд и не вскрывают особенностей химического строения и, свойств различных типов стекол. Поэтому целесообразно рассмотреть другой вариант классификации неорганических стеклообразных веществ. Ввиду того, что практически все элементы Периодической системы Д.И. Менделеева могут входить в структуру и состав стекол (отсюда трудность общей систематизации), мы при систематизации, как было изложено выше, придерживались точки зрения А. Винтер [84] об определяющей роли р-электронов в образовании каркасов стеклообра-зователей. В основу классификации положено различие в электроотрицательности атомов внутри стеклообразующей сетки (цепей), В соответствии с известными представлениями Полинга относительно зависимости степени ковалентности связи от разности электроотрицательностей атомов определена ковалентность связи и оцениваются межмолекулярные взаимодействия. [c.6]

    При образовании раствора в общем случае происходит изменение свойств и растворителя, и растворенного вещества (растворенных веществ). Это обусловлено тем, что в растворе действуют силы, вызывающие и межмолекулярное взаимодействие (электростатическое, ван-дер-ваальсовы силы), ионно-дипольное взаимодействие, проявляющиеся на сравнительно значительных расстояниях, и специфическое взаимодействие (донорно-акцепторное, водородная связь), сказывающееся на сравнительно небольших расстояниях. Первое является общим для всех веществ оно связано с совокупностью физических процессов. Второе связано с перестройкой электронных оболочек молекул, атомов и ионов оно обусловлено химическими изменениями. [c.133]

    Структура граничных слоев при прочих равных условиях обусловлена физико-химическими свойствами образующих ее веществ. По А. И. Китайгородскому, в межмолекулярных взаимодействиях основную роль играет форма молекул, иначе говоря, их локальные микрополя, а не результирующие силовые направления. Межмолекулярные силы в полимолекулярных граничных слоях в большинстве случаев имеют физическую природу. Среди межмолекулярных связей физической природы особый интерес представляют водородные связи, энергия которых сравнительно велика ( 10 ккал/моль). Этот вид связи составляет одну из неотъемлемых характеристик межмолекулярного взаимодействия молекул углеводородов. Такая связь наблюдается во всех агрегатных состояниях она определяет многочисленные виды ассоциаций молекул. [c.68]

    Содер>кание дисциплины Задача flannofi дисциплины - освоение студентами теоретических основ химии и химии элементов и их соединение . В связи с этим программа состоит из двух разделов. Первы содержит основы теории, без которых невозможно понимание свойств и превращений- неорганических веществ современные представления о природе химической связи, строении ве-вещства и межмолекулярном взаимодействии общие закономерности протекания химических процессов изгалаются с привлечением химической термодинамики и кинетики. Второй раздел поввящен систематическому обзору свойств химических элементов и их соединений и включает общую характеристику элементов, способы получения и свойства элементарных веществ, а также некото Я1х соединений, применяемых в различных отраслях народного хозяйства, особенно в нефтеперерабатывающей промышленности. [c.178]

    Лекция 7. Основные положения метода молекулярных орбиталей (МО). Энергетические диаграммы распределения электронной плотности в молекулах. Применение метода МО к молекулам, образованным из атомов элементов первого и второго периодов. Объяснение магнитных свойств и возможности существования двухатомных частиц с помощью метода МО. Лекция 6. Межмолекулярное взаимодействие. Природа межмолекулярных сил. Ориентационное, индуктивное, дисперсионное взаимодействие. Водородная связь. Влияние водородной связи на свойства вешества. Конденсированное состояние вещества. Кристаллическое состояние. Кристаллографические классы и втя системы.. Ьоморфизм и полимор( )Изм. Ионная, атомная и молеклярная, металлическая и кристаллическая рещетки. [c.179]

    Далънодействующая хгшическая связь условно может быть разделена на два типа универсальную межмолекулярную связь и специфическую межмолеку-лярную связь. Универсальная связь проявляется при взаимодействии между любыми молекулами, а специфическая — между теми, у которых имеются соответствующие друг другу участки. Такие молекулы, которые соответствуют друг другу как к каждому замку должен быть свой ключ , называются комплементарными. Подробнее с проявлениями различных видов химической связи мы познакомимся ниже при обсуждении конкретных вопросов строения и свойств вещества. Примеры некоторых видов химической связи в изложенной классификации приведены на рис. 4.14. [c.115]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Для хроматографии молекул на основании их химического и геометрического строения и возможных изменений конформации весьма важно создание на поверхности адсорбентов рецепторных мест фиксации, способных проявлять различные виды межмолекулярных взаимодействий, (табл. 1.1). В лекции 1 показано, что для разделения множества структурных изомеров достаточно применить неспецифические атомарные адсорбенты с плоской поверхностью. В лекции 2 приведены примеры хроматографии близких по геометрии полярных молещул при дополнительном воздействии на такие молекулы электростатического поля ионных адсорбентов. Б лекциях 3 и 4 рассмотрено использование образования между молекулами и поверхностными соединениями водородных связей. В лекции 4 показано также, что адсорбенту можно придать электроноакцепторные свойства путем отложения на его поверхности адсорбционных слоев модифицирующих веществ, обладающих этими свойствами. Это улучшает разделение электронодонорных молекул. Однако адсорбционные модифицир ующие слои часто оказываются недостаточно термически стойкими для использования в газовой хроматографии при высоких температурах или нестойкими к воздействию растворителей (элюентов) в жидкостной хроматографии. Поэтому весьма важно использовать для связи модифицирующего вещества с поверхностью адсорбента также и более прочные химические связи. При этом надо стремиться достичь геометрического и химического соответствия поверхностных соединений и тех или [c.89]

    Свойства полимеров определяются не только гибкостью макромолекул, но и их взаимным расположением, т. е. структурой. Для полимерных веществ с линейными и разветвленными макромолекулами характерны два типа связей. Между атомами в цепных молекулах действуют прочные ковалентные химические связи длиной 0,1 0,15 нм. Взаимодействие между цепными молекулами осуществляется за счет сил Ван-дер-Ваальса, проявляющихся на расстоянии 0,3 0,4 нм. Иногда между макромолекулами возникают и водородные связи. Энергия межмолекулярного взаимодействия на 1—2 порядка меньше энергии химической связи. Например, энергия химической связи С—Н (в углеводородах) составляет 415, С—С-связи — 332 кДж/моль, а энергия взаимодействия между молекулами углеводородов — приблизительно 4,18кДжна группу СНз.При увеличении молекулярной массы вещества (например, у полимеров) суммарный эффект межмолекулярных сил резко возрастает. [c.327]

    Активность растворителя и растворениого вещества в растворах нелетучих веществ. Из предыдущего видно, что термодинамические свойства предельно разбавленных и идеальных растворов определяются только концентрацией. Но в реальных растворах свойства зависят также и от природы компонентов, от характера и интенсивности межмолекулярного взаимодействия в растворе. Результат этого взаимодействия формально равнозначен некоторому изменению концентрации веществ, что приводит к несовпадению свойств, рассчитанных по уравнениям Генри, Вант-Гоффа, Рауля, с фактически наблюдаемыми. Использование термодинамической активности вместо концентрации позволяет объединить все отклонения от идеального поведения и связать разные свойства растворов друг с другом на базе уравнений для идеальных и предельно разбавленных растворов. Но в таком случае важнейшей задачей термодинамики реальных растворов становится вычисление активности или коэффициента активности. Так как теоретические расчеты активности возможны не всегда, то [c.210]

    Межмоле кулярные связи. При изучении свойств различных веществ приходится учитывать не только взаимодействие атэмов, ведущее к образованию молекул, но и межмолекулярные взаимодействия. [c.50]

    Обычно же энергия водородЪой связи лежит в пределах 5— 25 кДж/моль, т. е. она больше энергии межмолекулярного взаимодействия, но значительно меньше энергии ковалентной связи. Водородная связь имеет весьма широкое распространение. Она встречается в неорганических и органических соединениях. Водородная связь иногда определяет структуру вещества и заметно влияет на физико-химические свойства. Важную роль играет водородная связь в процессах кристаллизации и растворения веществ, образования кристаллогидратов, ассоциации молекул и др. Примером полимерных ассоциатов может служить фторид водорода  [c.59]

    Все благородные газы и многие молекулярные вещества с простыми симметричными молекулами кристаллизуются в молекулярных решетках с плотнейшей упаковкой. Это указывает на то, что для межмолекулярпых связей характерны ненасыщенность и нена-правленность. В молекулярных кристаллах из несимметричных молекул структура может быть более рыхлой (приспособленной к асимметрии молекул), но все же определяющим здесь выступает геометрический фактор, а не природа составляющих частиц. Структуры молекулярных кристаллов относятся к гетеродеслшческим в них сосуществуют два типа связи — внутри молекул и между молекулами. Связи, действующие между молекулами, намного слабее, чем межатомные внутри молекул. Поэтому именно мел<мо-лекулярные силы в первую очередь определяют многие физические свойства веществ (температуры плавления, твердость, плотность, тепловое расширение и др.). Низкие температуры плавления, высокая летучесть, малая твердость, незначительная плотность и высокий коэффициент теплового расширения — все это свидетельствует о слабости ван-дер-ваальсовой связи. Оценку величины энергии межмолекулярного взаимодействия можно получить, исходя пз экспериментальных данных по теплотам сублимации молекулярных [c.136]

    Таким образом, мы убеждаемся, что модель неполярной ковалентной связи правильно описывает лишь небольшое число реальных связей, но использование этой модели с необходимыми видоизменениями значительно удобнее, чем введение новой модели для каждой реальной связи. Применяя термины ионная и ковалентная к конкретным связям, следует помнить, что при этом имеется в виду только преобладающий характер этой связи. Вместе с тем при рассмотрении большинства ковалентных соединений не следует упускать из виду наличие у них полярных связей, которые могут обусловливать появление межмолекулярных сил электростатического взаимодействия, оказывающих большое влияние на физические и хигу1ические свойства веществ. Этот вопрос будет более подробно рассмотрен в следующей главе, а также в дальнейших главах, посвященных описательной химии элементов. [c.126]

    Теории плавления в настоящее время нет. Наиболее существенными кажутся две задачи в будущей теории плавления. Первая задача связана с чисто статистическим рассмотрением процесса плавления как перехода от порядка к беспорядку в системах, приблизительно одинаковых по величине энергий межмолекулярного взаимодействия с ростом темпе-туры (р = сопз1). Вторая задача состоит в осознании того, что обусловливает этот переход и почему имеют место две формы конденсированного состояния при близкой плостности вещества с резко различными кинетическими свойствами. [c.102]

    Этот закон (принцип) основан на допущении, что те свойства жидкостей и газов, которые определяются неспецифическими межмолекулярными взаимодействиями, для различных веществ одинаково связаны с критическими параметрами. Принцип важен для корреляции р— V— Т-свойств, поскольку предполагает, что функция, связывающая приведенные значения д, [влеяия, объема и температуры, является одинаковой для всех веществ. [c.26]

    В теоретическом обосновании вириального уравнения состоит его главнее преимущество перед другими уравнениями состояния. Так, большое практическое значение имеет возможность связать через вириальные коэффициенты макро- и микросвойства фазы экспериментальные данные о вириальных коэффициентах позволяют получить сведения о потенциалах межмолекулярного взаимодействия, так же как молекулярные характеристики веществ могут служить для оценки величин вириальных коэффициентов, а с ними и объемных свойств газов. Последнее реализуется, в частности, в некоторых корреляциях для второго вириального коэффициента, нашедших применение при расчетах парожидкостного равновесия. Выгодно отличает вириальное уравнение наличие строгого соотношения для смесей (УП.58) и (УП.59), а также имеющаяся определенность относительно области применимости уравнения, его экстраполяционных возможностей. [c.180]

    Используя методы АГК, Крамер показал, что при помощи только двух характеризующих молекулу растворителя параметров можно объяснить более 95% диапазона изменения шести физических свойств (коэффициента активности, коэффициента распределения, 7 кип, молярной рефракции, молярного объема и молярной энтальпии испарения) 114 чистых жидкостей [139], Эти два параметра связаны с объемом и когезионной способностью отдельных молекул растворителя, между которыми осуществляются лишь слабые неспецифичесиие межмолекулярные взаимодействия. В свою очередь последние близки к взаимодействиям растворителя и растворенного вещества в отсутствие специфических сильных взаимодействий. С помощью предложенных параметров удалось с поразительной точностью предсказать 18 стандартных физических параметров 139 других жидкостей различной химической природы [139]. [c.120]


Смотреть страницы где упоминается термин Тип связи и свойства веществ. Межмолекулярное взаимодействие: [c.115]    [c.258]    [c.342]    [c.100]    [c.313]   
Смотреть главы в:

Неорганическая химия -> Тип связи и свойства веществ. Межмолекулярное взаимодействие




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Межмолекулярные

Свойства веществ



© 2025 chem21.info Реклама на сайте