Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение и химические реакции группы

    Отдельные группы реакций разбивают на подгруппы по виду кинетического уравнения, описывающего скорость процесса, по порядку и молекулярности реакции и по некоторым другим признакам. В качестве кинетического критерия реакционной способности химической системы можно было бы взять скорость реакции. Учитывая, что скорость реакции зависит от концентрации реагирующих веществ [см. уравнение (193.1)], разумно выбрать какое-то стандартное состояние по концентрациям реагирующих веществ. В качестве такого стандартного состояния принимают состояние системы, когда концентрации реагирующих веществ Сь Са,. .., С равны единице. При этом скорость реакции численно равна константе скорости реакции к. Следовательно, в качестве кинетического критерия реакционной способности системы в направлении определенной реакции при концентрациях реагирующих веществ, равных единице, можно принять константу скорости этой реакции. Последняя определяется предэкспо-ненциальным множителем А и энергией активации Е . Теория кинетики химических реакций должна раскрывать физическую сущность Л и и закономерности, определяющие влияние различных факторов — температуры, среды, катализатора, строения молекул и др., на Л и 2 следовательно, и на общую скорость процесса. Зная закономерности влияния различных факторов на Л и реакций, можно синтезировать эффективные катализаторы и создавать условия, при которых реакция пойдет в нужном направлении с высокими скоростями. [c.532]


    Полимераналогичные превращения — это химические реакции боковых (в основном функциональных) групп или атомов основной цепи с низкомолекулярным соединением, протекающие без разрыва химических связей в макромолекуле и не приводящие к изменению строения ее скелета. [c.58]

    Высокую прочность, эластичность, хорошее сопротивление раздиру, высокие динамические свойства этих вулканизатов сразу связали (Браун, 1955 г.) с ионным характером возникающих вулканизационных связей, так как сшивание по карбоксильным группам с образованием ковалентных связей приводит к получению вулканизатов с низкими физико-механическими свойствами, характерными для обычных ненаполненных вулканизатов каучуков нерегулярного строения. Химическая реакция между оксидами металлов и карбоксильными группами была доказана различными методами и привела вначале к представлению о солевых поперечных связях, которые, как считали, способны легко перегруппировываться при приложении нагрузки или повышении температуры испытания. Это допущение противоречит высокому значению энергии солевых связей, поэтому предположили (Б. А. Догадкин, 1960 г.), что перегруппировка связей облегчается в результате скольжения ионизированного карбоксила по ионам металла на поверхности частиц оксида. [c.56]

    СТРОЕНИЕ И ХИМИЧЕСКИЕ РЕАКЦИИ ГРУППЫ N= =0 [c.293]

    Полимераналогичные превращения - химические реакции боковых групп или атомов основной цепи с низкомолекулярными соединениями, протекающие без разрыва химических связей между звеньями макромолекулы и не приводящие к изменению строения ее скелета. Принимается, что степень полимеризации при этом остается постоянной. [c.403]

    Продуктами термических превраш,ений нафтеновых кислот являются низкомолекулярные жирные кислоты, нафтеновые кислоты с иным углеводородным радика.чом по сравнению с исходным, а также нафтеновые, парафиновые и непредельные углеводороды [129, 130]. Вероятно, в нафтеновых кислотах под воздействием температуры и катализаторов протекают следующие химические реакции [128] 1) отщепление карбоксильной группы с образованием углекислого газа, воды и углеводородов циклического и ациклического строения 2) образование низкомолекулярных жирных кислот и нафтенов, вследствие разрыва боковых цепей. [c.55]


    Сюда относится в первую очередь изучение закономерностей протекания и равновесия отдельных классов химических реакций и связь этих закономерностей с особенностями внутреннего строения молекул отдельных групп химических соединений. В этих направлениях разграничение между физической химией, с одной стороны, и другими разделами химии, с другой стороны, практически исчезло. Именно эти направления являются важнейшими для количественного обоснования новых конкретных технологических процессов и усовершенствования используемых. [c.12]

    Многообразие органических соединений объясняется. особенностями строения углеродного атома. Изучение строения и свойств органических молекул становится возможным благодаря стройной системе классификации. Наиболее простыми представителями соединений алифатического, алициклического и ароматического рядов являются углеводороды. Замещая атомы водорода в углеводородах на другие атомы или группы атомов (функциональные группы), можно перейти к различным классам органических соединений данного ряда. Соединения, содержащие одну и ту же функциональную группу, образуют гомологический ряд, представляющий собой ряд веществ, отличающихся друг 01 друга на любое число —СН2-групп. Детальное описание химической реакции называют механизмом реакции. Механизм протекания данной реакции зависит от многих факторов, важнейшими из которых являются природа реагирующих частиц, а также тип разрыва ковалентной связи. Различают гомолитическое и гетеролитическое расщепление связи. [c.316]

    Физические и химические свойства полимеров в большой степени определяются характером функциональных групп и их свойствами, а также размером и строением макромолекул. Таким образом, для высокомолекулярных соединений характерны четыре типа химических реакций. [c.200]

    Взаимосвязь между строением исходных веществ и продуктов-, химических реакций уже давно известна химикам-органикам. Но только сравнительно недавно стало развиваться представление о механизмах химических превращений. Понимание того, каким образом осуществляются реакции и какие факторы определяют их направление, — наиболее важное достижение в органической химии, имеющее большое значение и для биологии. Хотя химия живой клетки иногда существенно отличается от обычной лабораторной реакции, нет никаких оснований считать, что типы реакций и факторы, влияющие на их протекание, различны для органической химии и биологии. Биохимики уже разгадали многие важные составляющие сложной картины процессов происходящих в клетке, и обнаруженные ими закономерности в целом хорошо согласуются с обычной реакционной способностью функциональных групп. [c.24]

    В реальных системах ни субстрат, ни фермент не являются жесткими молекулами. Поэтому при связывании претерпевают конформационные изменения, как правило, молекулы обоих реагентов, о означает, что провести четкую грань между различными механизмами катализа (рис. 17, II и III) не представляется возможным. Более того, даже обычный механизм ориентации реагирующих групп (см. 3 этой главы) в ряде случаев можно трактовать как создание некоторых напряжений в структуре молекул реагентов. Поэтому, чтобы не дать себя дезориентировать изобилием предложенных теорий и механизмов (а также поправок и уточнений к ним), важно помнить, что отличие между ними состоит лишь в используемых терминах (таких как принудительная ориентация, индуцированное соответствие, механизм дыбы , щелевой эффект и т. п.) и некоторых частных предпосылках о строении активного центра. Термодинамическая же сущность всех этих теорий одна потенциальная свободная энергия связывания (сорбции) субстрата на ферменте тратится на понижение барьера свободной энергии активации последующей химической реакции. [c.60]

    Метод ЭПР нашел широкое применение для исследования строения и превращения соединений с ненасыщенной валентностью— свободных радикалов — в ходе химических реакций, протекающих в жидких и газовых фазах. Кроме того, этот метод применяют для обнаружения и количественного определения парамагнитных веществ, например многих солей металлов переходных групп периодической системы Д. И. Менделеева. [c.65]

    Начнем с рассмотрения благородных газов (элементов нулевой группы). Эти элементы наиболее устойчивы по отношению к химическим реакциям. Атомы благородных газов обладают особым электронным строением у них те энерге- [c.110]

    Внутримолекулярные превращения — это химические реакции функциональных групп или атомов основной цепи одной и той же макромолекулы, приводящие к изменению ее строения. [c.59]

    В результате этого спектр веш,ества в инфракрасной области дает сразу много сведений о наличии в веществе различных химических групп. Например, наличие атома кислорода в органическом соединении может означать присутствие в его составе спиртовой ОН, эфирной С — О — С, альдегидной, карбоксильной группы и ряда других. Чтобы установить наличие или отсутствие каждой из этих групп химическими методами, надо провести целую серию химических реакций, типичных для группы каждого типа. С помощью ИК-спектра этот вопрос решается сразу. Поэтому ИК-спектроскопия — один из важнейших физических методов исследования строения сложных молекул. [c.156]


    Элементы основной подгруппы УП группы имеют следующее электронное строение. У атома фтора семь электронов внешнего слоя могут разместиться по четырем ячейкам единственным способом, при котором атом может присоединять еще только один электрон. У фтора при химических реакциях не происходит разъединения спаренных электронов  [c.107]

    Световое и проникающее излучения являются важными видами физических воздействий на полимеры, способных вызвать химические реакции в них. Это приводит к глубоким изменениям химического строения, а следовательно, физических и механических свойств полимеров. Одним из главных направлений химических превращений является образование свободных радикалов при разрыве связей С—С в главных цепях полимеров или отрыве водорода от углеродных атомов. Дальше развивается серия химических превращений, приводящих к деструкции, сшиванию, отщеплению боковых групп и другим химическим изменениям макромолекул полимеров. [c.242]

    Структура нашей книги проста. За небольшим по объему введением (гл. I) следует глава, в которой рассматриваются простейшие типы симметрии на примерах, взятых из химии и других областей. Затем на качественном уровне обсуждается геометрическое строение молекул (гл. 3). Положения теории групп (гл. 4) сформулированы так, чтобы стал понятен материал по колебаниям молекул (гл. 5), электронному строению (гл. 6) и химическим реакциям (гл. 7). Пространственным группам симметрии и симметрии кристаллов посвящены соответственно гл. 8 и 9. [c.9]

    Скорость химических реакций, идущих в пленках, сильно зависит от значения и знака Дф, определяемой строением и ориентацией образующих пленку молекул. Так, пленки жирных кислот, спиртов, сложных эфиров, фенолов несут положительный заряд (со стороны газовой фазы), образующийся вследствие увеличения электронной плотности вблизи атомов кислорода(полярных групп) (рис. VII. 10, а). Соли жирных кислот, наоборот, образуют отрицательно заряженные пленки (рис. VII. 10,6), так как диполь карбоксильной группы перекрывается большим по величине и противоположным по направлению диполем ионной пары. [c.100]

    Инфракрасная (ИК) спектроскопия используется в различных областях науки, и в каждой из них придается- этому термину различный смысл. Для химика-аналитика это удобный метод решения таких задач, как, например, определение пяти изомеров гексахлорциклогексана, качества парафина, смолы, полимера, эмульгатора в эмульсии для полировки, опознание страны, из которой вывезен контрабандный опиум. Физику ИК-спектроскопия представляется методом исследования энергетических уровней в полупроводниках или определения межатомных расстояний в молекулах. Она может быть также полезна и при измерении температуры пламени ракетного двигателя. Для химика-органика это метод идентификации органических соединений, позволяющий выявлять функциональные группы в молекулах и следить за ходом химических реакций. Для биолога ИК-спектроскопия - перспективный метод изучения транспорта биологически активных веществ в живой ткани, ключ к структуре многих естественных антибиотиков и путь познания строения клетки. Физикохимику метод позволяет приблизиться к пониманию механизма гетерогенного катализа и кинетики сложных реакций. Он служит дополнительным источником информации при расшифровке структуры кристаллов. В этих и многих других областях знания ИК-спектроскопия служит исследователям мощным средством изучения тайн вещества. Вероятно, справедливо будет сказать, что из всех инструментальных методов ИК-спектроскопия наиболее универсальна. [c.9]

    Спектроскопию комбинационного рассеяния широко используют в биологии, биофизике и медицине для исследования строения молекул и изучения временного хода химических реакций в биологических объектах, поскольку в сложных молекулах колебательные частоты чувствительны к их геометрической структуре и системе связей локализованных групп атомов, изменение которых может происходить в процессе химической перестройки и межмолекулярных взаимодействий. Причем такого рода исследования часто невозможно провести с помощью ИК-спектроскопии, так как большинство представляющих интерес колебательных частот попадает в область спектрального поглощения воды. [c.776]

    В тех случаях, когда растворение одного вещества в другом не сопровождается явно выраженной химической реакцией, между растворяемым веществом и растворителем происходит такое взаимодействие, которое принято называть сольватацией. Сольватация — весьма широкое понятие, и поэтому, если в качестве растворителя используется вода, взаимодействие между растворяемым веществом и растворителем называют гидратацией. Говоря о сольватации или гидратации, имеют в виду механизм растворения, при котором осуществляется сильное взаимодействие растворителя и растворенного вещества с образованием ассоциированных групп частиц таким частицам нередко можно приписать определенную формулу. Если растворителем является вода, образующиеся комплексы называют гидратами в качестве примера приведем формулы некоторых двухвалентных и трехвалентных катионов, сольватированных водой А1(Н20)е , Си(Н20) +, №(Н20) + и Се(Н20)3 +. Число молекул воды, ассоциированных с каким-либо ионом растворенного вещества, определяется, с одной стороны, размером этого попа, а с другой стороны — его атомным строением. Маленький ион может быть окружен лишь небольшим числом вплотную приблизившихся к нему молекул растворителя, однако большой ион, например Се , или Ка" , может присоединить к себе довольно много молекул растворителя. Сольва- [c.207]

    Описаше электронных характеристик молекулы предусматривает анализ структуры ее волновой функции. Последняя определяет значения различных физико-химических величин, для которых возможно сопротивление экспериментальных и теоретических значений, позволяющее установить качество найденных волновых функций. Это важно для дальнейщего теоретического изучения таких характеристик системы, о которых можно судить по имеющимся экспериментальным данным лищь косвенным путем. Прежде всего это относится к химическим реакциям, протекающим в тех или иных условиях (в газовой фазе, растворах, на границе раздела двух сред и т.д.). В подобных задачах изучение электронного строения отдельных подсистем молекул является первым этапом. В каждом конкретном случае прежде всего оценивают, какой квантово-химический метод окажется в условиях данного эксперимента достаточно информативным. Методы квантовой химии подразделяют на две основные группы неэмпирические и полуэмпирические. Имея в виду изучение начал квантовой химии, в данной главе рассматриваются лищь неэмпирические методы и близкий к ним метод псевдопотенциала. Причиной тому являются следующие соображения. В полу-эмпирических методах матрицу оператора энергии упрощают приравниванием к нулю предположительно малых матричных элементов, общее число которых достаточно большое. Возникающая отсюда ошибка может быть частично скомпенсирована введением в оставшиеся матричные элементы феноменологических параметров, т.е. полуэмпирические методы представляют собой метод эффективного оператора энергии, в качестве которого выступает матрица энергии. В остальном в полуэмпирических методах повторяется логика неэмпирических, см. [2], [23], [27], [38], [41]. [c.184]

    Строение 1 рбоксильной группы. Химические свойства. Реакции нуклеофильного замещения. Реакции восстановления, обраэс-вание амидов, декарбокв лирование, замещение в алкильном или фенильном заместителе. Отдельные дредставители и их применение. [c.191]

    В зависимости от природы функциональных групп и строения образующегося полимера в реакции поликонденсации могут быть представлены различные классы химических реакций по-лиэтерификация, полиангидридизация, полиамидирование и т. д. В табл. 5.5 приведены примеры различных типов соединений, образующихся при поликонденсации. [c.263]

    Строение продукта химической реакции может быть однозначно определено, если в исходных веществах содержатся реакционноспособные группы, избирателыю взаимодействующие в условиях реакции. Если в органическом соединении имеется одна группа, способная принимать участие в данной реакции, то такое соединение именуется монофункциональным, при двух реакционноспособных группах — бифункцио-1 альным, при трех или более реакционноспособных группах — три- или слигофункцпональным. Функциональность может быть точно установлена только применительно к данной реакции. [c.928]

    Специфическими молекулярными характеристиками полимеров являются молекулярная масса, определяющая размеры цепочек и гибкость макромолекулы, зависящая от ее строения и природы мел молекулярпоп и внутримолекулярной связи. Гибкость макромолекул — это способность полимерных цепей изменять свою конформацию в результате внутримолекулярного (мнкро-броунова) теплового дви кепия звеньев равновесная, или термодинамическая гибкость) илп же под влиянием внешних механических сил (кинетическая, или механическая гибкость). Конформация — это пространствеппое распределение атомов и атомных групп в макромолекуле, определяемое длиной соответствующих связей II значениями валентных углов такое распределение, которое может меняться без химических реакций. [c.48]

    Пиридоксальные коферменты. Несмотря на разнообразие химических реакций превращений аминокислот, катализируемых витаминами группы В, установлено, что во всех случаях участвует один и тот же кофермент— пиридоксаль-5-фосфат (кодекарбоксилаза), имеющий следующее строение  [c.155]

    Авторы другой теории (Ламри и Эйринг [45, 461, Дженкс [29. 47]) полагают, что силы сорбции используются для создания напряжений (деформаций) в молекулах реагирующих компонентов, способствующих протеканию реакции. Если же активный центр фермента жесткий, то субстрат, чтобы он мог с ним связаться, должен претерпеть некоторую деформацию (см. рис. 17, III). При этом предполагается, что активный центр устроен так, что в результате деформации молекула субстрата активируется (т. е. приобретает некоторые свойства, важные для образования переходного состояния реакции). В противном случае, когда жесткой является молекула субстрата, а конформа-ционно лабилен фермент, схему катализа можно представить так же, как для механизма индуцированного соответствия (рис. 17, II). Легче всего представить индуцированное субстратом (или, в противном случае, белком) искажение конформации, которое включает сжатие (или растяжение) связей или изменение углов между связями. В общем случае, рассматривая строение молекулы субстрата или белка в более общем виде, под напряжением структуры можно понимать также и, например, десольватацию функциональных групп, принимающих участие в химической реакции. [c.60]

    Тип II— специфические адсорбенты с локализованными на поверхности положительными зарядами или другими электроноакцепторными центрами. Это, в частности, соли, у которых положительный заряд сосредоточен в выдвинутых на поверхность катионах малого радиуса, а отрицательный распределен в больших комплексных анионах, как в BaS04 и алюмосиликатах. К этому типу относятся также адсорбенты, на поверхность которых выходят функциональные группы протонных кислот, например гидро-ксилированная поверхность кремнезема, а также адсорбенты с протонными кислотными центрами. Если на таких адсорбентах молекулы группы А в отсутствие химических реакций адсорбируются неспецифически, то молекулы групры В и группы D адсорбируются специфически. Доля вклада специфических взаимодействий в общую энергию адсорбции зависит от химического и геометрического строения молекулы и поверхности адсорбента и от температуры. [c.13]

    Среди ферментов, обнаруженных в живых организмах к настоящему времени, имеется несколько сотен деполимераз, основная функция которых заключается в деградации полимерных субстратов вплоть до мономеров или до фрагментов с относительно малой степенью полимеризации. Эти ферменты различаются по типу катализируемой ими химической реакции (гидролиз, перенос определенных химических групп, дегидратация, изомеризация и т. д.), по способу действия, специфичности к природе мономерных остатков полимера, специфичности к типу связей, соединяющих мономерные остатки и т. д. По-видимому, самая большая группа деполимераз в современной номенклатуре ферментов представлена 0-гликозидгидролазами, которые к тому же наиболее изучены по сравнению с другими ферментами с точки зрения их деполимераз-ного действия, а также строения протяженных участков их активного центра. [c.34]

    Химические и физические методы изучения Молекул. В создании правильных представлений о строении и свойствах молекул химические методы исследования играют главную роль. На основании элементарного анализа устанавливается эмпирическая формула вещества, а строение подтверждается в ходе исследования характерных для данного вещества химических реакций. Наряду с химическими методами исследования все большее значение приобретают физические методы. Их широкое использование обусловлено рядом преимуществ, например, физические методы, как правило, не вызывают каких-либо изменений в строении молекул изучаемых веществ, они значительно сокращают время и путь исследования. Когда же устанавливаются тонкие различия в структуре молекул (различия в характере связей, реакцрюнной способности групп и атомов, внутримолекулярные превращения и т. п.), физические методы оказываются незаменимыми и единственно возможными методами изучения. В химии используется большое количество физических методов, основанных на зависимости разнообразных физических (электрических, оптических, магнитных и др.) свойств от химической структуры молекул. Ниже в краткой форме рассматривается сущность ряда наиболее разработанных физических методов и их применение для изучения строения молекул. [c.36]

    Строение электронных уровней атомов этих элементов характерно для атомов металлов В-групп, достраивающих электронные подуровни предпоследних уровней. Наличие в атомах молибдена и вольфрама свободных подуровней /(4/, 5/) обусловливает их несколько особые свойства. В их подуровнях содержится по 4—5 электронов, которые могут принимать участие в химических реакциях наряду с з-элек-тронами наружного уровня. [c.100]

    В системе представлений о химическом прЬцесге центральными являются понятия реакционная способность и химическая реакция. Реакционная способность есть склонность веществ вступать с большей или меньшей скоростью в различные реакции. Для одних и тех же веществ реак-цианная способность в разных условиях различна. Качественные ряды активности (реакционной способности) составляются для таких соединений, которые либо имеют одинаковое строение (одинаковые функциональные группы), либо характеризуются изменением состава (например, последовательное замещение фрагментов соединения, замена функциональных групп или последовательное увеличение кратности связи), что ведет к постепенному изменению окислительногвосстановительных свойств. [c.52]

    Эти различия в строении обусловливают и различия в сворктиах элементов, находящихся в разных 1юдгруппах одной группы. Так, атомы элементов подгруппы галогенов содержат на внешнем урозие по семь электронов, а подгруппы марганца — по два электрона. Первые — типичные [[еметаллы, а вторые — металлы. Но есть у элементов этих подгрупп и общие свойства вступая в химические реакции, все они (за исключением фтора) могут использовать гю 7 электронов на образование химических связей. При этом атомы подгруппы марганца используют 2 электрона с внешнего и 5 электронов второго снаружи уровня. Таким образом, у элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних (вторых снаружи) уровней, в чем состоит основное различие в свойствах элементов главных и побочных подгрупп. [c.32]

    Строение атомов элементов I группы (п. 4) обусловливает электро нодо норные, т. е. металлические свойства. Сильнее металлические свойства выражены у К (пп. 6 и 8). Ион аммония в химических реакциях ведет себя аналогично ионам Na+ и К+. [c.240]

    Предсказывая возможность протекания химической реакции ио этому методу, рассматривают два момента. Во-первых, возможность перехода электрона с одной орбитали на другую. Во-вторых, исследуют нормальное колебание, определяющее возможность протекания реакции. В обоих случаях привлекаются соображения симметрии. Такой подход является радикальным и имеет что-то схожее с методами Пирсона и Вудворда - Хоффмана. Некоторые особенности этих методов включены в рассмотрение на строгой теоретико-групповой основе. Сначала в рамках полной группы симметрии всей реагирующей системы проводится анализ преобразования как молекулярных орбиталей (электронное строение), так и координат смещения (колебательный ггроцесс). Исследуются все.пути нарушения симметрии в системе и не пренебрегают ни о ним элементом симметрии, который сохраняется на пути химической реакции. В этом методе корреляционные диаграммы называются диаграммами соответствия , чтобы их не смешивать с аналогичными построениями в методе Вудворда-Хоффмана. [c.323]

    Температура, при которой начинается распад адсорбированных веществ, зависит от их строения. Так, для термической регенерации активного угля после адсорбционной очистки бытовых сточных вод достаточно нагреть адсорбент до 400—450°С [22]. Многоядерные ароматические соединения при прокаливании до 700—800 °С образуют наряду с газообразными продуктами тонкую углеродную пленку. При регенерации активного угля в присутствии водяного пара эта пленка окисляется по реакции С + 2Н2О—)-С02+2Н2, освобождая поверхность пор адсорбента. Более детальное исследование процессов, происходящих при высокотемпературной регенерации активного угля, показало, что адсорбированные соединения можно подразделить на три группы. К первой группе относятся вещества с низкой температурой кипения. При термической регенерации угля они испаряются из пор зерен адсорбента уже в начальной стадии нагрева обычно вместе с водой, оставшейся в порах отработанного активного угля после отделения его от основной массы жидкости. Молекулы веществ, объединенных во вторую группу, относительно легко разлагаются. К третьей группе отнесены многоядерные ароматические соединения (например, нафтол), лигпнн и другие высокомолекулярные природные и синтетические продукты. При нагревании до 800°С эти вещества наряду с газообразными продуктами образуют в порах угля значительный углеродистый остаток [23]. Кинетика регенерации угля, насыщенного веществами I группы, определяется кинетикой десорбции. Скорость регенерации угля, насыщенного веществами И и И групп, определяется кинетикой химических реакций распада адсорбированных веществ. [c.198]


Смотреть страницы где упоминается термин Строение и химические реакции группы: [c.186]    [c.112]    [c.285]    [c.282]    [c.288]    [c.350]    [c.158]    [c.45]   
Смотреть главы в:

Химия и технология плёнкообразующих веществ -> Строение и химические реакции группы




ПОИСК





Смотрите так же термины и статьи:

Изоцианатная группа строение и химические реакци

Строение и химические реакции эпоксидной группы

Строение химическое

Эпоксидные группы строение и химические реакци

группа реакции



© 2024 chem21.info Реклама на сайте