Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение бария и свинца

    Одним из практически важных применений реакции (13.14) является использование ее для иодометрического определения катионов, образующих малорастворимые хроматы (барий, свинец и др.). В этом методе анализируемый катион осаждают в виде хромата, который затем растворяют в кислоте  [c.282]

    Если позволяют обстоятельства, барий следует, подобно стронцию, осаждать и взвешивать в виде сульфата. Свинец, стронций и кальций мешают определению бария вследствие малой растворимости их сульфатов. Хлор, алюминий и железо, если они присутствуют в больших количествах, загрязняют осадок. Применяемые в таких случаях методы анализа приведены на стр. 694. [c.713]


    При проведении радиохимического анализа особое внимание следует обращать на содержание в пробах элементов, радиоактивные изотопы которых предстоит определять. Так, вес стабильного стронция в некоторых пробах атмосферных выпаданий может достигать 80—90 мг на пробу, вес стабильного бария 60 мг. Из этого следует, что пренебрегать весом носителя, присутствующего в самой пробе, нельзя, так как это может повести к ошибкам при определении химического выхода изотопного носителя. Величина возможной ошибки в определении выхода по носителю будет определяться содержанием элемента в пробе и количеством введенного носителя. Кроме того, необходимо принимать во внимание присутствие в пробах элементов, близких по химическим свойствам определяемым радиоэлементам. В случае определения 8г, такими элементами могут быть кальций, барий, свинец в случае определения — калий, натрий, а при определении [c.528]

    Быстрое фотометрическое определение стронция представляет большой практический интерес. Особо ценными являются реактивы, позволяющие вести это определение в сложных системах на фоне больших количеств сопутствующих элемен-10В (барий, свинец, титан, цирконий и ниобий). [c.78]

    Определению свинца любым методом мешают повышенные содержания в пробе бария, который обычно присутствует в породе в форме сернокислого бария или превращается в сернокислый барий в процессе разложения пробы. Ионы свинца, проявляя изоморфизм, способны внедряться в решетку сульфата бария и в таком состоянии не извлекаются при кислотной обработке пробы. Результаты анализа получаются заниженные. Можно уменьшить вредное влияние бария, обрабатывая при кипячении пробу соляной кислотой, содержащей избыток хлористого бария избыток ионов бария вытесняет поглощенный кристаллами сульфата бария свинец, и потери свинца при анализе сокращаются [32]. [c.66]

    Барий можно определить косвенно путем осаждения его в виде хромата с последующим растворением в кислоте (после промывки осадка водой) и сравнением интенсивности окраски анализируемого раствора с окраской кислого раствора хромата, полученного при растворении хромата бария, осажденного из раствора, содержащего известное количество бария Недостаток этого метода состоит в заметной растворимости хромата бария, особенно в присутствии посторонних солей, а также в неспецифичности реакции (вместе с барием осаждается свинец и, возможно, стронций). Для определения бария описанным методом часто необходимо предварительное отделение его и концентрирование. Для отделения бария от стронция обычно бывает достаточно двух осаждений. [c.269]


    Описан метод определения 5—150 у бария в атмосферной пыли этот метод основан на образовании смешанных кристаллов сульфата бария и перманганата калия Сульфат бария осаждают в присутствии перманганата и после разрушения избытка перманганата осадок собирают на бумаге, применяемой в капельном анализе, которая позволяет проводить осаждение на определенной поверхности. Аналогичным способом приготовляют серию стандартов. Интенсивность окраски пятен пропорциональна количеству бария в осадке. Определению бария этим методом мешает свинец, кальций, стронций и железо(1П). [c.270]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Малорастворимые хроматы образуются многими элементами, в связи с этим свинец предварительно осаждают в виде сульфата, растворяют сульфат в ацетате аммония и осаждают хромат в ацетатной среде. Барий мешает определению содержания свинца. [c.115]

    Объемным методом. Для объемного определения Ва2+ применяется обратное комплексонометрическое титрование избытка трилона Б раствором хлорида цинка в присутствии 20— 30 мл этанола при индикаторе эриохроме черном Т (см. свинец). Метод позволяет определять в среднем 96°/о Ва + при содержании 10 мг в 100 г органа со средней относительной ошибкой 3,5°/о при количествах 1 мг определяется 92% со средней относительной ошибкой 8,7°/о- Барий определяется в пределах 0,5— 100 мг. Граница определения 0,5 мг. [c.310]

    Пристли [7, с. 194] успешно титровал растворы (1/60-м.), содержащие один из следующих металлов кальций, никель, медь, кадмий, цинк, барий, серебро, кобальт (III), хром ОН), алюминий, магний, бериллий и растворы церия (IV) и олова (IV) концентрацией (1/120-м.). За исключением результатов анализа серебра, магния и бериллия точность определения содержания элементов составила 1% от теоретического. Кривые титрования имели обычную для экзотермических и эндотермических реакций форму. Теплота образования большинства хелатов относительно низкая (только. хе-лат свинец— ЕОТА имеет теплоту образования, приближающуюся к теплоте нейтрализации сильной кисло- [c.82]

    Неясный переход окраски индикатора происходит вследствие присутствия металлов, комплексы которых с примененным индикатором более прочны, чем с комплексоном И1. Определению жесткости мешают присутствие железа (10 лгг/л), кобальта (0, 1 жг/л), никеля (ОД жг/л) и меди (0,5 жг/л). Другие катионы, как, например, свинец, кадмий, марганец, цинк, барий и стронций, титруются вместе с кальцием и магнием и повышают этим расход титрованного раствора комплексона III. Для устранения мешающих влияний при титровании и для связывания некоторых катионов, вызывающих повышенный расход раствора, можно применить цианид калия, гидроксиламин солянокислый или сульфид натрия, которые прибавляют к титруемому раствору. [c.55]

    Перечисленные ниже ионы не мешают определению 0,4 мг/л нитрита по методу Райдера — Меллона при концентрациях, в 1000 раз (400 мг/л) превышающих концентрацию нитрита барий, бериллий, кальций, свинец, литий, магний, двухвалентные марганец и никель, калий, натрий, стронций, торий, уранил, цинк, арсенат, бензоат, борат, бромид, хлорид, цитрат, фторид, формиат, йодат, лактат, [c.128]

    Сульфат бария слегка растворим в растворе ацетата аммония и, кроме того, препятствует полному растворению сульфата свинца. В присутствии бария следует предварительно отделить свинец (как будет описано ниже) перед осаждением бария в виде сульфата или ще взвесить сульфаты свинца и бария вместе и ввести поправку после определения одного из них. [c.259]


    Следующий метод основан на применении закона Генри (так называемого закона распределения ) и заключается в титровании борной кислоты, экстрагированной эфиром из водного раствора, содержащего, помимо борной кислоты, соляную кислоту и спирт 1. Этот метод удобен для рядовых определений бора (в пределах 0,3—16% B Og) в стекле. Кремний, кальций, барий, магний, алюминий, натрий, литий, железо, цинк, свинец и мышьяк в количествах, обычно встречающихся в стекле, не мешают определению. В присутствии фтора получаются пониженные результаты. [c.840]

    Определению не мешают кальций, стронций, барий, магний, свинец, бериллий, марганец, никель, хром(III), алюминий, уран, висмут, лантан, мышьяк, сурьма, теллур, а также нитрат-, сульфат-, хлорид-, фторид-, бромид-, сульфит-, тиосульфат-, тетраборат-, оксалат-, цитрат- и тартрат-ионы. [c.164]

    Эти явления, определенно указывающие на большую адсорбционную способность и более низкую устойчивость стекол, содержащих только ионы типа постоянных газов (за исключением бария), и на большую химическую стойкость стекол, содержащих свинец, имеют большое значение для производства оптических стекол. К другому явлению того же рода относится изменение поверхностного натяжения, измеряемого на границах между поверхностями стекла и растворов. Подъем воды в капиллярах из обычных натриево-известковых стекол бывает особенно высок после обработки их кислотой, но сильно понижается после обработки поверхности стекла растворами солей свинца и последующего высушивания. Другими словами, введение сильно поляризующихся катионов на поверхность и асимметричная ориен- [c.229]

    Определению мешают только барий, стронций, свинец, иоди-ды, иодаты, селениты, селенаты и ионы хрома в концентрациях, превышающих 20 мг/л. Влияние высоких концентраций нитритов и хлоридов учтено в ходе анализа (см. ниже). [c.74]

    В обычном ходе анализа сера не создает затруднений, если только она не связана с такими элементами, как барий, свинец или стронций, (которые образуют нерастворимые сульфаты) или не присутствует в больших количествах совместно с кальцием. В первом случае, особенно при наличии бария, сера выпадает в осадок в виде сульфата бария вместе с кремнекислотой. Присутствие сульфата бария в остатке кремнекислоты узнается по характеру этого осадка и по размерам и внешнему виду нелетучего остатка после обработки кремнекислоты фтористоводородной и серной кислотами. Если обработка НР -Ь Н2804 опускается, то естественно результаты определения кремнекислоты будзгг повышенными. Если же эта обработка проводится, получаются пониженные результаты для кремне- кислоты, так как при том интенсивном прокаливании, которое требуется для обезвоживания кремнекислоты перед первым взвешиванием, образуется силикат бария. В результате обработки остатка фтористоводородной и серной кислотами перед вторым взвешиванием силикат бария снова переходит в сульфат. [c.793]

    Примечания. 1. Мешают определению кальций, свинец, трехвалентное железо и фосфаты (осаждается фосфат бария). Трехвалентное железо можно восстановить алюминиевым порошком или солянокислым гидроксиламином. При применении этого метода алюминий, повидимому, не мешает так сильно, как при применении метода Мучина и Поллака. [c.384]

    В обычном ходе анализа свинец или барий выделяют количественно в виде нерастворимых сульфатов. В то время как сульфат свинца по своему характеру нуждается в несколько более сложной обработке (выпаривание с серной кислотой), барий обычно определяют осаждением из горячих кислых растворов разбавленной серной кислотой. Сульфат бария является одним из наименее растворимых соединений (1 400 ООО) и поэтому пригоден для весовых определений. Осаждению сульфата бария было уделено в литературе много внимания главным образом потому, что в присутствии других катионов он часто не выделяется из растворов в чистом виде. Для объяснения наличия этих примесей были предложены различные теории окклюзия примесей осадком, образование твердых растворов, получение нерастворимых комплексных соединений и т. д. Было внесено много предложений, как выделить из раствора чистый сульфат бария (при определении бария или главным образом при определении S0 -) в присутствии различных катионов. Однако наиболее надежными остались те практические методы, в которых мешающие вещества отделяются раньше, т. е. до осаждения BaS04. [c.133]

    Присутствие в растворе цинка, кадмия и свинца мешает экстракционному разделению щ. з.э. с азо-азокси БН и их конечному определению комплексонометрическим методом. Кадмий выпадает в виде гидроокиси. и мешает экстракции, цинк сам экстрагируется, а свинец мешает комплексономет-рическому определению бария в растворе после отделения кальция и стронция [6, 7]. [c.227]

    Известны лишь единичные работы, посвященные потенциометрическому определению бария. Изучено гидролитическое осадительное титрование иона бария раствором хромат-иона [121, 122]. Метод применен к анализу смесей бария и свинца. В этом случае свинец может быть нредварительно осажден или же в одной порции раствора сначала титруют свинец раствором ферроцианида калия, а затем, при pH 4, раствором хромата титруют барий [121]. Ион бария мончет быть оттитрован раствором сульфат- тонов с использованием амальгамы бария в качестве ин- дак торного электрода [123], но точность определения Ч льно зависит от многих факторов — температуры, кис- 1ОТНости раствора, поверхности электрода и т. п. Описа- [c.17]

    Нитрат-ионы можно определять прямым спектрофотометрическим методом, измеряя оптическую плотность раствора при длине волны 302 нм. Определению мешают ионы поливалентных металлов [медь(И), свинец(Л), кобальт(П), барий(П), кальций(П) и др.]. Катионы металлов отделяют пропусканием анализируемого раствора через колонку с Н-катионитом. В результате ионного обмена 2RH + Ме + НгМе + 2Н - в раствор переходит эквивалентное количество ионов водорода, причем образовавшиеся кислоты (H I, H2SO1, H IO4) не мешают определению нитрат-ионов указанным методом. Если в растворе находились только нитраты, то после катионирования их можно определить рН-метрическим титрованием азотной кислоты. [c.323]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Применяют для определения алюминия при pH 7—8 методом обратного титрования солью цинка в присутствии пиридина. Барий, кальций и ртуть титруют при pH 10 в присутствии комплексоната магния. Кадмий и кобальт при pH 10 определяют прямым титрованием. Магний, цинк, железо (III) и титан (IV)—методом обратного титрования солью цинка в присутствии пиридина. Галлий (III) при pH 6,5—9,5 определяют обратным титрованием солью цинка. Индий определяют при pH 8—10 в присутствии сегнетовой соли марганец при pH 10 —с добавлением гидроксиламина. Никель и свинец при pH 10—методом обратного титрования солью магния или цинка. Титан (IV) определяют при pH 10 обратным титрованием солью магния или с добавлением комплексоната магния. Ванадий (V) определяют при pH 10 методом обратного титрования солью марганца. Переход окраски от винно-красной к синей. [c.279]

    Определению висм та этим методом не мешают кальций,, магний и следы стронция и бария. В присутствии заметных количеств стронция и барйя метод неприменим. Свинец мешает-определению. [c.89]

    Анализируемый азотнокислый раствор, содержащий около 0,3 г висмута и свободный от соляной и серной кислот, осторожно йрибавляют при непрерывном перемешивании к 50 мл титрованного (1%-ного) раствора арсената калия KH2ASO4, находящегося в мерной колбочке на 100 мл, разбавляют водой до метки, хорошо перемешивают и отфильтровывают осадок арсената висмута. Для определения избытка арсената к 50 мл фильтрата прибавляют 40 мл 25%-ного раствора соляной кислоты и 1 г иодистого калия и титруют через 15—20 мин. выделившийся иод 0,1 н. раствором тиосульфата (без применения раствора крахмала). Титр раствора мышьяковокислого калия устанавливают таким же образом по тиосульфату. Кроме висмута, Валентин определял аналогичным методом магний, кальций, стронций, барий, цинк, кадмий, свинец, марганец, никель, кобальт, алюминий и хром. [c.97]

    При определении сульфатов с родизонатом натрия [978, 1129] красная окраска его комплекса с барием не развивается до тех пор, пока все количество сульфат-ионов не будет осаждено в виде Ва304. Предпочтительнее обратное титрование избытка бария стандартным раствором сульфата натрия. В этом случае наблюдается четкий переход окраски из красной в желтую. Часто используется смесь родизоната с щелочным синим [726, 727] или эриохромчерным Т [1046]. Окраска растворов изменяется из сине-фиолетовой в зеленую. Определение проводят при pH 4,5—5 в 25%-ной водно-органической среде. Железо и свинец удаляют осаждением аммиаком. Родизонат натрия использован для пропитки бумаги как внешний капельный индикатор [316, 913] или как фазовый индикатор при титровании в присутствии смеси (1 5) нитробензола с изоамиловым спиртом [1111]. [c.90]

    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]

    Первые у1сазания на возможность амперометрического определения свинца при помощи хромата калия были даны в работе Ней-бергера, который описывает неопубликованные опыты Абреша. Та- КИМ образом, это определение — одно из первых в области амперометрического титрования. Впоследствии его подробно исследовали Кольтгоф и Пен . Ход определения аналогичен описанному выще в разделе Барий . Титрование можно проводить с капельным ртутным электродом без наложения внешнего напряжения в этом случае кривая будет иметь форму б, так как свинец (II) при потенциале Нас. КЭ не восстанавливается, а бихромат восстанавливается. Можно титровать и при —1,0 а, в таком случае кривая имеет форму типа в, так как восстанавливаться будут и бихромат, и свинец. В качестве фона можно использовать растворы нитрата калия или аммония, ацетатный раствор или даже слабоазотнокислые растворы (не выше 0,3 М). В последнем случае необходимо помнить, что осадок хромата свинца растворим в минеральных кислотах. [c.289]

    Осаждение Ъвинца (II) при помощи ферроцианида калия особенно удобно в тех случаях, когда наряду со свинцом в пробе присутствует барий, так как барий (II) не осаждается ферроцианидом. Сурьма также не образует осадков с ферроцианидом и потому не мешает определению свинца. Висмут, железо, цинк, кадмий, медь будут титроваться вместе со свинцом, поэтому в полиметаллических рудах необходимо прибегать к обычному выделению свинца в виде сульфата в объектах же, не содержащих указанных металлов, эта операция излишня. Ферроцианидный метод позволяет определять свинец при разбавлениях до 100 мг/л (т. е. до 2 лг в объеме 20 мл). [c.290]

    Амперометрическое определение сульфатов занимает меньше времени, чем весовой метод. Однако точность амперометрического титрования меньше, так как сернокислый свинец более растворим, чем сернокислый барий. Растворимость осадка РЬ304 можно понизить введением в раствор этилового спирта при этих условиях точка эквивалентности фиксируется лучше и ошибка определения уменьшается. Описываемый метод удобно применять для анализа различных производственных растворов, например для определения сульфатов в электролитах для никелирования, цинкования, хромирования и др. Никелевые ванны содержат помимо сернокислого никеля еще некоторое количество хлористого натрия и других солей. Чтобы предупредить осаждение хлористого свинца, [c.265]

    Свинец можно определять по аналогичной методике, но сульфат свйнца достаточно растворим (около 4 мг в 100 1мл воды при комнатной температуре), поэтому потери от растворимости более значитель-яы, чем при осаждении сульфата бария. Сульфаты стронция и кальция хотя принято считать нерастворимыми соединениями, но их растворимости ( 15 мг 5гЭ04 и 100 мг Са504 в 100 мл воды) слишком велики для получения количественных результатов. Эти соединения делаются менее растворимыми в смешанном водноспиртовом растворителе, но даже и в этом случае определения не являются вполне удовлетворительными. [c.246]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]

    Ионы алюминия, аммония, кадмия, трехвалентного хрома, двухвалентной меди, кальция, двухвалентного железа, магния, двухвалентного марганца, никеля, цинка, хлорида, бромида, ацетата, цитрата, силиката, фторида, ванадата и бората не мешают. Должны отсутствовать ионы двухвалентного олова, нитрата и арсената. Концентрация трехвалентного железа не должна превышать 200 мкг/мл. Допустимо присутствие не более 10 мкг1мл вольфрамита. Определению мешают двухвалентный свинец, трехвалентный висмут, барий и трехвалентиая сурьма вследствие образования осадка или мути в сернокислых растворах. [c.13]

    Новый спектрофотометрический метод определения фторида [44] основан на его взаимодействии с хлоранилатом тория при pH 4,5 в водном растворе, содержащем метилцеллозольв. Метилцеллозольв ускоряет взаимодействие фторида с хлоранилатом тория (образуется ТЬр2С С1204) и значительно повышает чувствительность метода. Чувствительность варьируется путем измерения оптической плотности при 540 или при 330 ммк или путем изменения концентрации метилцеллозольва в растворе. Метод был проверен на водах и катализаторах. Ионы серебра, кальция, бария, магния, натрия, калия и аммония не мешают определению. Кадмий, олово, стронций, железо, цирконий, кобальт, свинец, никель, цинк, медь и алюминий мешают, и их следует удалять. При помощи ионообменной смолы удается удалить все катионы, за исключением алюминия и циркония. Если они присутствуют, фторид выделяют дистилляцией. [c.280]

    В хроматном методе определения свинца, йероятно, наилучшим из объемных методов определения этого элемента, свинец осаждают в виде РЬСг04 в уксуснокислом растворе, осадок растворяют в соляной кислоте и полученный раствор обрабатывают иодидом калия. Выделившийся иод оттитровывают раствором тиосульфата натрия Обычно свинец сперва выделяют в виде сульфата свинца. Сурьма, висмут, серебро, барий и гель кремнекислоты-нежелательны и должны быть отделены или перед осаждением свинца в виде сульфата или последующей специальной обработкой. [c.265]

    В обычном ходе анализа свинец или барий выделяют количественно в виде нерастворимых сульфатов. В то время как сульфат свинца по своему характеру нуждается в несколько иной обработке (выпаривание с серной кислотой), барий обычно определяют осаждением из горячих кислых растворов разбавленной серной кислотой. Сульфат бария является одним из наименее растворимых соединений (1 400000) и поэтому пригоден для весовых определений. Его выде- [c.103]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]


Смотреть страницы где упоминается термин Определение бария и свинца: [c.587]    [c.152]    [c.110]    [c.893]    [c.385]    [c.10]   
Смотреть главы в:

Физико-химические методы анализа -> Определение бария и свинца




ПОИСК





Смотрите так же термины и статьи:

Определение ионов бария и свинца

Определение свинца в рудах, содержащих барий



© 2025 chem21.info Реклама на сайте