Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен продукты с серной кислотой

    За исключением этилена, реакция SO3, или дымящей серной кислоты, с олефинами идет весьма энергично с образованием продуктов окисления олефинов и SO2. С этиленом дымящая серная кислота дает ангидрид этионовой кислоты это является основной причиной того, что дымящая кислота или кислота, концентрация которой выше 98%, ие может применяться для конверсии этилена в этиловый спирт. Аигидрид этионовой кислоты можно легко получить пропусканием этилена в охлажденный раствор SO3 в жидкой двуокиси серы [3, 8]  [c.350]


    Этилен находится в больших количествах в коксовых газах и газах очистки нефтеперерабатывающих установок и выделяется оттуда путем низкотемпературной перегонки. Все увеличивающаяся потребность в этом исходном продукте тяжелого органического синтеза может быть, однако, удовлетворена лишь путем высокотемпературного пиролиза этана и других алканов при 800—900 °С. Подходящим методом получения этилена в лаборатории является дегидратация этанола под действием концентрированной серной кислоты. Первоначально при этом образуется этилсульфат, нагревание которого до 170°С дает этилен и серную кислоту. При 140 °С этилсульфат реагирует с избытком спирта с образованием диэтилового эфира, а при температурах ниже 140 образуется диэтилсульфат  [c.235]

    Использование цеолитов, содержащих катионы переходных металлов. В присутствии некоторых катализаторов алкилирование изобутана этиленом протекает специфически. Известно, что изобутан не алкилируется этиленом под действием серной кислоты из-за образования стабильных этилсульфатов. Было исследовано алкилирование изобутана этиленом в присутствии цеолитных катализаторов и найдено, что наибольщей активностью обладают цеолиты типа СаУ, содержащие катионы редкоземельных элементов и переходных металлов. В результате реакции были получены не гексаны, как это можно было ожидать, а преимущественно изомеры октана ( 5 80%). Более того, алкилат по составу был сходен с продуктом, образующимся при алкилировании изобутана н-бутиленом соотнощение триметилпентанов к диметилгексанам равнялось 7,1 в случае этилена и 7,8 в случае н бутилена. [c.85]

    Селективная химическая переработка. При химической переработке газов крекинга и пиролиза по самому существу применяемых реакций нередко с успехом можно пользоваться газовыми смесями. Так, например, примесь к этиленовым тлеводородам гомологов метана, как правило, не оказывает влияния на чистоту получаемого конечного продукта переработки, так как парафины значительно устойчивее к обычно применяемым в данном случае реагентам либо вовсе с ними но реагируют. Аналогичным примером является действие на различные этиленовые углеводороды серной кислоты. Как будет показано ниже, ввиду существенного различия в скоростях взаимодействия различных этиленов с серной кислотой одной и той же концентрации представляется возможным проводить поглощение различных этиленов последовательно, пропуская их смесь через скрубберы, орошаемые серной кислотой с различной, постепенно повышающейся концентрацией. [c.775]


    Этилен. ...... .... Алкиларилсульфонат. ... Серная кислота. ...... Побочные продукты и потери  [c.297]

    В 1795 г. путем отщепления воды от этанола с помощью концентрированной серной кислоты был получен этилен [1], ставший первым соединением ряда олефинов. Благодаря способности образовывать с хлором жидкий продукт, он получил название масло голландских химиков [2], от которого впоследствии было образовано наименование всего ряда простых ненасыщенных алифатических углеводородов. [c.7]

    В промышленности осуществляют барботирование при —30 °С смеси этилена и НС1 (в избытке около 0,1 моль) через суспензию хлористого алюминия (0,5%) в хлористом этиле. Этилен предварительно сушат охлаждением до —30 °С, а НС1, — пропуская через концентрированную серную кислоту. Реакция протекает с очень большой скоростью образующийся хлористый этил непрерывно выводится из реактора. После осаждения увлеченного хлористого алюминия продукт промывают водой и щелочами и перегоняют под давлением. [c.279]

    Алкилирование бензола непредельными углеводородами (этилен, пропилен, бутилен, амилен). Катализаторами служат фосфорная и.пи серная кислота, хлористый алюминий, алюмосиликаты и др. Температура от 50 до 450° и давление от 1 до 30 ати в зависимости от катализатора. Продукты алкилирования бензола используют для производства синтетического каучука и других химических продуктов. [c.582]

    Много патентов посвящено вопросам прямой гидратации этилена разбавленной серной кислотой этот способ позволяет отказаться от концентрирования кислоты и осуществить непрерывный во всех стадиях процесс. Льюис в США попытался получить спирт непосредственно действием 10%-иой серной кислоты на этилен при 250° и 140 ащ. Кислота при этом практически не расходуется, так как образующийся промежуточный продукт, алкилсульфат, тотчас же гидролизуется в спирт и серную кислоту [41]. В таких условиях получающийся эфир можно возвращать в реакцию, где он гидролизуется в этиловый спирт. [c.457]

    Напишите уравнения реакций при а) действии бромной воды на этилен б) последующем кипячении образовавшегося продукта с раствором щелочи в) дальнейшем нагревании нового продукта с уксусной кислотой в присутствии каталитических количеств серной кислоты. Укажите названия промежуточных и конечных соединений. [c.165]

    Решение. 1. При нагревании этилового спирта до 180... 200° С с концентрированной серной кислотой должен образоваться продукт, реагирующий с бромоводородом. Это этилен (вещество X). Уравнение реакции  [c.201]

    В круглодонную колбу, снабженную дефлегматором с термометром и нисходящим холодильником, помещают 22,5 мл этилен-гликоля и 2,4 мл концентрированной серной кислоты. Содержимое осторожно нагревают до кипения на горелке с асбестовой сеткой. Через некоторое время начинается отгонка продукта реакции в интервале 84,.. 102°С. Отгонку следует вести медленно, причем нагревание заканчивают, как только реакционная масса начнет сильно чернеть и вспениваться при температуре 102°С. К дистилляту добавляют кристаллический карбонат калия до образования двух слоев. Верхний слой, представляющий собой диоксан, отделяют в делительной воронке и сушат сначала прокаленным карбонатом калия, а затем гидроксидом калия для удаления образующегося в побочной реакции уксусного альдегида (именно он обусловливает коричневый цвет продукта). Высушенный продукт перегоняют из колбы Вюрца над маленьким кусочком металлического натрия, собирая фракцию с температурой кипения 100... 103°С. [c.153]

    Впоследствии было установлено, что первым продуктом присоединения серной кислоты к этилену является этилсерная кислота, при гидролизе которой получается этиловый спирт. Впервые промышленный процесс получения этилового спирта из этилена коксовых газов был осуществлен в Англии в 1920 г. В 1936 г. в СССР (г. Баку) была создана первая установка промышленного типа для получения этилового спирта из нефтяных газов. [c.48]

    В тубулированную реторту вносят смесь из 2 ч. перекиси мар> ганца, 3 ч. поваренной соли и вливают охлажденную смесь из 4 ч. воды и 5 ч. крепкой серной кислоты таким образом, чтобы реторта, наполнилась только наполовину. В пробку, которой закрыт тубус входит трубка, погруженная на 1 см. в смесь. Нагревая очень слабо реторту, вводят через тру >ку газообразный этилен когда поглоще ние газа прекратится, реторту нагревают сильнее и образовавшийся хлористый этилен отгоняют с холодильником. Полученный сырой продукт промывают едким натром, затем водой, сушат хлористым кальцием и еще раз перегоняют. [c.109]

    Из нижней части реакционной колонны непрерывно вытекает смесь этилсульфатов и непрореагировавшей серной кислоты. При дросселировании из жидкой смеси выделяются этилен, этан и другие газы и пары диэтилового эфира (побочный продукт взаимодействия этилена с серной кислотой). Гидролиз алкилсульфатов проводится под давлением около 5 а/п и при 90— 100 °С. Паро-газовую смесь отводят из верхней части гидролизера в скрубберы 3 и 4 яа промывку и нейтрализацию следов серной кислоты, увлеченной газами. [c.209]


    Этпленхлоргидрин получается прибавлением хлорноватистой кислоты к этилену. В качестве побочных продуктов при этом получаются дихлорэтан и дихлорэтиловый эфир. Последний, используемый в качестве растворителя для селективной очистки масел, можно производить в больших количествах, обрабатывая этилен-хлоргидрин серной кислотой. [c.580]

    Реакции замещения в ряду ароматических соединений. Совершенно иначе, чем олефины, ведут себя бензол и его гомологи при сульфировании, нитровании, а в известных условиях и при галоиди-ровании. В то время как этилен легко присоединяет дымящую серную кислоту и галоиды (ср. стр. 63), бензол с концентрированной серной кислотой, концентрированной азотной кислотой или хлором в присутствии некоторых катализаторов вступает в реакции замещения. Продуктами атих реакций являются бензолсульфокислота, нитробензол и хлорбензол  [c.480]

    В зависимости от реакционной способности олефина и для подавления побочной полимеризации проводят абсорбцию при разных условиях концентрация серной кислоты от 60 до 98%, температура от О до 70 °С, давление от 0,2 до 2 МПа (первые цифры соответствуют изобутену, вторые этилену). Соотношение серной кислоты и олефина берут таким, чтобы на 1 моль H2SO4 поглощалось 1,2—1,3 моль олефина, что сокращает расход кислоты. При этих условиях, а также за счет гидролиза сульфатов водой, содержащейся в серной кислоте, реакционная масса состоит из моно- и диалкилсульфатов, H2SO4, воды, спирта и побочных продуктов — простого эфира и полимеров. [c.179]

    При действии на этилен крепкой серной кислоты при нагревании до 130° образуется этилосерная кислота. Как и все серновинные кислоты, этилосерная кислота при обработке водой дает серную кислоту и спирт. Пока не было дешевого способа добывания этилена, этот способ получения винного спирта практического значения не имел. В настоящее время этилен получается в большом количестве при крекировании нефтяного мазута в смеси с другими газообразными продуктами и утилизируется как материал для получения винного спирта в заводских масштабах. [c.108]

    Тот факт, что меркаптаны легко реагируют с олефинами, иногда нри комнатной температуре, в растворе ледяной уксусной кислоты в присутствии следов серной кислоты, или при нагревании до 100—200°, был отмечен впервые еще в 1905 г. [32]. Реакция сероводорода с олефинами в присутствии фуллеровой земли в качестве катализатора впервые была показана в 1930 г. [30] на примере олефинов из крекинг-бензина. С тех нор появилось большое число патентов, описывающих образование меркаптанов в результате присоединения сероводорода к олефинам при особых условиях. Пропилен дает хорошие выходы пропилмеркантарха нри 200° в присутствии НИКОЛЯ на кизельгуре или активированного угля, пропитанного фосфорной кислотой аналогичным образом этилен дает хорошие выходы этилмеркаптана при 250° [12]. При значительно более высоких температурах (650—725°) получившиеся сначала меркаптаны разлагаются с образованием тиофена и других продуктов [25]. Бутадиен и сероводород иад окисью алюминия при 600° дают от 56 до 63% тиофена [17]. [c.344]

    Сендерс и Додж [46] рассмотрели термодинамические данные по гидратации этилена и пришли к следующему заключению Ясно, что в настоящее время (1934 г.) невозможно получить константу равновесия, отклоняющуюся от теоретической менее чем в сто раз . Они изучали гидратацию этилена в паровой фазе при 360—380° и давлениях от 35 до 135 ат над окисью алюминия и окисью вольфрама в качестве катализаторов. На основании своих результатов и результатов других исследователей они пришли к выводу, что еще не найден активный катализатор для реакции гидратации. Выдано большое количество патентов по гидратации этилена в присутствии кислых солей и фосфорной кислоты на носителях [39] в паровой фазе при высоких температурах и давлениях. Один из таких процессов, в котором в качестве катализатора используется фосфорная кислота, применяется в промышленности. Этилен может реагировать с разбавленной 10 %-ной серной кислотой при температурах 240—260° и давлениях около 141 кг/см , при этих условиях образуется равновесная смесь этилена, этанола и этилового эфира. Спирт или эфир мон<ет быть возвращен в процесс для получения другого продукта, но технические трудности процесса помешали его промышленному использованию [29]. [c.355]

    Реакция с этиленом при 60—70° идет медленно и не доходит до конца давая в основном диацетат 1,3-пропандиола. При 130—140° и под давлением 50 ат в смеси уксусной и серной кислот этилен дает диацетат 1,3-пропандиола и триацетат СНд = С(СН20Н)з [31]. При реакции с пропиленом третьим продуктом было так называемое тетрагидропирановое производное, [c.383]

    При помощи нагрева и давления этилен можно превращать в полимерные жидкости. Под давлением 70—135 атм и при температурах между 325 и 385° С получены жидкие продукты, в которых около 50% кипит ниже 200°С [354, 355]. Конечные продукты содержат заметное количество нафтеновых углеводородов. Термическая полимеризация ускоряется следами кислорода [356 и видоизменяется меркаптанами [357]. При помощи концентрированной серной кислоты этилен не нолимеризуется вместо этого образуются устойчивые сложные эфиры. С 90%-ной фосфорной кислотой сложные эфиры образуются ниже 250° С, но свыше температуры 250—350° С и под давлением 53—70 кГ сл1 образуются полимеры, кипящие в пределах бензин — осветительный керосин. Это полимеры комбинированного типа, содержащие олефины, парафины, нафтены и ароматику с изобутеном в отходящем газе [358, 322]. При помощи чистого хлористого алюминия этилен не иолимеризуется даже под давлением, но если катализатор активирован влагой или хлористым водородом, то в зависимости от времени, количества катализатора и т. д., получаются жидкие продукты, находящиеся в пределах от бензина до масляных фракций [360]. Они онять-таки являются полимерами комбинированного тина. Бензиновая фракция, выкипающая до-200° С, является большей частью предельной и имеет октановое число около 77 это наводит на мысль о присутствии разветвленных структур. Высококипящие порции дистиллята содержат [c.109]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    При составлении товарного баланса из учтенной в материальном балансе продукции, исключаются те продукты, которые используются на самом предприятии в качестве реагентов или топлива. Из числа продуктов, традиционно производимых на НПЗ и НХЗ, на собственные нужды чаще всего расходуются этан, этилен и пропан (как хладагенты), бензол, толуол, металэтилке-тон и фенол (как реагенты в производстве масел), серная кислота, сухой газ (как топливо), технический водород. Товарную выработку мазута определяют после того, как будет рассчитан расход топлива на собственные нужды предприятия. При составлении товарного баланса необходимо учитывать возврат ловушечного продукта. [c.62]

    Присутствие различных катализаторов, в большинстве случаев солей металлов, благоприятствует процессу абсорбции газообразных олефинов серной кислотой. Так, соли металлов восьмой группы периодической системы элементов, например цианистый никель, увеличивают скорость реакции [58] для олефинов, содержащих более трех углеродных атомов. Указывается [59] на применение в качестве катализаторов комплексных цианидов металлов. Ряд катализаторов перечисляется при описании приготовления индивидуальных эфиров. Можно повысить эффективность процесса абсорбции газообразных олефинов, сначала сжижая олефины под давлением, а затем обрабатывая их серной кислотой [60]. Чтобы получить наиболее высокий выход кислых эфиров, необходимо использовать серную кислоту минимальной концентрации, способной обеспечить присоединение кислоты к данному олефину, так как с возрастанием концентрации кисло ты значительно усиливаются процессы полимеризации, в особенности высших олефинов. Пропилен и бутилены [61] полиме-ризуются при действии концентрированной серной кислоты. Пропилен реагирует с 90—92%-ной серной кислотой, образуя 4-ме-тилнентен-1 [62], тогда как 98%-ная кислота полимеризует его в более высококинящие продукты [63]. При избытке концентрированной кислоты изобутилен и высшие олефины превращаются в сложную смесь углеводородов, в которой преобладают парафины и циклоолефины [64]. В присутствии сернокислых солей меди и ртути даже этилен превращается 95%-ной кислотой в смесь углеводородов различных классов [65]. [c.16]

    Изрпропилсерная кислота. Изопропилсерная кислота имеет значение как промежуточный продукт при изготовлении изопропилового спирта и диизопропилового эфира из пропилена. Этот олефин реагирует с серной кислотой значительно легче, чем этилен [176, 178], и может абсорбироваться более слабой кислотой. Чтобы получить высокий выход изопропилсерной кислоты, необходимо употреблять менее концентрированную кислоту, так как при концентрированной кислоте преобладаю Г побочные реакции [233]. Абсорбция улучшается в присутствии инертного растворителя для пропилена при условии обеспечения тесного контакта раствора с кислотой [234]. Введение инертного растворителя уменьшает полимеризацию, происходящую при непосредственном растворении пропилена в серной кислоте. Наиболее удовлетворительные результаты получаются при использовании 87%-ной кислоты. Можно также избежать полимеризации, если вести абсорбцию 65—80%-ной кислотой при температуре 10—30° и давлении выше 3,5 ат [235]. В одном из патентов [236] рекомендуется проводить реакцию в жидкой фазе и при низкой температуре, поддерживая последнюю испарением части пропилена. В другом патенте [237] предлагается растворять пропилен в концентрированной серной кислоте при температуре —15°, обеспечивая соприкосновение смеси газов с кислотой в течение некоторого времени. Серная кислота, разбавленная примерно равным объемом ледяной уксусной кислоты, растворяет пропи- [c.45]

    В настоящее время промышлеппое применение получили как термический, так и каталитический процессы алкилирования изооутана с целью иолучения изопарафиновых углеводородов с высокими октановыми числами. Оба процесса дают продукт с октановым числом выше 95 и с высокой восприимчивостью к тетраэтилсвинцу. Термический процесс лучше всего применим для получения неогексана (2,2-диметнлбутана) путем алкилирования изобутана этиленом. Для получения же изооктана более подходяш им является метод алкилирования пзобутана изобутиленом в присутствии серной кислоты в качестве катализатора (44). [c.246]

    Однако, несмотря на ишрокую известность и несомненную общность, эти реакции (за исключением присоединения брома) в своем классическом виде не вошли в арсенал методов современной органической химии по очень простой причине — им не хватало именно чистоты. Так, например, даже простейшая реа1 ция гидратации — присоединение воды к этилену в присутствии серной кислоты — приводит к образованию пе только этилового спирта, но и диэтилового эфира, этилсульфата и ряда других продуктов. [c.63]

    А. М. Бутлеров и В. Горяйнов [2], изучавшие взаимодействие серной кислоты с этиленом и продукты, получаемые при этом, предсказали технические возможности этой реакции. Они писали Удобное и быстрое поглощение этилена концентрированной серной кислотой при температуре около 100"" составляет факт, обещающий со временем приобрести практическое значение если бы удалось открыть дешевый способ приготовления этилена, то он составил бы материал для добывания спирта . [c.511]

    В другом способе воплотилась идея, высказанная А. М. Бутлеровым около ста лет назад. В одном из своих исследований А. М. Бутлеров пропускал этилен в концентрированную серную кислоту, надеясь вызвать таким способом уплотнение (полимеризацию) этилена. Вместо этого в продуктах реакции обнаружился этиловый спирт, в связи с чем А. М. Бутлеров писал Удобное и быстрое по-глоще1те этилена концентрированной серной кислотой при температуре около 160 °С составляет факт, обещающий приобрести со временем практическое значение если бы удалось открыть дешевый способ приготовления этилена, то он составил бы материал для добывания спирта  [c.160]

    По иному пути идет сульфирование этилена дымящей серной кислотой (олеумом). При действии олеума на этилен (а также гомологи этилена) реакция протекает по так называемому карбилсульфатному типу. Первым продуктом такого сульфирования является р-этанолсульфокислота (изэтионовая кислота)  [c.118]

    Прямое алкилирование тиофена легко осуществляется взаимодействием некоторых алкенов разветвленного строения с тиофеном в присутствии минеральных кислот. При алкилировании изобутиленом в качестве продуктов реакции получают 2- и З-тпрет-бутилтиофены и смесь но крайней мере двух ди-трет-бутилтиофенов. Пропилен медленно взаимодействует с тиофеном, но реакцию тиофена с этиленом до сего времени провести не удалось. Это, возможно, объясняется тем, что кислоты, сила которых достаточна для алкилирования этиленом, вызывают быструю полимеризацию последнего. В присутствии активированных глин, разбавленной серной кислоты и фосфорной кислоты тиофен полимеризуется до тримера и пентамера. [c.285]

    В жидкость, и согнутая под прямым углом трубка для отвода этилена (см. рис. 178). Отводную трубку соединяют с промывной склянкой (склянкой Дрекселя), содержащей концентрированную серную кислоту, через которую пропускают образующийся этилен для очистки его от паров спирта и эфира, являющихся продуктами побочной реакции. Эту склянку помещают в стакан с холодной водой (примечание 1). Промытый серной кислотой газ проходит через трехтубусную склянку с 4 н. раствором едкого натра, в котором поглощается двуокись серы. В средний тубус склянки, которая одновременно играет роль гидравлического затвора, помещают [c.568]

    Существенное влияние на показатели процесса оказывает состав алкенов. Этилен практически не алкилирует нзобутан, а главным образом сульфатируется и полимеризуется. Пропилен вступает в реакцию с изобутаном, но октановое число меньше, чем при использовании бутиленов (табл. 13.4). Кроме того, при алкилировании изобутана чистым пропиленом очень высок расход серной кислоты. Высшие алкены (Сб и выше) в процессе реакции образуют ионы большой молекулярной массы, склонные к расщеплению с образованием низкомолекулярных продуктов, что снижает выход алкилата. Таким образом, оптимальным сырьем для алкилирования изобутана являются бу-тилены (см. табл. 13.4). [c.365]

    В небольших количествах три-- и тетраэтиленгликоли получаются прн нагревании этиленглнколя с серной кислотой [36]. В промышленности триэтиленгликоль получают как побочный продукт в производстве этилен- и диэтиленгликоля на 1 т этиленгликоля выделяется 25 кг, а на 1 т диэтиленгликоля — от 150 до 250 кг трнэтнлзнглнколя [39]. Три- и тетраэтиленгликоль получают также окспэтилнрованием этилен- и диэтиленгликоля тетраэтиленгликоль можно получать оксиэтилированием триэтиленгликоля. [c.159]

    В подобных удачных опытах в автоклавах очень точно определены соотношения триалкилалюминий этилен (в продуктах реакции). Такие опытные данные особенно пригодны для сравнения распределения колЛюнентов с различным количеством атомов углерода в продуктах реакции С вычисленными теоретически (ср. стр. 156). Для этой цели продукт синтеза подвергают гидролизу (добавляют по каплям в сильно охлажденный метанол, затем добавляют серную кислоту 1 3), выделяют парафины и отгоняют их на колонке для точной ректификации, лучше всего после дополнительного гидрирования с никелем. Цель гидрирования— для уточнения кривой разгонки превратить имеющееся некоторое количество олефинов в насыщенные соединения. Можно также отобрать несколько капель для анализа с помощью газовой хроматографии. Таким образом была получена диаграмма распределения, показанная на рис. 1 (стр. 156). [c.184]

    Триметилалюминий. Ориентировочный опыт ясно показал, что осуществление реакции достройки невозможно. Триметилалюминий нагревали с этиленом (до 150 сг) в течение 10 суток при 110—120°. Понижение давления происходило чрезвычайно медленно. Время от времени добавляли этилен. В результате на 1 моль триметилалюминия было поглощено 8 молей этилена. Продукт реакции после охлаждения представлял собой полутвердую массу, которую можно было выгрузить лишь после нагревания автоклава. При разложении разбавленной серной кислотой выделялось большое количество чистого метана. Продукт разложения по внешнему виду напоминал продукт достройки — полутвердая вазелинообразная масса, из которой при перегонке нельзя было получить существенных количеств летучих продуктов. [c.195]

    При этом в числе продуктов реакции -получаются не только оксинитросоединения образоваться могут также соответствующие эфиры азотной кислоты или продукты дегидратации. Так, например, аа-дифенилэтилен (СоН ЗгС СНг -реагирует в четыреххлористом углероде с безводной азотной кислотой с образованием нитроспирта ( 6Hs)2 (0H) H2N02, а триметилэтилен в аналогичных условиях образует нитроолефин ( Ha)a (N02) H3, что, повидимому, является следствием дегидратации соответствующего нитроспирта, образующегося при реакции в начальной стадии этилен при действии смеси азотной и серной кислот [c.41]

    Адипиновая кислота образуется при цианировании й последующем гидролизе а,а,а,со-тетрахлоралканов — продуктов теломе-ризации этилена с четыреххлорцстым углеродом. Таким способом получены адипиновая и пробковая кислоты с выходом 80 и 72— 75% в расчете на соответствующий тетрахлоралкан [127]. Реакцию теломеризации этилена с четыреххлористым углеродом проводят при 95—120 °С и давлении этилена 3,14—9,1 МПа. Выход тетрахлоралканов общей формулы С1(СН2) СС1з, где тг = 2, 4, 6 и 8, составил 21—56% на этилен, в том числе 60—89% а-трихлор-<о-монохлорпейтана. В результате гидролиза 50—90%-ной серной кислотой в течение 5,5 ч при 105 °С получена со-хлорвалериановая кислота с выходом 87%, доследующим цианированием которой и гидролизом мононитрила адипиновой кислоты получена уже адипиновая кислота с выходом 50% [128]. [c.98]

    Согласно описанной ниже методике Вибо [1], бромистый этил-2-Н получают каталитическим присоединением бромистого вoдopoдa-H к этилену в присутствии бромистого висмута, нанесенного на асбест. Этилен пропускают через концентрированную серную кислоту, а затем через трубку, содержащую безводный хлористый кальций, где он смещивается с бромистым водородом. Смесь газов пропускают при температуре 20° над катализатором, представляющим собой трехбромистый висмут, панесенный на очищенный асбест (примечание 1). Выходящая из реакционной трубки газовая смесь проходит через промывалку, заполненную водой (примечание 2), а затем через ряд U-образных трубок, заполненных натронной известью. Продукт реакции конденсируют в охлаждаемых при —78° ловушках. Для того чтобы выделить весь галоидалкил, в конце каждого опыта через прибор пропускают в течение 2 час. воздух (примечание 3). Выход бромистого этила за 2,5 часа при скорости этилена 0,5 л/час составляет 6,6 г (84%) (примечание 4). [c.304]

    II - ректификационная колонна отгонки легколетучих от этанола 12 - приемник отогнанных фракций 13 - основная колонна с де< егматором для ректификации этанола 14 - приемник этанола-продукта 15 - конденсатор отгоняемых фракций 16 - колонна экстракции этанола 17 - теплообменник жидкость-жидкость 18 — холодильник фузельной воды 19 — колонна ректификация эфира I — этилен-этановая фракция II — отходящий газ (на пиролиз или в топливную сеть) 111 — химически загрязненные стоки в канализацию IV - зеленое масло V.VI - охлаждающая вода VII - серная кислота (97-98 %) VIII - экстракт зеленого масла (на сжигание) IX - отработанная серная кислота X - технический этиловый эфир XI — тяжелолетучие углеводороды (на сжигание) XII — острый пар XIII — товарный этанол XIV - вода XV - щелочь [c.408]


Смотреть страницы где упоминается термин Этилен продукты с серной кислотой: [c.189]    [c.365]    [c.443]    [c.67]    [c.568]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.363 , c.376 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен кислоты



© 2025 chem21.info Реклама на сайте