Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы металлов образование, влияние

    Влияние катиона металла на направление реакции карбокси-лирования в настоящее время объясняют следующим образом. Фенолят натрия образует а-комплекс, стабилизированный образованием хелатной связи через натрий этот комплекс далее обычным путем превращается в конечный продукт реакции  [c.140]


    Классическими гомогенными катализаторами изомеризации олефинов, известными более 100 лет, являются неорганические и органические кислоты. В 50 гг. было найдено, что изомеризация активируется не только кислотами, но и основаниями, и работы 60 гг. посвящены преимущественно основному катализу. Однако в последнее десятилетие быстро растет интерес к новому направлению гомогенного катализа — катализу комплексами металлов. Эти разные, на первый взгляд, типы активирования имеют много общего, так как кислотно-основный катализ связан с координацией молекул растворителя, катализатора и олефина в активный комплекс, а при катализе комплексами металлов образование ионов углеводородов и их превращения представляют собой один из этапов изменения олефина. Оба типа активирования характеризуются общими корреляционными кинетическими закономерностями (уравнение Бренстеда применимо во всех случаях), сходным влиянием растворителя и т. д. [c.88]

    Атомы и ионы металлов способны образовывать химические связи с различными неорганическими (Н , N2, О2, СО, СО , Щ1з, N0 и др.) и органическими молекулами, атомами, ионами, радикалами с образованием как устойчивых, так и нестабильных соединений. Химические связи, возникающие в комплексах металлов, во многих случаях оказываются необычными по своей природе. Необычность природы химической связи лежит в особенности электронного строения комплексообразователя и лигандов, конфигурации комплекса, во влиянии стерических эффектов и т. д. [c.503]

    Положение о том, что лишь один атом металла принимает участие в образовании я-частицы, не означает отсутствия влияния остальных атомов поверхности. Специфичность металла проявляется в сравнительной легкости образования с- и я-частиц, а его кристаллическая упаковка влияет на природу орбиталей, предоставляемых металлом для образования я-связей. По легкости формирования я-комплексов металлы УП1 группы располагаются в ряд Р(1 Р1 > N1 > КЬ [15]. По мнению Го, Руни и Кемболла [15], образованием и разложением промежуточных я-связанных металлорганических комплексов объясняется каталитическая активность переходных металлов во многих реакциях углеводородов гидрирования, дегидрирования, дейтерообмена, изомеризации, конфигурационной изомеризации и крекинга. Приведенные ниже примеры иллюстрируют распространившуюся тенденцию объяснять механизмы самых разнообразных реакций углеводородов с помощью я-комплексов. Учитывая сказанное выше, можно думать, что в случае бензола более энергетически выгодной, а следовательно, и более вероятной является модель XX. Руни [21] изображает гидрирование бензола как процесс [c.53]


    Константа скорости образования комплекса К увеличивается по мере добавления металлов и зависит от природы металла. Максимальное влияние на величину К оказывают концентрации металлов — примерно до 0,3—0,4 вес. % При больших концентрациях металлов константа скорости образования углерод-кислород-ного комплекса изменяется незначительно (см. рис. 73). Наиболее резко эта константа изменяется у образцов с добавками хрома при содержании его в катализаторе от 0,1 до 0,8% К становится в 3 раза больше, чем для исходного. Среди щелочных и щелочноземельных металлов сильнее всего на константу образования комплекса влияет литий. В присутствии 1,3 вес. % этого металла она возрастает в 2,5 раза. Константа скорости К2 разложения комплекса не зависит от содержания металла в катализаторе и определяется только его природой (см. рис. 74). Большая часть исследованных металлов уменьшает константу скорости К2 разложения комплекса. Так, наименьшая величина константы скорости разложения комплекса наблюдается на образцах, содержащих хром. В этом случае К2 в 2,4 раза меньше константы скорости разложения исходного катализатора (см. рис. 74). Среди щелочных металлов эта константа наиболее резко уменьшается при добавлении лития (в 1,2 раза). Щелочноземельные металлы практически не влияют на коНстанту разложения кислородного комплекса. [c.169]

    В соответствии с существующими представлениями [92, 244], процесс окисления кокса протекает через ряд стадий. Первая стадия — хемосорбция кислорода с образованием устойчивого поверхностного углерод-кислородного комплекса. Вторая стадия — разложение комплекса с образованием окиси и двуокиси углерода. Чтобы объективно оценить влияние металлов на различные стадии процесса регенерации на основании экспериментальных данных были вычислены константы скоростей образования и разложения углерод-кислородного комплекса. При этом было использовано уравнение Г. М. Панченкова и Н. В. Голованова [92], описывающее процесс выжига кокса в кинетической области. Численные [c.168]

    Условные константы, как они определены для целей спектрофотометрии, не всегда совпадают с условными константами, которые рассматриваются при комплексонометрическом титровании (см. разд. 4.8.2). На реакцию, используемую в комплексонометрии, образование смешанных комплексов не оказывает влияния, если эти комплексы содержат ион металла и лиганд в том же стехиометрическом отношении, что и основной рассматриваемый комплекс. Однако в фотометрическом анализе комплексы частиц с тем же отношением металл лиганд, но содержащие другие лиганды, могут проявлять различное поглощение света, и, следовательно, такие комплексы со смешанными лигандами должны рассматриваться как продукты конкурирующих побочных реакций. [c.361]

    При этой полимеризации в среде полярных растворителей влияние металла катализатора на полимеризацию значительно ослабляется вследствие образования комплекса металл — растворитель и уменьшения способности атома металла образовывать комплекс с мономером. При этом полимеризация приближается к анионной. Действительно, при замене углеводорода на эфир, диоксан или при добавлении к углеводороду небольших количеств спиртов и фенолов в результате полимеризации бутадиена в присутствии литийорганических соединений получается полибутадиен с преобладанием структуры 1,2 (как и в случае полимеризации с органическими соединениями натрия и калия). С металлоорганическими соединениями лития получены и другие стереорегулярные полимеры, причем во всех случаях полимеризация протекала в растворе. При полимеризации метил-, изопропил- и циклогексилмет-акрилатов в присутствии органических соединений лития в толуоле (при низких температурах) были получены изотактические полиметилметакрилат, полиизопропилметакрилат и полиц 1клогексилметакрилат. В аналогичных условиях, но в присутствии полярного растворителя получен синдиотактический полиметилметакрилат. [c.87]

    В определении термодинамических характеристик образования галогенидных комплексов в растворах большую роль играют величины энтальпии и энтропии гидратации как простых ионов, так и комплексов, меняясь заметным образом от одних комплексов к другим. Существенно также взаимное влияние воды и анионов в непосредственной близости от катиона. Особенно заметно это влияние на комплексах металлов с высоким ионизационным потенциалом. [c.102]

    Природа металла также оказывает большое влияние на величину расщепления кристаллическим полем. Атомы или ионы металлов с валентными 43- или 5 -орбиталями обнаруживают гораздо большее расщепление, чем в соответствующих комплексах металлов с валентными З -орбиталя-ми. Например, для Со(ЫНз)б , ЯЬ(ЫНз) и 1г(КНз)б параметр А имеет значение 22900, 34100 и 40 ООО см соответственно. По-видимому, валентные 43- и 5(/-орбитали иона металла лучше приспособлены к образованию а-связей с лигандами, чем З -орбитали, но причины этого не вполне ясны. Важным следствием намного больших значений параметра А у комплексов с центральными ионами металлов, имеющих валентные 43- и 53-электроны, является то, что все комплексы металлов пятого и шестого периодов (второго и третьего переходных периодов) имеют низкоспиновые основные состояния это относится даже к таким комплексам, как ЯЬВг , лиганды которого принадлежат к числу наиболее слабых лигандов приведенного выше спектрохимического ряда. [c.237]


    Анионная полимеризация осуществляется под влиянием различных катализаторов, в частности соединений основной природы, комплексов металлов и др., обеспечивающих образование карбаниона из молекулы мономера и дальнейший его рост по общей схеме  [c.35]

    Большое влияние на цвет орг. соед. оказывает присутствие в его структуре металла. При образовании комплекса создаются новые возможности электронных переходов, обусловливающие появление новых полос поглощения в спектрах комплексов. Появление этих полос связано с переносом электрона с высшей занятой МО (ВЗМО) орг. молекулы (лиганда) на своб. атомную орбиталь металла, с переходом -электрона металла на НЕМО лигавда ( ->я -переход), а также с возможностью - -перехода, к-рый возникает благодаря Синтию вырождения с вакантных -орбиталей металла под влиянием поля лигавда. Обычно - -переходы существенно на цвет комплексов не влияют, т. к. их полосы большей частью находятся в ИК области спектра [c.329]

    Существует ряд комплексов, образование которых сопровождаете появлением в спектре новых полос, отсутствующих у неассоциированных молекул. К таким комплексам относятся донорно-акцепторные, характеризующиеся переносом заряда от одной молекулы к другой. Этим же свойством обладают координационные комплексы переходных металлов, окраска которых обусловливается изменением симметрии иона металла под влиянием поля молекул лигандов и появлением вследствие этого запрещенных для невозбужденного иона переходов. Эти новые полосы присущи толь- [c.188]

    Большинство гомогенно-каталитических реакций в растворах протекает с участием ионов металлов, и именно они дают богатый материал для обсуждения различных типов активирования. Поэтому в дальнейшем изложении будут рассматриваться в основном координационные соединения металлов. Образование же молекулярных комплексов и возможное влияние их на каталитическую активность не входит в круг обсуждаемых вопросов. [c.55]

    Вопросы устойчивости комплексов металлов сложны и разнообразны Влияние большего числа факторов, обуслэвлен-ных видом и характером центрального атома М и лиганда L, а также непостоянства температуры и других условий создает трудности при изучении устойчивости комплексов. Единственный приемлемый метод изучения устойчивости состоит в фиксировании наибольшего числа переменных с последующим изучением устой чивости в узкой области. Для удобства вначале нужно установить с какой точки зрения нам интересно рассматривать вопросы устой чивости с термодинамической или кинетической. В первом слу чае нам придется иметь дело с энергиями связи металл-лиганд константами устойчивости или с окислительно-восстановитель ными потенциалами, которые характеризуют стабилизацию ва лентного состояния и т. д. во втором — со скоростями и механиз мами химических реакций, а также с рассмотрением термодинами ческих характеристик образования активных комплексов. Вообще, более правильно говорить об инертных или лабильных комплексах, а не об устойчивых или неустойчивых. Эти термины СЛИШКОМ часто смешивают и применяют неправильно. Устойчивые комплексы могут быть и инертными, и лабильными, а неустойчивые — обычно лабильные, но могут быть и инертными. Например, [Ре(Н20)бР и [Сг(Н.20)в1 имеют почти одинаковые энергии связи (116 и 122 ккал/моль соответственно), т. е. обладают одинаковой устойчивостью, но первый комплекс лабильный и обменивает лиганды быстро, а второй — инертный и обменивает лиганды медленно. Подобных примеров можно привести очень много. [c.285]

    В некоторых сл аях возможно значительное увеличение скорости образования радикалов, например, при катализированном распаде гидропероксидов под влиянием комплексов металлов с макроциклическими полиэфирами [28] или в реакциях зарождения цепи в автоокислении при участии аддуктов макроциклических комплексов никеля и кобальта с О2 [29]. [c.243]

    Этот эффект координирования, предполагающий, что гидроксильная группа подходит со стороны комплекса металла и атакует металл в непосредственной близости от азота изоцианатной группы, может объяснить необычайную каталитическую активность соединений металлов. Очевидно, порядок образования тройного комплекса может быть и обратным, т. е. вначале образуется двойной комплекс металла с гидроксилсодержащим веществом, а затем уже тройной комплекс с изоцианатом. Предполагают, что катализаторы, в присутствии которых исследуемый алифатический изоцианат реагирует быстрее, чем толуилендиизоцианат, действует именно по этому механизму, поскольку алифатический диизоцианат не имеет стерических препятствий, в то время как на изоцианатные группы толуилендиизоцианата в положении 2 и 6 оказывают влияние стерические препятствия, обусловленные метильной группой в положении 1. [c.215]

    Определению кобальта роданидным методом в ацетоно-водных растворах мешают трехвалентное железо, хром, медь, уран, висмут и никель, а также металлы, образующие малорастворимые роданиды или комплексные роданиды, на образование которых расходуется реагент. Окраску роданидных комплексов железа и меди можно устранить прибавлением раствора ЗпСЬ [1414], если только железа и меди не слишком много. При использовании ЗпСЬ необходимо иметь в виду присутствие молибдена, а также ванадия, который образует соединение красного цвета. Для маскировки железа применяют пирофосфат натрия [120]. Медь также связывается в пирофосфатный комплекс, однако ее влияние можно устранить прибавлением раствора сульфита натрия. [c.156]

    На основании уравнения (11-8) можно заключить, что комплексообразованию благоприятствуют отрицательные изменения энтальпии и положительные изменения энтропии, но имеется много примеров, где предпочтительной является только одна из этих величин. Найдено, что относительный вклад каждого из этих факторов зависит как от лигандов, так и от того, каков центральный ион металла. Из ступенчатых констант образования можно определить ступенчатые изменения энтальпии. В одних растворах для ассоциации с ионными лигандами эти величины лежат обычно в пределах от +5 до —5 ккал/моль, а для нейтральных монодентатных лигандов — в пределах от О до —5 ккал/моль, но эти величины для полидентатных лигандов могут быть больше —20 ккал/моль. На обш,ую теплоту образования комплекса оказывают заметное влияние различные свойства как лиганда, так и иона металла. Рассмотрим кратко эти свойства. [c.452]

    Лиганды L, способные к сильному л-связыванию, по тем же причинам замедляют реакцию образования активированного комплекса. Так, скорость замещения транс-лигандов N- и S N-—небольшая, поскольку они образуют сильные связи с атомом металла, а галогено-лиганды, слабо связанные с центральным атомом легко выделяются из активированного комплекса вследствие гранс-влияния лигандов Т [146, 153, 154]. [c.370]

    Оказалось, что на состав получаемого продукта и его выход влияет состав среды. При проведении синтеза в водной среде получаются соединения с завышенным содержа нием металла. Изучение влияния соотношения растворителей на образование соединений показало, что при увеличении взятого для синтеза этанола выход уменьшается, но получаются соединения, более близкие по составу к теоретическому. Для получения чистых соединений требуется перекристаллизация из абсолютного этанола. При этом в случае Со выпадает розово-фиолетовый, N1 — светло-зеленый, Мп — розоватый кристаллические осадки. Высушенный при 100°С, кобальтовый комплекс при взаимодействии с водой переходит в соединение синего цвета, которое при повторном высушивании снова превращается в исходное соединение розово-фиолетового цвета. [c.18]

    Фтор-ион не флюоресцирует, но может давать устойчивые комплексные соединения с металлами, образование которых связано либо с появлением флюоресценции, либо с ее гашением [6, 7]. Описано несколько методов качественного определения фтор-иона [8]. Предложено количественное определение, основанное на действии фтор-иоца на флюоресцирующее соединение АР+ с пентахромснне-черным [9] и морином [10, 11]. Имеются методы, основанные на гашении в присутствии фтор-иона флюоресценции 8-оксихинолината алюминия (методика № 56, примечание) [8, 12—14], комплексов алюминия с морином [6, 10], тория с морином [15], циркония с морином [16]. Наиболее целесообразной считают 6] алюминиево-мориновую систему — большая чувствительность реакции (0,0005 мг л и меньше), прочность комплекса и небольшое влияние сульфат-иона. [c.129]

    В шредыдущей главе было отмечено, что органические реактивы, содержащие ОН-группы, можно разделить на две группы. Одна из них рассмотрена в гл. 14. К другой группе принадлежат соединения, которые представляют собой -также многоатомные фенолы или оксикислоты, но являются окрашенными, т. е. поглощающими свет в видимой части спектра. При взаимодействии таких реактивов со многими ионами образуются интенсивно окрашенные соединения, которые иногда называются лаками в связи с их применением в технологии крашения. Несмотря на высокую чувствительность таких реакций, применение указанных выше реактивов довольно ограничено вследствие некоторых недостатков их, особенно сказывающихся при колориметрическом анализе. Прежде всего необходимо отметить недостаточную специфичность реакций, вследствие чего заметное влияние производят многие посторонние ионы. Красители данной группы, как и реактивы, описанные в гл. 14 (многоатомные фенолы и оксикислоты), образуют комплексные соединения с ионами очень многих металлов. Однако комплексы с обычными многоатомными фенолами и оксикислотами окрашены лишь у небольшого числа катионов (железо, титан и др.), так что образование соединений со многими катионами требует только повышенного расхода реактива, но не отражается на точности колориметрического определения. Между тем при образовании комплексов металлов с красителями, содержащими ОН-группы, всегда происходит изменение окраски, так как окрашивание связано с деформацией молекулы реактива. Специфичность отдельных элементов по отношению к рассматриваемым реактивам- выражается в различной прочности комплексов, в частности в образовании их при различных значениях pH раствора, причем изменение окраски раствора при данной величине pH указывает на образование комплекса. Комплексные соединения реактивов данной группы с самыми разнообразными катионами часто имеют близкие спектры поглощения, [c.293]

    Вопросы устойчивости комплексов металлов сложны и разнообразны [3—8]. Влияние большого числа факторов, обусловленных видом и характером центрального ато1ма М и лиганда Ь, а также непостоянство температуры и других условий создает трудности при изучении устойчивости комплексов. Единственный приемлемый метод исследования устойчивости состоит в фиксировании наибольшего числа переменных с последующим изучением устойчивости в узкой области. С самого начала надо указать, что есть два разных вида устойчивости — термодинамическая устойчивость и кинетическая устойчивость. Поэтому вначале нужно установить, с какой точки зрения нам интересно рассматривать вопросы устойчивости с термодинамической или кинетической. В первом случае придется иметь дело с энергиями связи металл—лиганд, с константами устойчивости или с окислительновосстановительными потенциалами, которые характеризуют стабилизацию валентного состояния (см. гл. 8) во втором—для комплексных ионов в растворе — со скоростями и механизмами химических реакций (замещения, изомеризации, рацемизации и реакций с переносом электрона), а также с термодинамическими характеристиками, описывающими образование промежуточных частиц или активных комплексов. [c.449]

    Размеры лигандов и способность к образованию ковалентных связей. Влияние этих факторов наиболее ярко проявляется у галогенидных комплексов металлов, однако однозначной зависимости комплексов от названных факторов не существует. Кроме того, имеет значение то, с каким металлом образуется га-логенидный комплекс. [c.256]

    С другой стороны, Бьеррум попытался оценить этот член на оснований рассмотрения различных путей реакции, возможных для каждого этапа [29, 44]. Химическими и электрическими силами и влиянием асимметрии он пренебрегал и предположил, что комплекс ML , образованный ионом металла с N идентичными координационными местад1И и п моно-дентатными лигандами имеет тенденцию к стадийной ассоциации и диссоциации пропорционально соответственно числам N—п) и п. Поэтому [c.44]

    Это уравнение определяет условия разрушения таких комплексов кислотами. Так, например, при комплексообразованни с салициловой кислотой (для Си++ /(компл,= 10 11, а для Fe+ + + /< комп1.= Ю ) согласно уравнению 3) комплекс с медью должен разлагаться при более высоком значении pH, чем комплекс с железом. И действительно, первый заметно разлагается при рН = 4,5, а второй устойчив даже при рН = 2. Из уравнения (13) можно сделать вывод о влиянии избытка комплексообразователя че.м больше последний, тем устойчивее комплекс и меньше величина pH, при котором наступает разложение. Например, указанный выше комплекс железа при двукратном избытке ком-плексосбразователя начинает заметно разлагаться уже при рН = 2,5, а при 100-кратном избытке разложение наступает только при рН=1,5. Значительное увеличение pH может привести к разложению комплекса с образованием гидроокиси соответствующего металла. Кроме этого, при сильном изменении [c.38]

    Многие анионы влияют на образование poflaHiHflHHix и галоге-нндных комплексов металлов. Наиболее существенным является влияние ионов фтора. Последние образуют прочные бесцветные комплексы со многими высокозарядными катионами, в том числе и с железом (П1), поэтому определение железа в виде роданида в присутствии фторида невозможно. С другой стороны, это же явление дает возможность устранить мешающее влияние железа гари определении кобальта в виде роданида. [c.246]

    Формула (4.92) для условной константы устойчивости комплекса металл — индикатор не учитывает влияния образования других, конкурирующих комплексов (гидроксо-комплексов, амминных комплексов) титруемого металла, вследствие чего выражения, в которые входит эта константа, дают значения рМ. Поскольку приводимые в литературе экспериментальные значения рМ (обозначаемые иногда рМпер) также отвечают концентрации свободного иона металла М, значения рМ, полученные с помощью условной константы из выражения (4.92), можно применять для непосредственного сравнения. Коэффициенты побочных реакций а в этом выражении относятся к равновесным реакциям протонирования свободного индикатора (агп) и комплекса металл — индикатор (амгп). Индексы этих комплексов здесь упрощены (вместо И, употреблен индекс 1п, а вместо МНДп —М1п). Для данного pH этим коэффициентам побочных реакций соответствуют значения, которые можно оценить с помощью выражений, приведенных в разд. 3.2.5. [c.315]

    В интервале pH 6,3—11,55, где красная окраска комплекса 2п1п изменяется на голубую, отвечающую аниону Н1п (см. рис. 4.30), устойчивость комплекса металл — индикатор слишком велика следовательно, значение рЕп (в данном случае включающее влияние образования гидроксо-комплексов) будет выше, чем [c.319]

    Хиллер [27] теоретически рассмотрели процессы обратимого восстановления комплексов и показали, как можно различить между собой два случая когда продукт обратимого восстановления комплекса металла с органическими лигандами образует ионные пары с катионом индифферентного электролита и когда этот продукт под действием тех же катионов фона может диссоциировать (претерпевать координационную релаксацию ) вследствие значительно меньшей прочности связи между ионом металла и лигандом у продукта, чем у исходного комплекса. Показано [27], что в случае образования ионных пар па величину волны не влияет ни концентрация исходного комплекса, ни добавление в раствор возможного побочного продукта, могущего образоваться при взаимодействии катиона фона с отщепляющимся лигандом исходного комплекса. Если же имеет место последующая координационная релаксация , то с ростом концентрации исходного комплекса волны становится отрицательнее. Такое же влияние на Еу оказывает и введение в раствор комплекса, состоящего из катиона фона и рассматриваемого лиганда при этом в избытке последнего волны перестают зависеть от концентрации исходного комплекса. Приложение этих выводов теории к случаю восстановления ацетил-ацетоната железа Ре(АсАс)д в ацетонитриле на фоне перхлората тетраэтиламмония в присутствии небольших добавок перхлората лития показало [27], что продукт обратимой одноэлектронной электрохимической реакции Ре (АсАс)з быстро взаимодействует с ионами ЬГ, давая Ре (АсАс)з и Ы (АсАс). [c.143]

    На рис. 11-3 представлена зависимость [4] между условными константами образования и pH для комплексов металлов с ЭДТА с учетом влияния pH на величину а 4- и влияния гидроксокомплексов на величину м [см. уравнение (7-17)]. Как видно из рисунка, условные константы меньше термодинамических констант, приведенных в табл. 11-2. Как правило, для каждого иона металла существует оптимальное значение pH [21]. Так, для цинка условная константа приближается к Лму = 16,5 только в одном интервале pH. Кривые на рис. 11-3 характеризуют максимальные значения условных констант, поскольку обычно в реакционную систему вводят дополнительные комнлексанты. Концентрация дополнительного комплексанта, как правило, значительно выше, чем концентрация ионов металла, поэтому значение м уменьшается и является функцией pH, а также зависит от природы и концентрации дополнительного комплексанта. Кроме того, если возможно образование амминного комплекса, то соответствующие кривые (см. рис. 11-3) располагаются еще ниже. Часто титрование с помощью ЭДТА проводят в присутствии буферных растворов системы аммиак — хлорид аммония, которые служат не только для установления необходимого значения pH, но также [c.218]

    Каталитической активностью в процессах полимеризации диенов обладают я-аллильные комплексы почти всех переходных металлов. В зависимости от молекулярного строения они вызывают полимеризацию диенов с преимущественным образованием звеньев цис- Л, транс-1,4, или 1,2. В настоящее время установлено, что в присутствии соединеннй металлов VIII группы (кобальта, никеля, родия, железа), а также титаиа и ванадия в большинстве случаев получаются полидиены с 1,4-звеньями, тогда как на комплексах металлов V и VI групп (хрома, молибдена, вольфрама, ниобия) и палладия образуются полимеры с преобладанием 1,2-звеньев. Важно отметить, что селективность катализатора по мономерным звеньям одного вида можно изменять в широких пределах, вводя в состав каталитических комплексов лиганды различной природы. Влияние состава катализатора на молекулярное строение полимеров бутадиена и изопрена показано в табл. 2.4. [c.58]


Смотреть страницы где упоминается термин Комплексы металлов образование, влияние: [c.193]    [c.10]    [c.143]    [c.41]    [c.526]    [c.71]    [c.154]    [c.523]    [c.343]    [c.303]    [c.236]   
Фотометрический анализ (1968) -- [ c.112 ]

Практическое руководство (1976) -- [ c.0 ]

Практическое руководство по фотометрическим методам анлиза Издание 5 (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов влияние

Комплексы металлов комплексы металлов

Комплексы образование

Металло-азо-комплексы

Металлов комплексы

Образование комплексов с металлами

Образование металлов



© 2025 chem21.info Реклама на сайте