Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия активации резонанса

    Чтобы сосредоточить внимание на эффектах резонанса, на рис. 16 каждая группа кривых произвольно проведена параллельно и резонансная стабилизация мономера (если она имеет место) принимается равной половине резонансной стабилизации образующее гося радикала. Из рисунка и уравнения (40) следует, что те из начальных радикалов, которые имеют наибольшую резонансную стабилизацию, обладают самой высокой Энергией активации и реакции их протекают наиболее медленно, поскольку [c.148]


    Метод динамического ядерного резонанса позволяет изучать кинетику реакций первого порядка с константами скорости от 10 до 10 С , что соответствует свободным энергиям активации (барьеру) от десятков до 100 кДж/моль. Быстрые процессы обнаруживаются по уширению линий дополнительно к релаксационному. Если для надежности идентификации такого дополнительного уширения принять его величину не менее 2 Гц, то, используя формулу (П.15) для вырожденных систем, можно оценить верхний предел констант скоростей, допустимых для определения при заданной разности Д лв  [c.43]

    Величину АН называют энтальпией активации-, она представляет собой разность энергий исходных соединений и переходного состояния, включая энергию напряжения, резонанса и сольватации. Во многих реакциях к моменту достижения переходного состояния связи уже полностью или частично разорваны необходимая для этого энергия и выражается величиной АН . Образование новых связей сообщает дополнительную-энергию системе, но если это происходит после переходного состояния, то дополнительная энергия может повлиять толькО на величину АН, но не на АН= . [c.277]

    Параметр имеет размерность энергии. Предполагается, что он соответствует высоте активационного барьера, который Одолжен быть преодолен для осуществления разрыва. Журков с сотрудниками установили, что для широкого круга полимеров V приблизительно равно энергии активации процесса термодеструкции. Затем они методом электронного парамагнитного резонанса показали, что свободные радикалы действительно возникают в процессе разрушения полимеров и, более того, может быть найдена корреляция между скоростью образования радикалов и временем до разрушения образца. Подобные исследования были проведены также Петерлином [25]. [c.325]

    Энергетические кривые для реального процесса совпадают с кривыми а ш Ъ только в области, далекой от пересечения кривых. Там, где кривые сближаются, пренебрежение делокализацией электронов становится слишком грубым приближением. Учет делокализации электронов приводит к деформации кривых, как показано сплошной линией. Величина е (рис. 55) представляет собой энергию резонанса (энергию сопряжения) в переходном состоянии. Таким образом, для энергии активации реального процесса получаем выражение [c.188]

    Если энергия резонанса в переходном состоянии мала, то метод Эванса и Поляни может быть применен для качественного обсуждения влияния различных факторов на величину энергии активации. Примером могут служить реакции атомов натрия с галогенами и галоидными алкилами. При рассмотрении этих реакций были сделаны следующие два основных вывода. [c.189]


    В случае значительных молекулярных или атомных перемещений, которые часто происходят в твердых веществах в определенных температурных интервалах, резонансная линия будет сужаться, когда движение станет достаточно быстрым, как указывалось в разделе II, А, 2. Часто в твердом теле вокруг определенной оси происходит заторможенное вращение групп ядер, что приводит только к частичному размыванию локальных полей это значит, что в области очень быстрого движения значительная ширина линии может сохраниться [75]. Для полного усреднения дипольных полей необходимо изотропное вращение. Эти явления делают изучение температурной зависимости ядерного резонанса очень ценным методом исследования движений в твердом теле. В благоприятных случаях можно определить энергии активации процессов движения [75]. Предельную ширину линии для обычных форм движения агрегатов ядер можно рассчитать из уравнения (16) после соответствующего усреднения углового фактора с учетом движения. [c.32]

    Для двух факторов не удалось найти способа количественной оценки их вклада в энергию активации для снижения энергии активированного комплекса за счет резонанса в точке пересечения потенциальных кривых и для повышения энергии комплекса за счет выталкивания атомов водорода в плоскость атома углерода. Предполагается, что обе эти поправки малы, а их суммарный вклад практически равен нулю. [c.236]

    Неполярная активация, следующая за присоединением свободного радикала, неизменно приводит к образованию мезомерного радикала, в такой степени стабилизованного резонансом, что энергия активации, необходимая для раскрытия олефиновой связи, снижается приблизительно от 50 ккал до 25 ккал или меньше [c.218]

    В случае неорганических реакций в твердом состоянии механизм необходимой при этом диффузии через кристаллическую решетку достаточно хорошо изучен. Атомы металлов или небольшие ионы реагирующих веществ перемещаются из своих положений либо в междуузлия решетки, либо в вакансии решетки. Интересно, например, что в реакциях окислов щелочноземельных элементов с различными солями скорость процесса зависит только от природы окисла [56]. Это можно объяснить тем, что такие анионы, как СОд , S0 , РО4 , слишком велики, чтобы в значительной мере участвовать в процессе диффузии. Следует поэтому ожидать, что в случае органических молекул, более крупных и сложных, чем эти анионы, энергия активации для диффузии в кристаллическом состоянии должна быть весьма высокой. Некоторым доказательством в пользу этого может служить постоянство (в течение нескольких месяцев) анизотропии спектра электронного парамагнитного резонанса различных органических кристаллов, таких, как глицин [c.245]

    В этой книге мы попытались изложить по возможности полно основы органической химии с точки зрения современных теоретических воззрений. Нами был принят несколько необычный план построения книги. Так, в первые три главы вошли следующие разделы теория строения ковалентная связь водородная связь кислоты и основания Льюиса энергия активации переходные состояния и промежуточные соединения теория молекулярных орбит (СН4, СгНе) строение и номенклатура углеводородов, спиртов, аминов, кислот, карбонильных соединений кон-формационная устойчивость производных этана и циклогексана рассмотрение резонанса в ацетат-ионе типы ароматических соединений и резонансная стабилизация вывод индукционных эффектов, исходя из величин рКк стереохимия. На основании этого комплекса сведений оказалось возможным изложить на современном уровне успехи развития химии алканов, алкенов и др. Там, где это было возможно, мы придерживались принципа изложения материала по темам и выбирали материал, наилучшим образом иллюстрирующий современное состояние данной области. Некоторые из приведенных сведений взяты из последних работ, другие опубликованы уже давно, но лишь сейчас могут быть должным образом оценены. Мы старались уделить должное внимание историческим аспектам, современным теоретическим взглядам и технике эксперимента. [c.9]

    Изучен спектр электронно-спинового парамагнитного резонанса для живого полистирола, полученного в тетрагидрофуране под действием Ыа-нафталина. Интенсивность сигнала как функции отношения концентраций мономера и инициатора (и температуры) позволяет предположить, что одна из стадий инициирования протекает медленнее, чем процесс передачи электрона, и обладает более высокой энергией активации, чем реакция роста цепи [c.128]

    Так, в 1933 г. при изучении диссоциации фенилирован-ных этапов Хюккель [126] дал едва ли не первое объяснение наличию энергии активации для некоторых мономо-лекулярных органических реакций. Энергия, расходуемая на удаление этановых атомов углерода друг от друга, состоит из двух частей положительной, равной работе, требуемой для растяжений связи С—С, и отрицательной, в которую входят энергия резонанса (сопряжения я-электронов), отвечающая данному межатомному расстоянию, и энергия, обязанная элиминированию стерического напряжения между заместителями при этановых атомах углерода. Таким образом, в фенилированных этапах эта-новые атомы углерода локализуют я-электроны на своих кольцах, а в получающихся при диссоциации радикалах становится возможным сопряжение фенильных электронов разных колец через холостой [р] -электрон. Если при малых увеличениях расстояния превалирует положительная часть работы, а при больших — отрицательная, то энергия активации превышает энергию диссоциации. [c.54]


    Большое количество измерений энергии диссоциации связи было произведено Шпарцеы с сотрудниками [50] при пиролизе углеводородов, в быстропоточно систсме в присутствии значительного избытка толуола. Большая скорость потока обеспечивает отсутствие дальнейших реакций и, таким образом, кинетика процесса не искажается. Образующиеся свободные радикалы вступают в реакцию преимуш ественно с избыточным толуолом, что приводит к ингибированию радикальных цепей. С другой стороны, образующиеся радикалы бензила сильно стабилизуются резонансом и, следовательно, являются нереакционноспособными, подвергаясь только-димеризации. Характер реакции может быть проверен путем выделения дибензила и сопоставления количества его с выходом других продуктов реакции. Как и в случаях, указанных выше, наблюдаемая энергия активации приравнивается к энергии диссоциации изучаемой связи. Метод ограничивается соединениями с более слабой связью, чем связь С—И в толуоле, так как в противном случае реакция осложняется термическим разложением последнего. [c.15]

    Высокая реакционная способность аллилгалогенидов в реакциях 8м1-замещв-иия объясняется уменьшением энергии активации образования аллил-катиона главным образом вследствие резонанса. В то же время резонанс уменьшает нуклеофильность различных анионов за счет делокализации их заряда, вызывая тем самым стабилизацию этих частиц. К анионам, стабилизированным вследствие резонанса, относятся нитрат N0 , сульфат 8О 0 и фосфат РО 0. Имея в виду, что резонансные структуры отличаются только распределением электронов, нарисуйте по две резонансные структуры для каждого из этих ионов, стараясь свести число формальных зарядов на каждом носителе заряда к ми-шшуму. Какое максимальное число эквивалентных резонансных структур возможно для каждого из этпх ионов  [c.211]

    После того как было изучено регулярное строение натурального каучука, исследователи неоднократно предпринимали попытки синтезировать полимеры, которые бы обладали сходными с ним структурой и свойствами. Многочисленные опыты полимеризации диенов дали интересные результаты, позволившие сделать теоретические выводы о влиянии температуры, инициаторов и роли поли-меризационной среды на способ соединения молекул мономера в цепи. Так, например, была высказана мысль о том, что более высокая температура способствует присоединению мономера по принципу А-Цис, а более низкая — по принципу , А-гранс это объяснялось различием в свободных энергиях активации этих типов реакций. И хотя долгое время не удавалось доказать справедливость этой гипотезы для полимеризации диенов, именно благодаря ее использованию был достигнут дальнейший прогресс в области получения полимеров с регулярной молекулярной структурой. Только недавно, с применением высокочувствительных физических методов, в особенности ядерного магнитного резонанса, было установлено, что при полимеризации виниловых мономеров с заместителями, имеющими большой объем, в условиях низких температур образуются соединения с повышенным содержанием фракций син-диотактической структуры. [c.8]

    Большие относительные сдвиги, наблюдаемые во фторном резонансе по сравнению с протонным ЯМР, стали основанием для ряда интересных приложений, в которых задачи, где применение протонного резонанса было безуспешным, удалось решить с помощью ЯМР Так, с помощью ЯМР Р во многих случаях была изучена вращательная изомерия в замещенных этанах. Обычно вращательные барьеры низки, поэтому для получения надежных результатов при низких температурах в области медленного обмена необходима большая разность частот бv. На рис. X. 5 показан спектр ЯМР Ф 1,2-дифтортетра-хлорэтана при низкой температуре. В нем наблюдаются две системы Аг. Одна принадлежит траис-конформеру а, а другая— двум энантиомерным гош-конформерам б и б. Исследование методом динамического ЯМР позволило определить энергию активации процесса а б Еа = 40,3 кДж/моль (9,65 ккал/моль). Интегрированием сигнала найдена энтальпия равновесия ДЯ = = 510 30 Дж/моль- (122 7 кал/моль), причем более устойчив траис-конформер а. [c.379]

    Большая скорость спиртового обмена, по-видимому, свидетельствует об интересном механизме обмена. При этом надо иметь в виду, что связь металл — кислород в алкоксидах титана очень прочная. Бредли и Хильер [421 определили, что средняя энергия диссоциации связи ряДа алкоксидов титана приблизительно равна 100—110 ккал1моль. Наличие вакантных a-орбиталей в атомах большинства металлов, алкоксиды которых были изучены, облегчает протекание первой стадии нуклеофильного воздействия молекулы спирта на алкоксид металла, и, по-видимому, вследствие этого энергия активации спиртового обмена оказывается небольшой. При подробном обсуждении механизма спиртового обмена нужно учесть также и тот факт, что большинство алкоксидов металлов, содержащих первичные алкоксидные группы, представляют собой полимеры. Полимеризация происходит в результате образования елкоксидных мостиков, при этом проявляется тенденция атомов металлов к увеличению координационного числа металла. Имеется также возможность обмена между концевыми и мостиковыми алко-ксидными группами в пределах полимерной молекулы. Исследование методом ядерного магнитного резонанса [411 показало, что внутримолекулярный обмен в тетраэтоксиде титана при комнатной температуре происходит очень быстро. [c.238]

    Объяснение течения реакций замещения в ядре изохинолина автор построил на ошибочной теории резонанса. Ниже приводятся объяснения, которые могут быть приняты в настоящее время. Электрофильное замещение в ядре изохинолина происходит в результате действия положительно заряженной частицы на положительно заряженный ион изохинолиния, что сказывается иа легкости образования переходного комплекса, хотя бы из-за наличия электростатического отталкивания. Вследствие этого энергия активации в реакциях з ещения повышается и реакцяя протекает более трудно. Наиболее уязвимые для электрофильного замещения места в ядре изохиног Лина можно определить при рассмотрении структуры переходного комплекса. Принимая во внимание лишь структуры, в которых с атомом углерода изохинолинового ядра связана атакующая группа или водород (класс А), а также то, что кольцевой атом азота в переходном состоянии связан с протоном, можно установить следующую последовательность легкости электрофильного замещения (в порядке убывания) (5 или 7) > > (8, 6 или 4) >3> 1. Этот порядок совпадает с порядком электронной плотности в различных положениях. Полуколичественный расчет, сделанный для нейтрального ядра изохинолина, показывает, что плотность и-электоонов в углеродном скелете уменьшается в следующем порядке 5, 7, 8, 3, 6, 4 и 1 [290]. Если рассмотреть также структуры переходного комплекса, в которых с атомом углерода изохинолина связаны и замеща-юшая группа и водород, то реакционная способность при замещении будет уменьшаться в следующем порядке (5 или 8) > (4, 6 или 7) > 3 > 1. —Прим. перев. [c.304]

    Если возбудителем полимеризации служит металлический, ли -тий, перенос электрона приводит к возникновению радикал-ионов, существование которых доказано методом электронного парамаг- нитного резонанса при низких температурах они инициируют главным образом анионную полимеризацию, а при более высоких — радикальную (энергия активации второго процесса выше, чемл первого). Реакцию можно проводить с промежуточным образованием натрийнафталина или других аналогичных производных-антрацена, дифенила и т. д. [c.167]

    Как уже отмечалось, имеется ряд других характерных свойств, отличающих ароматические молекулы, таких, как длины связей, промежуточные между длинами простой и двойной связей, типы реакций, диамагнитные восприимчивости и т. д. Первое из этих свойств тесно связано с энергией резонанса, причем большие энергии резонанса наблюдаются только тогда, когда рассматриваемые связи мало отличаются по длине более того, для растяжения и сжатия предполагаемых простых и двойных связей кекулевской структуры до наблюдаемых длин требуется энергия, и наблюдаемая энергия резонанса является только остатком после затраты этой энергии сжатия — растяжения. Характерные для ароматических соединений реакции также подвержены влияниям энергии резонанса, так как очень часто энергия активации содержит член, отражающий потерю энергии резонанса в переходном состоянии, однако в энергии активации содержатся и другие члены, никак не связанные с ароматичностью, например отражающие изменение гибридизации от к 8р в переходном состоянии, приводящее к следующей предложенной Ингольдом [251 ппомежугочной базе нитрования  [c.12]

    В форме II одна из метальных групп находится в цис-поло-жеиии к атому кислорода, другая — в траке-положении, так что протоны будут экранированы в различной степени и будут давать различные химические сдвиги. В соответствии с этим спектры протонного резонанса чистых К,К-диметилацетамида и К,К-диме-тилформамида при комнатной температуре дают два пика, которые приписывают протонам неэквивалентных метильных групп. По мере повышения температуры линии сближаются и затем сливаются. Подбирая к формам линий теоретические кривые (стр. 237), можно определить значения времени жизни они порядка 0,1 сек. Определяемые из наклона прямых в аррениусовских координатах энергии активации для этих двух соединений равны соответственно 7 3 и 12 2 ккал-молъ . [c.251]

    Алкилнитриты (О—К-связь) [18, 21, 27, 57, 58]. Был исследован ряд алкилнитритов [27, 57] типичным оказалось поведение метилнитрита [58]. При 20° его спектр состоит из одной линии протонного резонанса, которая ниже —40° расщепляется на две. При —60° эти две линии хорошо разрешены. Их приписывают различным химическим сдвигам цис- и тракс-форм I и П, возникающим в результате заторможенного вращения округ О—М-связи. Константа скорости взаимного превращения этих двух форм была определена по уширению линии нри различных температурах между —35° (где она примерно равна 200 сек ) и - -10°. Найдено, что энергия активации, которую можно отождествить с высотой барьера потенциальной энергии, равна 7—10 ккал-молъ . Были проведены также измерения методом спинового эха [18] [c.252]

    При каталитическом гидрировании подобное резонансное взаимодействие, по-видимому, не оказывает влияния на скорость гидрирования бензольного кольца. Это иллюстрируется приведенными в табл. 8 данными о константах скорости гидрирования некоторых фенил-замещенных кислот на платиновых катализаторах [357]. Кроме того, установлено, что энергия активации в реакциях гидрирования бензойной и фенилуксусиой кислот совпадают. Можно предполагать, что резонанс бензольного кольца уничтожается, когда оно адсорбировано на поверхности катализатора одновременно исчезает также резонанс между бензольным кольцом и карбоксильной группой. Из табл. 8 видно также, что присутствие алкильных и карбоксильных групп вблизи бензольного кольца уменьшает скорость гидрирования. [c.219]

    Повышение или понижение реакционной способности ароматических соединений (влияние на легкость замещения), вызванное уже имеющимся в ядре заместителем, ничего не говорит о его влиянии на направление замещения. Объяснение правил ориентации, которое дается во многих учебниках, исходя из мезомерных предельных состояний монозамещенных ароматических соединений, предполагает, что заместители не только влияют на общую основность ядра в основном состоянии, но и у каждого углеродного атома ядра создают различные плотности электронов. Как показывают измерения ядерного магнитного резонанса, различия в электронных плотностях у отдельных углеродных атомов основного состояния монозамещенного ароматического соединения не так велики, как это следовало бы ожидать на основании мезомерного эффекта заместителей. У хлор- и бромбензола, фенола и анизола, например, не наблюдается вообще никаких различий. Следовательно, плотность электронов в нормальном состоянии ароматического соединения не может одна определять ориентацию заместителя при вторичном электрофильном замещении. Разные направления вторичного замещения объясняются тем, что заместители влияют на величину энергии активации реакций, ведущих к орто-, мета- и лара-замещенным продуктам. Именно это и определяет скорости трех электрофильных конкурирующих реакций [см. уравнение Аррениуса (39), ч. П1]. Различие в энергиях активации для орто-, мета- и пара-заместителей основано на том, что разница энергий между основным и переходным состоянием Ai (см. рис. 91) у этих веществ существенно отличается. Так как энергия переходного состояния неизвестна, то вместо нее будет рассматриваться о-комплекс (В на рис. 91), который лежит вблизи переходного состояния. Неточность, связанная с этим упрощением, невелика. [c.282]

    Большую стабильность изоиндальной формы (189) по сравнению с формой шиффова основания (190) приписывают более низкой п-электронной энергии первого, имеющего Юя-электрон-ную систему [242]. Изоиндольную систему можно также рассматривать, как имеющую орго-хиноидный характер сочленения с бензольным ядром. В порядке объяснения как относительной стабильности, так и сравнительной реакционной способности, показано, что эндотермический вклад энергии активации распада системы больше, чем возмещаемый экзотермический вклад вследствие образования бензольного кольца, как, например, при циклоприсоединениях в положения 1,3. Иными словами, изоиндол ведет себя как гипер-реактивная система Фотоэлектронная спектроскопия показала, что эта система имеет более низкую энергию резонанса по сравнению с нафталином, равно как и более низколежащий уровень возбужденного состояния [243]. [c.569]

    Электронно-колеоательные спектры 119-123 Электронный парамагнитный резонанс 126—136 Электропроводность 82, 83 Элементарная ячейка 42—44 Энергия активации 58, 83 [c.188]

    Алмазоподобные соединения. Адамантан, или трицикло[3,3,1,1 ] декан, молекулярная структура которого показана на рис. 37, представляет простейший насыщенный полициклический углеводород (СюН ) с атомами углерода, расположенными в виде сетки, напоминающей так называемую характерную ячейку решетки алмаза. Более того, адамантан является прототипом большого семейства алмазоподобных соединений со сходной молекулярной структурой, получающихся при замещении некоторых атомов углерода, образующих пространственную сетку, другими подходящими атомами. Кремний, азот и фосфор могут замещать третичный или мостиковый атом углерода, а кислород и сера могут играть роль одной или более метиленовых групп адамантана. Теплоемкость адамантана в области от 5° до 350° К определили Чанг и Уэструм [ПО] результаты их исследования представлены на рис. 38. При 208,62° К наблюдался резкий переход с кажущейся теплоемкостью больше 4000 кал -град -моль , а энтропия перехода равна 3,87 кал-град- -моль . Из-за значительного предпереходного увеличения теплоемкости изотермическая энтропия перехода при полном превращении в пластическую кристаллическую фазу, по-видимому, минимальна. Новацкий [480] сообщил, что адамантан образует плотно упакованную гранецентрированную кубическую решетку пространственной группы Та —Р 43т с а = 9,43 А. В недавней неопубликованной работе Нордмана [478] показано, что предположение о произвольной ориентации молекул лучше согласуется с новыми данными рентгеноструктурного исследования монокристалла, чем структура, предложенная Новацким, которая, однако, почти так же хорошо согласуется с этими данными. Проведенное Мак-Коллом и Дугласом исследование спектра протонного магнитного резонанса [391] показало резкое уменьшение теплоемкости в другой точке, при 143° К, которое интерпретируется как вращательный переход с энергией активации около 5 ккал-моль . [c.88]

    Как и следовало ожидать, ароматические соединения являются неактивными диеновыми компонентами. При реакциях присоединения резонанс ароматических колец бензола или нафталина полностью или частитао нарушается. Эта доля резонансной энергии должна быть восполнена на стадии, определяющей скорость реакции, как энергия активации. Поэтому легкость участия таких ароматических систем в реакции, как диенов, возрастает в ряду бензол — нафталин — антрацен. Положение диенофильной атаки в полициклических ароматических системах можно вывести из теоретических соображений [481] (относительно энергии локализации при озонировании [873]). [c.546]

    Свободный радикал дифенилникрилгидразил реагирует с фенолами бимолекулярно [44]. Методом ядерного магнитного резонанса была определена [45] скорость обмена атома водорода между феноксильным радикалом и фенолом. Отрыв атома водорода происходит очень быстро и с малой энергией активации. Б случае 2,4,6-три-трет.бутилфенола при 30° С /с = 30 л1моль-сек Е = 1,0 0,5 ккал/молъ. Уместно отметить, что малая энергия активации указывает на неприменимость правила Поляни — Семенова к таким реакциям. [c.250]

    Методом э.чектронного парамагнитного резонанса показано, что в полимерных образцах под нагрузкой, в соответствии с выводами флуктуационной концепции разрушения полимеров, химические связи начинают рваться сразу же с момента нагружеиия. На концах разорванных связей образуются свободные радикалы, к-рые и регистрируются этим методом. Опыты, выполненные при разных напряжениях и темп-рах, показали, что кинетика накопления радикалов, а следовательно, и разорванных связей хорошо коррелирует с кинетикой разрушения. Начальная энергия активации процесса накопления радикалов в полимерах под нагрузкой оказалась численно равной и , определенной из механич. испытаний по ф-ле (3). Т. о., прямыми опытами подтверждено, что в основе разрушения полимеров, описываемого ф-лой (3), действительно лежит процесс последовательного накопления разрывов связей. [c.377]


Смотреть страницы где упоминается термин Энергия активации резонанса: [c.149]    [c.315]    [c.295]    [c.295]    [c.42]    [c.200]    [c.252]    [c.244]    [c.69]    [c.380]    [c.269]    [c.123]    [c.238]    [c.13]    [c.7]   
Современная неорганическая химия Часть 3 (1969) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс энергия

Энергия активации



© 2024 chem21.info Реклама на сайте