Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия влияние на состояние

    ОН дает зависимость энергии от напряженности поля, представленную на рис. 9.1. О втором члене гамильтониана мы уже говорили при обсуждении ЯМР он описывает взаимодействие ядерного момента атома водорода с магнитным полем. Второй член меньше первого и имеет противоположный знак (состояние с Ш/ = + Vj является низшим). Совместное влияние первых двух членов уравнения (9.4) на энергии спиновых состояний атома водорода в магнитном поле показывает рис. 9.2,В. В приведенном примере напряженность магнитного поля фиксирована и штриховые линии показывают изменения энергии, вызываемые введением нового члена в гамильтониан. Для того чтобы определить энергию атома водорода в магнитном поле, мы используем для этого гамильтониана [уравнение (9.4)] базис из четырех возможных электронных и ядерных спиновых функций ф = Ф2 = [c.10]


    Спектральные данные, полученные для многих других ионов, использовать для определения Од и р не так просто, поскольку возникают различные осложнения, обусловленные спин-орбитальным взаимодействием. Влияние этого взаимодействия продемонстрировано на рис. 10.13 на примере -иона. Вследствие спин-орбитального взаимодействия (с. о.) трехкратно вырожденное состояние Г,, расщепляется, энергия основного состояния снижается и степень его снижения зависит от величины взаимодействия. Если энергия основного состояния снижается в результате спин-орбитального взаимодействия, энергии всех полос в спектре получают вклад, обусловленный этим снижением. Если вклад в полную энергию, обусловленный, нельзя определить, рас- [c.95]

    Поскольку октаэдрическое, квадратно-плоскостное и тетраэдрическое кристаллические поля вызывают различные расщепления пяти орбиталей, значительное влияние ш (I — -переходы оказывает геометрия комплексов ионов металлов. Спектральные данные для этих переходов должны давать информацию о структуре комплексов. В этом разделе мы прежде всего обсудим вопрос о том, как структура влияет на энергии различных состояний иона металла, и затем используем эти данные для определения структур различных комплексов. [c.100]

    В этом разделе мы вкратце рассмотрим, как проводят расчет эффектов кристаллического поля в интересующих нас молекулах или ионах с помощью гамильтониана уравнения (11.25). Прежде всего вернемся к обсуждению влияния различных факторов на магнитный момент. Если мы выпишем вклады в энергию данного состояния п зависящих от поля эффектов, рассмотренных в предыдущем разделе, то получим уравнение (11.27)  [c.140]

    Стационарные состояния. Ср>еди всех возможных состояний реагирующей системы очень важным является стационарное состояние, при котором никакие термодинамические свойства системы не изменяются во времени. Свойства могут изменяться в пространстве, а интенсивные свойства системы могут быть не непрерывны на ее границе, на которой может иметь место обмен массой и энергией между системой и окружающей средой. Если система пребывает в стационарном состоянии, соответствующие потоки массы и энергии постоянны во времени [5, 77]. Такая система находится под напряжением, так как некоторые параметры, особенно те, которые характеризуют состояние окружающей среды (Т, р, д —химические потенциалы), сохраняются постоянными или по крайней мере почти не изменяются под влиянием состояния системы. Различие между системой и ее окружением требует допущения, что последнее влияет на первое, но не наоборот. [c.10]


    Пространственная разделенность электронных состояний, которая существует в случае потенциала Хартри - Фока, показьшает, что остовные и валентные электроны можно рассматривать как две подсистемы, взаимное влияние которых определяется главным образом не детальными, а некоторыми интегральными характеристиками подсистем. Это, вместе с приближением замороженного остова, позволяет сформулировать задачу расчета валентных состояний при заданных остовных как задачу о движении только валентных электронов, но в эффективном поле, отличающемся от поля Хартри — Фока. Такое эффективное поле должно быть в целом слабым по сравнению с полем Хартри - Фока, так как энергия основного состояния в эффективном поле определяет энергию валентных электронов, что на несколько порядков меньше энергии основного состояния (1х-состояния) в поле Хартри - Фока. Более того, так как орбитали валентных электронов сосредоточены в той области пространства, где потенциал Хартри — Фока мал (кулоновское поле ядра экранировано остовными электронами), то рассматриваемое эффективное поле может быть слабым не только в целом, но и в каждой точке пространства (заметим, что последнее условие не является необходимым). [c.278]

    Изложенное означает, что энтропия является мерой неупорядоченности состояния системы. Энтропия растет не только с повышением температуры, но при переходе вешества из состояния с меньшей энергией в состояние с большей энергией, например при плавлении (и возгонке) твердого вещества, при кипении жидкости. Ростом энтропии сопровождаются и процессы расширения газа, растворения кристаллов, химическое взаимодействие, протекающее с увеличением объема, например диссоциация соединения, когда вследствие роста числа частиц их неупорядоченность возрастает. Наоборот, все процессы, связанные с увеличением упорядоченности системы, такие как охлаждение, отвердевание, конденсация, сжатие, кристаллизация из растворов, химическая реакция, протекающая с уменьшением объема, например полимеризация, сопровождаются уменьшением энтропии. Возрастание энтропии вещества при повышении температуры иллюстрирует рис. 2.5. Влияние давления на энтропию можно показать на следующем примере при Т - 500 К и р-101 кПа энтропия аммиака составляет 212 Дж/(моль К), при 7 -500 К и р-30300 кПа эта величина равна 146 Дж/(моль-К), т. е. с увеличением давления энтропия снижается, но незначительно. [c.189]

    Любое влияние, делокализующее положительный заряд карбокатиона, ведет к его стабилизации, что означает понижение энергии основного состояния. [c.192]

    Стабильность. Указание на энергию частицы в основном состоянии. В этом смысле стабильность не связана прямо с реакционной способностью. Если говорят, что частица стабилизируется (например, вследствие резонанса), то это означает, что частица под влиянием этого воздействия приобретает более низкую энергию основного состояния, чем в отсутствие воздействия. [c.208]

    Близок к М.Э. электромерный эффект - Е, —Е), заключающийся в поляризации сопряженной системы связей реагирующей молекулы или иона в переходном состоянии под влиянием электрич. полей реагентов. В отличие от статич. М. э, этот эффект носит динамич. характер. Его величина определяется поляризуемостью сопряженной системы, а направление поляризации всегда способствует понижению энергии переходного состояния. Поэтому, несмотря на сходство механизмов, возможны разл. направления мезомерной и электромерной поляризации связей. [c.19]

    Как уже отмечалось, энергия в действительности не является абсолютной величиной. Неясна степень влияния неизвестной аддитивной константы. Мы можем говорить о полной энергии строго, только выражая ее через разностную функцию, т. е. относительно энергии стандартного состояния. Формально это же можно сказать и относительно энтропии. Мы можем выразить такую относительную природу явно, написав, например  [c.75]

    Смещение полос поглощения, происходящее под влиянием внутримолекулярных и межмолекулярных взаимодействий, осуществляется в результате изменения разности между энергиями основного и возбужденного состояний, причем это может происходить либо за счет изменения энергии основного состояния, либо за счет изменения энергии обоих состояний. Если при изменении энергии основного и возбужденного состояний разность между ними не меняется, то соответствующая полоса в спектре не смещается, хотя в молекуле при этом могут произойти существенные изменения в распределении электронной плотности. [c.62]

    Влияние комплексообразования на характер каталитического действия отмечалось нами неоднократно. Во всех гетерогенных каталитических реакциях процесс начинается с адсорбции субстрата (или субстратов) на поверхности катализатора. В ферментативных процессах реакция обычно начинается с образования фермент-субстратного комплекса. Во многих из этих реакций энергия комплекса, образованного между катализатором и субстратом, ниже энергии исходных компонентов. Этот факт трудно согласовать с ускорением реакции, в которой свободная энергия активации должна понижаться. Однако все становится на свои места, если при комплексообразовании свободная энергия переходного состояния понижается еще сильнее, чем энергия основного состояния. В этом случае действительно идет катализ. Необходимое понижение свободной энергии возможно либо в результате изменения маршрута реакции при комплексообразовании, либо в результате понижения энергии переходного состояния без изменения маршрута реакции, как в простых каталитических реакциях. [c.297]


    Изменение энергии стационарных состояний атома под влиянием внешнего электрического поля называется эффектом Штарка. При отсутствии поля стационарные состояния щт) соответствуют одной энергии Еп (вырождение по квантовому числу т). При включении однородного электрического поля напряженности в операторе Гамильтона появляется дополнительное слагаемое [c.324]

    В первом приближении теории возмущений поправка к энергии невозмущенной системы определяется средним значением оператора возмущения в этом состоянии. Изменение энергии в состоянии nj tn) под влиянием возмущения (70,1) будет равно [c.325]

    В 1948—1949 гг. Эванс и др. [6] и автор [1, 14—16] показали, что уравнение (2) можно практически применить для количественной и качественной характеристики химической реакционности молекул, содержащих я-электроны. В основе этого метода рассмотрения лежит допущение, что в ряду однотипных реакций изменения энергии активации, вызванные заместителями, пропорциональны изменениям энергии сопряжения при переходе системы из начального в переходное состояние. Изменение энергии сопряжения вычисляется методами квантовой химии, причем переходное состояние моделируется радикалом, образованным из исходного радикала и молекулы. Этот метод исследования влияния заместителей на энергию активации (скорость реакции) в ряду однотипных реакций мы будем называть методом энергии переходного состояния .  [c.191]

    В каталитическом процессе с металлами или окисями металлов в качестве катализаторов Писаржевский различает две стадии. Первоначально электроны, освобождаемые металлом, располагаются в виде тонкого слоя вокруг металла. Это соответствует конечному состоянию равновесия первой стадии. Лишь быстро двигающиеся электроны излучаются металлом в обыкновенных условиях электроны, обладающие малой скоростью, уходят обратно в металл, притягиваясь его ионами. Во второй стадии слой электронов притягивает молекулы (к своей адсорбирующей поверхности эти молекулы проникают внутрь металла, образуя твердый раствор. Быстро окисляющиеся металлы (например, цинк) образуют на поверхности пленку окиси, которая препятствует образованию слоя электронов поэтому металлическая поверхность должна быть чистой, чтобы она могла катализировать реакцию. Это ограничение действительно для обычных условий, но не для тех, когда применяется энергия видимого света или лучей Рентгена, которая освобождает электроны с такой силой, что пленка из окиси не может предохранить металл и влияние состояния поверхности, как и влияние адсорбции, становится незначительным. Катализирующее действие окисей металлов Писаржевский объяснял с той же точки зрения, что и действие металлов. Диссоциацию на электроны и ионы (хотя и идущую в очень малой степени, как это показывает положение окислов в электродвижущем ряду), можно представить следующим образом  [c.65]

    Систематика электронных состояний двухатомных молекул. Движение электронов двухатомной молекулы происходит в электрическом поле осевой симметрии, возникающем благодаря наличию двух ядер, причем ось симметрии поля совпадает с линией, соединяющей ядра атомов. Различия в симметрии электрических полей атома и молекулы обусловливают существенные различия в особенностях и систематике электронных состояний. Благодаря тому что электрическое поле двухатомной молекулы обладает осевой симметрией, вектор результирующего орбитального момента количества движения электронов молекулы Ь в результате взаимодействия с электрическим полем прецессирует вокруг его оси так, что проекция вектора на ось поля Мс может принимать только дискретные значения, равные Ь, Ь — 1,. .., —Ь всего 21+1 значение. Чем сильнее электрическое поле молекулы, тем значительнее прецессия вектора Ь вокруг оси поля и тем больше различие в энергиях состояний, отличающихся величиной Мь- Следует отметить, что у двухатомных молекул величина орбитального момента количества движения электронов не оказывает влияния на энергию электронных состояний молекулы. В связи с этим электронные состояния молекул классифицируются по значениям квантового числа проекции орбитального момента на линию, соединяющую ядра атомов, Л = Ме, которое при данной величине Ь может принимать значения 0,1,2,..., Ь. Если пренебречь вращением молекулы, ее электронные состояния, отличающиеся знаком должны иметь одинаковую энергию, и поэтому все состояния с Л 1 будут дважды вырожденными. [c.39]

    Нильсен [3085] показал, что теоретически возможны как ангармонические резонансы первого и второго порядков между другими типами колебательных состояний, так и ангармонические резонансы более высоких порядков. Однако, как показал Нильсен, чем выше порядок резонанса, тем меньше его влияние на энергию колебательных состояний. Следует отметить, что сумма энергий колебательных состояний, возмуш,енных резонансным взаимодействием, равна сумме энергии этих состояний без учета возмуш,ений, и, следовательно, резонанс приводит как бы к взаимному отталкиванию соответствующих колебательных состояний. [c.63]

    Учет центробежного растяжения. В изложенных выше приближенных методах расчета колебательно-вращательных составляющих термодинамических функций многоатомных газов предполагалось, что центробежное растяжение молекул при вращении отсутствует. Влияние этого эффекта на энергию вращательных состояний многоатомных молекул изучено недостаточно полно. [c.120]

    Во многих случаях учет влияния гравитационных или поверхностных сил возможен без представления каждой термодинамической переменной как явной функции высоты положения системы или площади поверхности контакта между фазами. Такой подход предполагает, что система находится в равновесии при постоянном значении одной из этих двух переменных, а влияние общих изменений такой переменной учитывается не термодинамическими методами. Более общим подходом является рассмотрение состояния системы с учетом дополнительных переменных. Это может быть осуществлено соответствующим применением обобщенного определения внутренней энергии, учитывающего влияние высоты и межфазной поверхности. Если при оценке внутренней энергии влияние гравитационных сил и поверхностной энергии не учитывается непосредственно, то, как указывалось ранее, их влияние должно учитываться косвенным [c.219]

    Теперь, используя уравнение (10.7а), можно рассчитать вклад спин-орбитального взаимодействия в энергии всех состояний J. Для основного уровня f, где / = 2, мы получаем 1,2 л[2(2 + 1) — 3(3 + 1) — 1(1 + + 1)] = — 4л. Этот результат приведен на рис. 10.2 наряду с результатами аналогичных расчетов влияния .Ь5 на все состояния г/ -системы. Спин-орбитальное взаимодействие снимает не все вырождение, и остав-шееся вырождение. соответстБующсс целочисленным значениям Л/у. / до — J. указано в скобках над каждым уровнем. Отметим, что уравнение (10.76) выполняется и центр тяжести сохраняется. Например, в терме V умножение вырождения па изменение энергии дает 5/. — 3/. — [c.70]

    Разность энергий между состояниями и в комплексе снижается относительно разности для газообразного иона под влиянием ковалентности, и в результате разность энергий для газообразного иона нельзя использовать в качестве р [в уравнении (10.12)]. Лучше оценивать р для каждого комплекса экспериментально. Уравнение (10.12) можно использовать при таких расчетах, взяв величину Од для перехода и экспериментальную энергию АЕ для перехода А2д Т1 Р). Единственная неизвестная величина, оставшаяся в уравнении (10.12),— это р. Снижение Р служит, помимо всего прочего, мерой ковалентности. Этот эффект носит название нефелауксетического, иногда его выражают с помощью параметра р , показывающего процент снижения энергии состояния в комплексе по сравнению с энергией состояния Р в свободном газообразном ионе [13]. Параметр (3" рассчитывают по уравнению [c.95]

    В переходном состоянии, имеющем структуру, промежуточную между исходным амидом 1 и интермедиатом 2, электронная плотность на карбонильном углероде повышается. Поэтому электроноакцепторные группы (—/- или —М-группы) в ароматическом кольце будут понижать свободную энергию переходного состояния (за счет размазывания отрицательного заряда). На свободную энергию исходного соединения 1 эти группы оказывают гораздо меньшее влияние. При понижении величины О в переходном состоянии по сравнению с исходным величина также понижается, а скорость реакции увеличивается (гл. 6). Электронодонорные группы ( + /- или +Л -группы) в ароматическом кольце должны, наоборот, уменьшать скорость реакции. Конечно, многие группы проявляют —/- и +М-эф-фекты, и в этих случаях не всегда можно предсказать, какой из этих эффектов будет преобладать. [c.361]

    Влияние электронодонорных и электроноакцепторных групп. Измеряя скорости замещения для соединений типа n-Z Wi,—СН2Х, можно исследовать электронные эффекты групп Z в данной реакции. Стерическое влияние Z при этом минимально или отсутствует вообще, поскольку эта группа удалена от реакционного центра. Для реакции SnI электроноакцепторные заместители Z снижают скорость, а электронодонорные — увеличивают ее [248], так как эти последние заместители понижают энергию переходного состояния (и карбокатиона) путем делокализации положительного заряда, например [c.71]

    Суммарное спиновое состояние оказывает существенное влияние на энергию возбужденного состояния. В состоянии электроны, находящиеся в одинаковом спиновом состоянии, в большей степенп избегают друг друга, чем в S , в результате чего уменьшается по сравнению с энергия электронного отталкивания. Поэтому полная энергия триплетного состояния ниже, чем соответствующего синглетного. [c.155]

    Образующийся 0-комплекс определяет, в какое положение орто-, параша мета-) вступает новый заместитель, так как имеющиеся в кольце замести-те-чи оказывают различное влиянне на энергию активации трех возможных переходных состоящий (см. ниже). Различие в энергиях активащги обусловливает, соглас[ш уравнению Аррениуса (В.20), различие в скоростях конкурирующих стадий [см. схему (Г.5.6)]. Поскольку энергии переходных состояний, приводящие к трем возможным о-комплексам, неизвестны, то вместо инх будут рассматриваться энергнн а-комплексов. Предполагается, что неточность, связанная с этим упрощением, невелика. Это позволяет представить себе энергию а-комплек-са и энергию переходного состояния (которое приводит к а-комплексу) для орго-. пара- н лгга-заместителей (ср. рнс. 106). [c.395]

Рис. 8.2.4. Расщепление уровней энергии для состояний, отвечающих конфигурации (Р в октаэдрическом поле лигандов а - уровень в отсутствие взаимодействия между электронами 6 - сдвиг уровня под влиянием сферически симметричной части потенциала межэле1сгронного отталкивания в- расщепление при полном учете межэлектронного отталкивания. Рис. 8.2.4. Расщепление уровней энергии для состояний, отвечающих конфигурации (Р в <a href="/info/729451">октаэдрическом поле лигандов</a> а - уровень в <a href="/info/1389888">отсутствие взаимодействия</a> <a href="/info/1286066">между электронами</a> 6 - сдвиг уровня под <a href="/info/476554">влиянием сферически</a> <a href="/info/249782">симметричной части</a> потенциала межэле1сгронного отталкивания в- расщепление при <a href="/info/1600990">полном учете</a> межэлектронного отталкивания.
    В реакциях с участием изотопов различия в прочности связей сохраняются и в переходных состояниях. Однако при линейном симметричном переносе протона от одного атома к другому (ситуация в реакциях Е2 приближается к таковой для переноса протона от Ср к основанию) различия в связывании в активированном комплексе незначительны. Таким образом, при рассмотрении влияния изотопного замещения на скорость Е2-реакции необходимо учитывать различия в прочности связи только в основном состоянни. Пос1(ольку понижение энергии основного состояния без значительного изменения энергин переходного состояния должно повышать энергию активации, то можно предвидеть, что связи с протием будут разрываться быстрее, чем соответствующие связи с дейтерием (рис. 6-2)  [c.219]

    Влияние среды на P. . Совр. развитие теории P. . связано с изучением влияния среды на р-ции, протекающие в конденсир. фазе. (См. также Реакции в растворах). Согласно классич. подходу (С. Глесстон, К. Лейдлер, Г. Эйринг, 1941), определяют изменения энергии начального состояния реагентов и переходного состояния под влиянием среды (р-рителя) в рамках теории активир. комплекса. Роль среды сводится к созданию дополнит, потешщала, модифицирующего ППЭ соответствующей р-ции в газовой фазе. Этот потенциал м.б. учтен в совр. квантовохим. расчете. Модификация ППЭ потенц. полем среды м. б. очень велшса для р-ций с переносом заряда в полярном р-рителе, напр. S 2. [c.215]

    Теория кристаллического поля (ТКП) является современной интерпретацией электростатических представ лений о строении комплексных соединений Согласно электростатической модели, взаимодействие между комплексообразователем и ионными или полярными лигандами подчиняется закону Кулона При этом частицы, образующие комплекс, рассматриваются как недеформи-руемые шары с определенным зарядом и радиусом В отличие от этих простых электростатических представ лений, в теории кристаллического поля рассматривается влияние электростатического поля лигандов на энерге тическое состояние электронов комплексообразователя [c.168]

    Хотя радикалы представляют собой нейтральные частицы, полярные эффекты оказывают существенное влияние на их реакции вследствие разделения заряда в переходном состоянии [96]. Напрнмер, в случае переходного состояния (12) отрыва водорода [схема (5)] радикалами X- с высоким сродством к электрону, например С1-, тpeт- WqO , СРз-, электроны сильнее сдвигаются в сторону X, что приводит к разделению зарядов. Если заряды могут делокализоваться соседними заместителями, то энергия переходного состояния понижается и реакция протекает легче. Хотя обычно растворители менее влияют на радикальные реакции, чем в случае ионных реакций, многие реакции радикалов зависят от растворителя за счет эффектов свободного объема п сольватации [c.572]

    В 1945 г. Шредингер написал книгу Что такое жизнь с точки зрения физики , оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них — термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюцией изолированной физической системы к состоянию с максимальной энтропией, т. е. неупорядоченностью (второе начало термодинамики), и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организм питается отрицательной энтропие1и>. Это означает, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергие . Неравновесное состояние открытой системы поддерживается оттоком энтропии в окружающую среду. Вторая проблема — общие структурные особенности органиа-мов. По словам Шредингера, организм есть апериодический кристалл, т. е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов Это утверждение справедливо для строения организмов, клеток и биологических макромолекул (белки, нуклеиновые кислоты). Как мы увидим, понятие об апериодическом кристалле важно для рассмотрения явлений жизни на основе теории информации. Третья проблема — соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает, квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос Почему атомы малы Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению с чем малы атомы. Они малы по сравнению с нашими мерами длины — метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов Действительно, число атомов в наименьшей бактериальной клетке [c.12]

    Микроструктура полимерной цепи определяется структурой переходного состояния для реакции роста цепи. Различия в структуре переходного состояния, приводящие к различным способам построения полимерной цепи, в значительной степени определяются отталкиванием химически несвязанных групп в переходном состоянии, т. е. различного рода стерическими эффектами. Теоретическое расс1ютрение этой проблемы представляет значительные трудности, так как требует учета влияния тонких деталей структуры переходного состояния на энергию переходного состояния. Простейший подход к этой проблеме основан на энергетической оценке различных структур полимерной цепи. При этом предполагается, что реализуется та структура переходного состояния, которая приводит к энергетически наиболее выгодной структуре полимерной цепи [21, 22]. Так, например, из трех структур цепи полихлорвинила [c.93]

    Молекулярные постоянные PH в состоянии A U определялись в работах [3210, 1741, 1006, 2191, 2192] на основании анализа вращательной структуры полосы О—О системы i4 n —Х 2 и в работе [2586а] —на основании анализа вращательной структуры полос 1—О и О—О той же системы. Пирсом [3210] были проанализированы 27 ветвей полосы О—О, соответствующих переходам между состояниями Л П/ и Х 2, и найдено, что Л П/-состояние PH по типу спин-орбитальной связи является промежуточным между случаями Гунда а иЬ. Приведенное в табл. 117 значение энергии возбуждения состояния Л П, есть Voo линии (1) полосы О—О, найденное для системы Л П —Х 2 в работе [3210]. Величина постоянной спин-орбитальной связи PH в состоянии Л П,- с наибольшей точностью была определена Леги [2586а] на основании анализа вращательной структуры полос 1—О и О—О системы Л П — Х 2 и учета возмущений в положении уровней энергии PH в состоянии Л П,, вызванных влиянием других электронных состояний. Приведенные в табл. 117 значения молекулярных постоянных PH в состоянии Л П приняты по данным, рекомендованным в работе [2586а]. [c.409]

    Как видно, в возбужденном состоянии кольцо несет большой положительный заряд, а нитрогруппа — отрицательный заряд. Введение в кольцо заместителей, склонных отдавать электроны, должно поэтому пони- жать энергию возбужденного состояния по сравнению с основным состоянием и тем самым вызывать батохромпый сдвиг. Именно так должно обстоять дело в случае алкильных групп (—/). Действительно, п-алкильные производные нитробензола поглощают при меньших частотах, чем сам нитробензол. Этот эффект полностью аналогичен ускорению сольволиза бензилгалогенидов под влиянием алкильных заместителей. В обоих случаях алкильная группа вызывает стабилизацию положительно заряженного продукта в большей степени, чем нейтрального реагента. При [c.141]

    Таким образом, знаменатель не является просто разностью между энергией МО и энергией МО 6, системы В, как в случае простого расчета по методу Хюккеля. Клопман учитывал влияние одного реагента на энергии молекулярных орбиталей другого при взаимодействии, однако пренебрегая дифференциальным перекрыванием [34]. /а представляет собою вертикальный потенциал ионизации электрона на МО ui и Д/ г — изменение в значении / г вследствие взаимодействия с системой В [99]. Аналогично E i — вертикальное сродство к электрону МО bi системы В, .E i — изменение в значении E l из-за взаимодействия с системой Л. Если обе системы Л и являются нейтральными, неполярными молекулами, то абсолютные значения M i и АЕв[ могут быть относительно невелики в сравнении с абсолютным значением ац что делает выражение — Яоо) меньше, чем I i — Ев - Принимая во внимание электронное отталкивание, ядерное притяжение и интегралы перекрывания, мы видим, что относительная важность взаимодействия с переносом заряда между ВЗМО системы Л и НОЧО системы В по сравнению с вкладом других членов больше, чем это можно ожидать просто из величины (/ г — -Ев/)- То же самое может быть сказано о переносе заряда от к Л. Если одна из двух систем, например Л, является анионом, тогда —ДЕ вг будет иметь большую положительную величину, которая едва ли может быть скомпенсирована прибавлением йц. Однако в этом случае мало в сравнении со случаем нейтральной системы Л, что и делает взаимодействие между ВЗМО системы Л и НСМО системы В преобладающим над всеми другими членами переноса заряда. В случае взаимодействия между нейтральной системой Л и катионоидной системой В Ef i будет большой положительной величиной, и особую важность приобретает взаимодействие между ВЗМО системы Л и НСМО системы В. В некоторых случаях разница в энергии между состоянием с электронным переносом от ВЗМО одного реагента на НСМО другого, вз- -нс, и первоначальным состоянием, настолько мала, что выражение для возмущения второго порядка, подобное уравнению (12), также становится непригодным. В этом случае может быть целесообразнее представить энергетический член D в виде [c.43]

    Относительно отдельных входящих в механизм реакций элементарных процессов можно сказать следующее. В настоящее время с полной достоверностью неизвестно, какой из трех приведенных выше возможных процессов зарождения цепей имеется в действительности. По Н. Н. Семенову [237], основную роль здесь должен играть процесс (0) как энергетически значительно более выгодный, нежели два других процесса. Энергия активации этого процесса, согласно Н. Н. Семенову, равна 45 ккал. Достоверно неизвестно, протекают ли зарождающие цепь процессы в объеме или на поверхности. Медленность установления равновесия без участия поверхности (см. стр. 485—488), а также резкое влияние состояния поверхности на водородное пламя скорее свидетельствуют о гетерогенном механизме зарождения цепей. Весьма веский довод в пользу гетерогенного зарождения цепей в реакции горения водорода недавно был получен в работе Патрика и Робба [1013], которые нашли, что покрытие стенок реакцион- [c.514]


Смотреть страницы где упоминается термин Энергия влияние на состояние: [c.281]    [c.257]    [c.273]    [c.343]    [c.314]    [c.58]    [c.170]    [c.1608]    [c.110]    [c.577]    [c.176]   
Теория резонанса (1948) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия состояния



© 2025 chem21.info Реклама на сайте