Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика кислотой

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]


    В гомогенном катализе следует различать среди всех катализаторов, действующих по различным схемам или механизмам, кислоты и основания, когда они проявляют свою активность в водных растворах или в родственных средах (например, в спиртах). Экспериментирование и кинетическое исследование в отношении этой группы следует проводить особо в то время как обычные катализаторы действуют, как правило, со свойственной им селективностью и по свойственной им кинетике, кислоты и основания, поведение которых в водной среде известно априори, проявляют частичное или полное сходство, что объясняется общим для них промежуточным агентом — протоном. [c.95]

    Кинетику окисления пропилена над молибдатом Со—В1 исследовали при 420—480 "С [63] конечные продукты — акролеин, акриловая кислота, СО и СО,. [c.158]

    Еще более эффективен адсорбционно-электрохимический механизм пассивирования, установленный Эршлером, Б. Н. Кабановым, Я. М. Колотыркиным и др. Справедливость этого механизма подтверждается, напрнмер, данными по растворению платины. Скорость ее растворения в соляной кислоте при постоянном потенциале экспоненциально зависит от поверхностной концентрации кислорода. Чтобы скорость растворения упала в четыре раза, достаточно посадить на электрод количество кислорода, способное покрыть около 4% его видимой поверхности. Следующая такая же порция кислорода уменьшает скорость растворения еще в четыре раза, т. е. в шестнадцать раз по сравнению с первоначальной величиной, новые 4% доводят ее до /б4 от начального значения и т. д. вплоть до практически полного прекращения растворения платины. Подобная экспоненциальная зависимость объясняется Эршлером вытеснением из двойного слоя адсорбированными атомами кислорода (играющими роль отрицательного конца диполя металл — кислород) эквивалентного числа адсорбированных анионов. Уменьшение числа анионов в двойном слое соответственно снижает ионный скачок потенциала при сохранении неизменной общей разности потенциалов между металлом и раствором. Это должно привести, согласно законам электрохимической кинетики, к экспоненциальному снижению скорости ионизации, т. е. к такому же уменьшению скорости растворения металла, что и наблюдается на опыте. [c.484]

    Кривая накопления кислот также может иметь максимум что свидетельствует об участии кислот в образовании смол. Кинетика поглощения кислорода и накопления гидропероксидов в спи- сываемом эксперименте показана на рис. 2.7. [c.51]

    СОМ будет ионизация адсорбированного водорода с переходом его в раствор. Таким образом, эта область потенциалов отвечает только стадии разряда (при катодном толчке) и ионизации (при анодном толчке), что позволяет исследовать кинетику одной этой стадии без наложения осложняющих эффектов, связанных с процессами рекомбинации или диссоциации молекул водорода. Изучение зависимости емкости двойного слоя и омического сопротивления (эквивалентного торможению па стадии разряда) от частоты наложенного тока в этой области потенциалов позволило Долину, Эрш-леру и Фрумкину впервые непосредственно измерить скорость акта разряда. Параллельные поляризационные измерения при небольщих отклонениях от равновесного потенциала, где неренапряжение еще линейно зависит от плотности тока, дали возможность найти скорость суммарного процесса и сопоставить ее со скоростью стадии разряда. Было установлено, что акт разряда протекает с конечной скоростью, причем ее изменение с составом происходит параллельно изменению скорости суммарной реакции. В то же время скорость стадии разряда всегда больше, чем скорость суммарной реакции (в 27 раз в растворах соляной кислоты и в И раз в растворах гидроксида натрия). Таким образом, акт разряда хотя и протекает с конечной скоростью, но не определяет скорости всего процесса выделения водорода на гладкой платине и не является здесь лимитирующей или замедленной стадией. [c.416]


    Сульфирование. Сульфирование ароматических соединений сильно тормозится небольшими количествами воды, присутствующей первоначально в реакционной смеси или образующейся в ней во время реакции [211]. Эта сильная зависимость от концентрации воды значительно усложняет изучение кинетики реакции в водных растворах серной кислоты. [c.451]

    А. М. Серебряный изучал кинетику реакции фенола с ацетоном в присутствии соляной кислоты и большого избытка фенола (мольное соотношение фенол ацетон =8 1) при 80 °С и определял концентрацию ацетона и дифенилолпропана в реакционной массе. Им [c.84]

    Японские исследователи изучали кинетику реакции в присутствии 36%-ной соляной кислоты и промотора — тиогликолевой кислоты при таких условиях, когда выход дифенилолпропана составляет 80—90%, что позволяет считать реакцию необратимой (температура 25—45°С). Были выведены кинетические уравнения для двух случаев. В одном случае фенол берут в большом избытке по сравнению со стехиометрическим (мольное соотношение фенол ацетон = 10 1). Тогда скорость реакции зависит только от концентрации ацетона, что и было подтверждено экспериментальными данными по изменению концентрации ацетона. При стехиометрическом соотношении фенол ацетон было экспериментально установлено, что скорость зависит от концентрации обоих компонентов и имеет первый порядок по ацетону и второй — по фенолу  [c.86]

    Кинетика сульфирования. Качественно было установлено, что при обработке алканов концентрированной серной кислотой скорость дегидрирования и изомеризации (в особенности алканов с третичными атомами водорода) увеличивается с ростом температуры и может превысить скорости других реакций. [c.319]

    Индийские исследователи изучали кинетику реакции в присутствии безводного хлористого водорода и различных промоторов (этил-, бутил- и гексилмеркаптана, а также тиогликолевой кислоты). По ходу процесса определяли концентрации ацетона и дифенилолпропана, а количество фенола рассчитывали по количеству дифенилолпропана, считая, что фенол реагирует с ацетоном точно по стехиометрическому соотношению и не расходуется на образование побочных продуктов. Авторы, предположив, что реакция образования дифенилолпропана подчиняется уравнению второго порядка [c.86]

    Кинетика анодного растворения металлов должна зависеть пе только от концентрации гидроксильных ионов, но и вообще от анионного состава раствора. Обычно принималось, что другие анноны в той или иной степени способны вытеснять ионы ОН с поверхности растворяющегося металла и тем самым снижать н каталитическое действие. С такой точкой зрения согласуется, например, замедление процесса растворения железа при переходе от сульфатных к хлоридным растворам с тем же pH. Ионы С1 обладают большей поверхностной активностью, чем иопы 504 или Н504", и замещают большее число ионов 0Н , т. е. заметнее снижают их каталитическое действие на процесс растворения. Однако в более общем случае, как это было показано Я. М. Колотыркиным с сотр., любые анионы способны, так же как и ионы ОН-, сами катализировать процесс анодного растворения металлов. Результативный эффект определяется поэтому конкретными условиями протекания процесса растворени.ч. В области низких pH, где концентрация ионов ОН мала и доля занятой ими поверхности растворяющегося металла незначительна, другие анионы (например, анионы серной кислоты) могут адсорбироваться на свободной поверхности, не уменьшая поверхностной концентрации гидроксильных ионов. В этих условиях скорость растворения должна расти при увеличении общей когщентрации анионов. При высоких pH, где концентрация ионов 0Н и доля занятой ими поверхности велики, на первый план выступает эффект вытеснения гидроксильных ионов другими анионами, и скорость растворения при повышении обшей концентрации анионон может уменьшаться. [c.478]

    Более полное изучение кинетики и различных влияний на полимеризацию при помощи фосфорной кислоты см. (372). [c.110]

    Кинетика реакции. При изучении кинетики было обнаружено, что скорости присоединения серной кислоты к олефинам Са- заметно различаются. [c.193]

    Чтобы определить стадии процесса, кинетику замещения водорода на галоген сравнивали с кинетикой взаимодействия галоидов с водородом. Энергия активации при образовании галоидоводородных кислот в результате взаимодействия галоидов с водородом была рассчитана с точки зрения бимолекулярного механизма и механизма образования через свободные радикалы. Сопоставление полученных результатов с экспериментальными показало, что в случае фтора, хлора и брома промежуточно образуются свободные радикалы, в то время как реакции иода с водородом протекают по бимолекулярному механизму. [c.264]


    Адамс с сотрудниками [183] изучали кинетику окисления пропилена на катализаторах молибдата висмута. Они наш.ли, что по отношению к пропилену реакция будет первого порядка и не зависит от кислорода и других продуктов. Энергия активации составляет при 350—500 °С около 20 ккал/моль. Молекулярный водород не влияет на образование акролеина и не окисляется. Наилучшая селективность в отношении образования акролеина достигается при пс-пользовании катализаторов молибдата висмута нри 490—520 °С. Побочными пpoдyктaмиJ будут угольная кислота, формальдегид и ацетальдегид. [c.94]

    Природа электрода, так же как и сгепень развития его поверхности, играет важную роль в кинетике процессов электрохимического восстановления и окисления особенно отчетливо это проявляется в случае сложных окислительно-восстановительных реакций. Например, при восстановлении азотной кислоты на губчатой меди получается почти исключительно аммиак, а на амальгамированном свинце — преимущественно гидроксиламин. Другим примером влияния материала электрода на процесс электровосстановления может служить реакция восстановления ацетона. В результате этого процесса получаются два основных конечных продукта — изопропиловый спирт СН3СНСН3 и пннакон (СНзСОНСНз)2. [c.432]

    Однако уже давно было замечено, что скорость электроосаждения, а также электрорастворения металлов группы железа зависит от pH раствора и присутствия в нем примесей. Р. X. Бурштейн, Б. Н. Кабанов и А. Н. Фрумкин (1947) высказали предположение о непосредственном участии ионов 0Н в кинетике этих процессов. По их мнению, ионы 0Н играют роль своеобразных катализаторов. Механизм реакций катодного осаждения и анодного растворения железа, кобальта и никеля с образованием промежуточных частиц типа РеОН, РеОН+ или Ре-Ре0Н+ рассматривался затем Хейслером, Бокрисом, Фишером и Лоренцом и многими другими авторами. Было предложено несколько схем, объясняющих такие экспериментальные данные, как характер зависимости скорости реакции от pH, небольшой наклон тгфелевской прямой в чистых растворах серной кислоты, его повыщение при переходе к растворам соляной кислоты и при введении добавок поверхностно-активных веществ и т. д. В качестве иллюстрации можно привести схему Бокриса [c.473]

    Конечными продуктами окисления углеводородов топлив и сернистых соединений, растворимыми в воде, являются в основном карбоновые и сульфоновые кислоты [299, 300, 301]. На рис. 6.6 приведены результаты исследований кинетики электродных процессов в водных растворах бензолсульфокислоты. Последняя существенно влияет на развитие катодного процесса коррозии бронзы ВБ-23НЦ, причем предельный диффузионный ток с увеличением концентрации сульфокислоты возрастает, что можно объяснить деполяризующим действием кислоты. [c.287]

    Раствор азотной кислоты в сорной является столь энергичным нитрующим агентом, что изучать кинетику нитрования этим реагентом можно только прил10няя ароматические соединения низкой активности. [c.449]

    Нитрование водными растворами азотной кислоты или азотной кислотой, растворенной в органических растворителях, создает значительно более мягкие условия реакции и позволяет изучать кинетику в значительно более широкой области активностей ароматических соединений. Так, нанример, прп нитровании в уксусной кислоте таких сравнительно реакционноспособных ароматических соединений, как бензол, толуол, п-кси-лол или мезитилен, было замечено, что скорость нитрования их но зависит ни от концентрации, нп от природы ароматического соединения. С другой стороны, для менее реакционноспособных веш,еств, как хлорбензол, этиловый эфир бензойной кислоты, существует зависимость скорости реакции как от концентрации, так и от структуры ароматичо ого соединения [22, 156]. [c.450]

    Водные растворы азотной кислоты заметно катализируются разбавленными растворами таких сильных кислот, как хлорная. Предполагалось, что в этих растворах активным веществом может быть соединение азотной кислоты с протоном 02N0Ht [135]. Однако эта возмояшость опровергается недавним сравнением кинетики нитрования водным раствором азотной кислоты с кинетикой кислородного обмена цри одних и тех же условиях [69]. Мгновенная скорость нитрования во всех случаях ниже скорости кислородного обмена, однако скорости эти почти совпадают, если порядок реакцип приближается к нулю, когда концентрация и реакцией- [c.450]

    Такое промежуточное соединение должно было бы нметь сравнительно малый стерический эффект в отношении о-замещения. Это находится в соответствии с образованием 34,7% о-изомера при хлорметилировании то-лз ола [54]. Подобным же образом высокая степень резонансной стабилизации, которая, как предполагается, существует в этом промежуточном соединении, наводит на мысль, что реакция должна идти с сильной избирательностью. Отношение скоростей реакций толуол бензол, равное 112, подтверждает эго заключение [54]. Большая избирательность заставляет отбросить сомнения относительно предыдущих исследований кинетики некаталитического хлорметилирования ряда ароматических углеводородов в уксусной кислоте. [c.458]

    Хотя н приведенном выше уравнении реакция десульфирования представлена как простой гидроли,з, Беддлей с сотрудниками [6] на основании изучения кинетики этой реакции пришел к выводу, что се нельзя так рассматривать, поскольку анион (скорее, чем сульфокислота) является реагирующей частицей. В результате изучения реакции десульфирования, проведенной в 90%-ной уксусной кислоте в присутствии минеральной кислоты в качестве катализаторов (НВг, Н2304), они пришли к выводу, что скорость реакции не зависит от концентрации сульфокислоты, от природы неорганического аниона, подчиняется уравнению первого порядка и пропорциональна активности иона водорода раствора. Они показали обратимую зависимость между сульфированием и десульфированием [c.522]

    Из этих двух схем вторая предпочтительнее [2], хотя, по-видимому, нет никакого физического различия между ними в водном растворе серной кислоты, так как было показано наличие SO3 в концентрированной серной кислоте. Тем не менее увеличение скорости сульфирования с повышением концентрации серной кислоты до 100 % и с увеличением содержания олеума хорошо объясняется при помощи этих двух механизмов. Однако Лоер и Ода на основании изучения кинетики сульфирования антрахинона олеумом пришли к выводу, что моногидрат кислоты является активным сульфирующим агентом, а SO3 просто связывает реакционную воду в виде моногидрата кислоты. [c.528]

    При изучении кинетики нитрования нитробензола в серйой кислоте Мартинсен нашел зависимость константы скорости от начальной концентрации серной кислоты. С увеличением концентрации серной кислоты от 80 до 90% константа скорости второго порядка увеличивается приблизительно в 3000 раз. При более высоких концентрациях серной кислоты константа скорости падает, составляя 25 % от максимальной скорости при концентрации серной кислоты 100%. Такое же явление наблюдалось при нитровании других ароматических соединений. Положение максимума константы скорости реакции для различных ароматических соединений мало меняется с изменением температуры. [c.559]

    Экспериментальные данные показывают, что в концентрированной серной кислоте и в некоторых органических растворителях ион нитрония является эффективным нитрующим агентом. Однако маловероятна возможность образования нитроний-иона в водном растворе или в основных органических растворителях. Известно, что многие реакционноспособные соединения, как бензол, фенол и анилин, можно нитровать разбавленной азотной кислотой. Вероятно, в этих случаях нитрующим агентом является нитрацидиум-ион или молекулярная азотная кислота. Нерастворимость этих соединений в воднол растворе затрудняет изучение кинетики этих реакций. [c.563]

    Из этого механизма ясно, что реакция не может протекать в отсутствие азотистой кислоты или окислов азота. Было установлено экспериментально, что если реагент азотная кислота — азотнокислая ртуть содержит мочевину (и, следовательно, содержит небольшие количества или не содержит совсем нитрита), то оксинитрование не идет. Реакции в зтом случае заканчиваются образованием равновесной смеси бензол, фенил-ртутьнитрат и азотнокислая ртуть. Таким образом, продукты первой стадии реакции можно легко выделить для изучения кинетики реакции. [c.564]

    Ганзлик с сотр. изучали кинетику образования дифенилолпропана в среде 72,5%-НОЙ серной кислоты при мольном соотношении фенола к ацетону в исходной смеси 1,78 1. Авторы считали возможным пренебречь побочными процессами и не принимать во внимание обратные превращения, вследствие того что равновесие сильно сдвинуто вправо и реакция практически доходит до конца. Для определения скорости реакции измеряли концентрацию фенола в разные моменты времени. Поскольку в реакцию может вступить только одна молекула ацетона, а фенола — одна или две, обработку полученных данных вели по двум уравнениям — второго и третьего порядка. Оказалось, что экспериментальные результаты соответствуют первому уравнению, т. е. можно заключить, что лимитирующей стадией является бимолекулярная реакция между обоими компонентами — взаимодействие одной молекулы фенола с одной молекулой ацетона полученный карбинол затем быстро реагирует со второй молекулой фенола, образуя дифенилолпропан. Такой механизм наблюдался при добавлении промотора (тиогликолевой кислоты) и без него. [c.84]

    Рустамов с сотр. исследовали кинетику конденсации фенола с ацетоном в присутствии серной, соляной и ортофосфорной кислот и сильнокислотных ионообменных смол с сульфогруппами (КУ-1 и КУ-2). Они показали, что реакция является необратимой. Энергия активации в случае использования серной кислоты и ионообменных смол одинакова (15,6 ккал1моль), что говорит об идентичности механизма реакции и одинаковой лимитирующей стадии при гомогенном и гетерогенном процессах. Высокая энергия активации указывает, чта катализ протекает в кинетической области. По активности катализаторы располаг аются в ряд  [c.87]

    Большое внимание уделяют вопросам образования осадка (в результате окислительных процессов) не только в электроизоляционных, но и в турбинных и автомобильных маслах. Химизм этого явления еще не вполне ясен, но, по-видимому, имеет место полимеризация и конденсация продуктов окисления (таких как оксо-и ненасыщенные спирты, альдегиды, кетоны и кислоты) в малорастворимые соединения. В литературе сообщается, что при окислении образуются гидрооксикислоты нафтенового и жирного рядов [90], а также их ангидриды [91]. Окисление трансформаторных масел в отсутствие или присутствии катализаторов, роль которых могут играть соли металлов и жирных кислот 2 —Сдз [92], или неметаллические детали трансформатора (такие, как лак на обмотках, фарфоровые изоляторы и т. д. [93—96], идет с такой же кинетикой, как и окисление углеводородов в других нефтепродуктах [97—102]. Происходящая цепная реакция в промышленной практике может быть успешно ингибирована добавлением небольших количеств антиокислителей, вследствие чего срок службы [c.566]

    Кинетика промышленного окисления парафина (рис. 64) в присутствии 0,25% КМПО4 характеризуется зависимостью времени, необходимого для получения реакционной смеси с числом омыления около 120 (т. е. конверсии в высшие кислоты в пересчете на 60%-ную стеариновую кислоту), от температуры. [c.151]

    В ряде недавно опубликованных работ были сделаны попытки определить влияние различных промоторов —органических гидроперекисей (например, гидроперекиси тетралина), сложных эфиров надкислот (например, сложного эфира трт-бутилового спирта и надбензойной кислоты) или циклопарафинов и олефинов на кинетику образования гидроперекиси кумола. [c.178]

    Ароматические углеводороды в промышленных условиях нитруют азотной кислотой (или смесью HNO3 и H2SO4) в жидкой фазе кинетика этих процессов изучена достаточно полно. Было установлено, что скорость нитрования азотной кислотой не зависит от концентрации ароматического углеводорода (реакция нулевого порядка), в тех же условиях скорость нитрования ароматических соединений с пониженной реакционной способностью (например, галоидных производных) зависит от концентрации и природы ароматического соединения. [c.299]

    Кинетика взаимодействия алканов с SOj в присутствии кислорода и промоторов (с промежуточным образованием надсульфоновых кислот) или в присутствии кислорода, промоторов и воды изучена недостаточно. Более подробно изучена кинетика сульфирования ароматических соединений. [c.320]


Библиография для Кинетика кислотой: [c.188]   
Смотреть страницы где упоминается термин Кинетика кислотой: [c.126]    [c.428]    [c.446]    [c.494]    [c.209]    [c.188]    [c.483]    [c.291]    [c.369]    [c.373]    [c.451]    [c.563]    [c.321]   
Технология азотной кислоты Издание 3 (1970) -- [ c.299 , c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Адипиновая кислота кинетика

Адипиновая кислота кинетика поликонденсации с гексаметилендиамином

Адипиновая кислота кинетика поликонденсации с гликолям

Азелаиновая кислота гликолями, кинетика

Азелаиновая кислота кинетика

Акриловая кислота кинетика

Акриловая кислота, эфиры кинетика

Александрова, О. Г. Тараканов. Влияний серной кислоты на кинетику образования уретанов

Аминокапроновая кислота, полиамид поликонденсация, кинетика

Аминоундекановая кислота кинетика

Бензойная кислота кинетика

Бутиленгликоль кинетика поликонденсации в растворе с хлорангидридом тримезиновой кислоты

Влияние природы заместителя на кинетику электроокисления хинолина в хинолиновую кислоту. Л. Д. Борхи, В. Г. Хомяков, Якимчук

Гексаметилендиамин кинетика поликонденсации с адипиновой кислотой

Глицерин адипиновой кислотой, кинетика

Глутаровая кислота гликолями кинетика

Глутаровая кислота диаллиловый эфир, полимеризация, кинетика

Греков, М.И. Ш а н д р у к. Строение и реакционная способность производных гидразина. XIX. Кинетика реакций замещенных гидразина со сложными эфирами в бензоле и в смесях бензола с пиридином и бензойной кислотой

Данилов, В. Ф. Волошин, М. А. Лошкарев. Влияние адсорбции капроновой кислоты на кинетику разряда d2. II. Определение кинетических параметров электровосстановления кадмия из сульфатного электролита

Данилов, В. Ф. Волошин. Влияние адсорбции капроновой кислоты на кинетику разряда da. I. Температурная зависимость адсорбции капроновой кислоты на ртути

Дезоксирибонуклеиновая кислота кинетика ренатурации

Декаметиленгликоль кинетика с глутаровой кислотой

Декаметиленгликоль кинетика с угольной кислотой

Декаметиленгликоль кинетика с фталевой кислотой

Декаметиленгликоль кинетика с янтарной кислотой

Декаметиленгликоль кинетика со щавелевой кислотой

Дикарбоновые кислоты кинетика

Дифеновая кислота, диаллиловый эфир, полимеризация, кинетика

Закономерности кинетики гидролиза разбавленными кислотами

Изофталевая кислота дихлорангидрид, кинетика конденсации с дианом

Изофталевая кислота кинетика

Изофталевая кислота поликонденсация с гликолями, кинетика

Изофталевая кислота полимеризация, кинетика

Изучение кинетики растворения титаната бария в минеральных кислотах и их смесях. Ю. К Целинский, Е. В. Лапицкая

Изучение кинетики реакции окисления иодоводородной кислоты пероксидом водорода, катализируемой молибдатом аммония

Изучение кинетики реакций образования и сольволиза производных кислот

Изучение кинетики реакций образования производных кислот

Исследование кинетики катодного процесса выделения водорода из разбавленных растворов соляной кислоты

Исследование кинетики реакции окисления мышьяковой кислоты иодом

Исследования кинетики окисления циклогексанола азотной кислотой

К изучению кинетики анодного растворения металла и окисления среды в системе железо—растворы азотной кислоты

К у р и ц ы н. К кинетике реакции ацилирования ароматических диаминов галоидангидридами карбоновых кислот

Каприловая кислота, аллиловый эфир кинетика

Кинетика доокисления азотной кислотой

Кинетика и механизм реакций,окисления ксилолов в среде ук, сусной кислоты

Кинетика карбоновых кислот

Кинетика нитрования азотной кислотой

Кинетика нитрования смесями серной и азотной кислот

Кинетика окисления аскорбиновой кислоты

Кинетика окисления окиси азота азотной кислотой

Кинетика поликонденсации хлорангидридов карбоновых кислот с гидроксилсодержащими соединениями

Кинетика разложения кингисеппского фосфорита фосфорной кислотой

Кинетика серной кислоты из пористых

Кинетика совместного окисления двух медленно окисляемых субстратов пероксидазы (аскорбиновая кислота и ферроцианид калия)

Кинетика совместного окисления медленно и быстро окисляемых субстратов пероксидазы (аскорбиновая кислота и гидрохинон)

Кинетика экстракции комплексных кислот

Кинетика экстракции простых минеральных кислот

Кузнецов, Ф. Д. Касимов, М. Ф. П у ш л е н к о в, Г. М. А нд р е е в. Кинетика восстановительной реэкстракции плутония в системе трибутилфосфат—азотная кислота—железо (II) при перемешивании жидкостей в центробежном поле

Малоновая кислота кинетика

Метакриловая кислота кинетика

Метакриловая кислота полимеризация, кинетика

Метилимид цитраконовой кислоты кинетика сополимеризации с винильными мономерами

Моноэтаноламин, поликонденсация адипиновой кислотой, кинетика

Мышьяковая кислота, кинетика окисления

Нафтеновая кислота, диаллиловый эфир, полимеризация, кинетика

Нафтеновая кислота, диаллиловый эфир, полимеризация, кинетика гидрохиноном

Окисление циклогексанола азотной кислотой кинетика

Пимелиновая кислота гликолями кинетика

Полиамид фталевой кислоты, исследование кинетики гидролиза

Полиметакриловая кислота кинетика реакции замещения брома

Полиэтерификация диэтиленгликоля с адипиновой кислотой, кинетика

Полиэтерификация кислотой, кинетика

Полиэтерификация этиленгликоля с адипиновой кислотой, кинетика

Полиэтиленгликоль кинетика поликонденсации с хлорангидридом тримезиновой кислоты

Пробковая кислота гликолями кинетика

Пробковая кислота кинетика

Производные кислот кинетика

Производство серной кислоты при помощи окислов азота Статика и кинетика нитрозного метода

Пушленков, Н. Н. Щепетилъников. Кинетика экстракции азотной кислоты трибутилфосфатом в четыреххлористом углероде в зависимости от интенсивности перемешивания и температуры

Резорцин кислоты, кинетика

Себациновая кислота кинетика

Статистическая механика и кинетика взаимодействий в нуклеиновых кислотах. Перевод А. В. Вологодского

Угольная кислота кинетика

Фенилборная кислота окисление, кинетика

Фталевая кислота кинетика

Х.И. К у у р а. Исследование кинетики реакции бромирования ацетона в водных растворах хлорной кислоты

ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ Влияние модифицирующих добавок на каталитическую активность супрамолекулярных систем в реакциях гидролиза эфиров фосфоновых кислот в присутствии органических электролитов и полиэлектролитов Кудрявцев, Л. Я. Захарова, Л. А. Кудрявцева

Хомутов, Л. И. Юрков. Кинетика электроокисления анилина в растворах хлорной кислоты на платиновом аноде

Щавелевая кислота диэтиловый эфир, кинетика

Щавелевая кислота кинетика

Этил аминоундекановая кислота кинетика

Этиленгликоль адипиновой кислотой, кинетик

Этиленгликоль изофталевой кислотой, кинетик

Этиленгликоль фталевой кислотой, кинетика

Этиленгликоль янтарной кислотой, кинетика

Янтарная кислота кинетика

Яхонтов. Кинетика реакций металлов с органическими кислотами



© 2025 chem21.info Реклама на сайте