Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время релаксации методы определения

Рис. 102. Определение элементарных констант скоростей комплексообразования трипсина с профлавином с помощью релаксационного метода т — времена релаксации при различных значениях равновесной концентрации реагентов Рис. 102. Определение <a href="/info/1491160">элементарных констант скоростей</a> комплексообразования трипсина с профлавином с помощью <a href="/info/10756">релаксационного метода</a> т — <a href="/info/3893">времена релаксации</a> при <a href="/info/736172">различных значениях</a> <a href="/info/5397">равновесной концентрации</a> реагентов

    Для процессов с переносом протона наибольшее число результатов получено релаксационными и электрохимическими методами. Последние были широко использованы также для изучения реакций диссоциации комплексных соединений. Суть релаксационных методов состоит в том, что реакцию, скорость которой необходимо изучить, доводят до состояния равновесия, а затем нарушают равновесие за счет какого-либо внешнего параметра, например температуры (метод температурного скачка), давления (метод скачка давления) или наложения сильного электрического поля (метод электрического импульса). Если изменение этих параметров произвести очень резко, то можно при помощи соответствующей аппаратуры следить за тем, как система в течение определенного времени приходит в новое состояние равновесия. Время релаксации системы зависит от скоростей прямой и обратной реакций. Релаксационные методы позволяют изучать реакции с временами полупревращения от 10" до 1 с. Накладываемое на равновесную систему [c.81]

    Для п )оцессов с переносом протона наибольшее число результатов получено релаксационными и электрохимическими методами. Последние были широко использованы также для изучения реакций диссоциации комплексных соединений. Суть релаксационных методов состоит в том, что реакцию, скорость которой необходимо изучить, доводят до состояния равновесия, а затем нарушают равновесие за счет какого-либо внешнего параметра, например температуры (метод температурного скачка), давления (метод скачка давления) или наложения сильного электрического поля (метод электрического импульса). Если изменение этих параметров произвести очень резко, то можно при помощи соответствующей аппаратуры следить за тем, как система в течение определенного времени приходит в новое состояние равновесия. Время релаксации системы зависит от скоростей прямой и обратной реакций. Релаксационные методы позволяют изучать реакции с временами полупревращения от 10 з до 1 с. Накладываемое на равновесную систему возмущение может быть однократным или периодическим (ультразвуковые и высокочастотные методы). Отклонение системы от состояния равновесия оказывается небольшим. Так, в методе температурного скачка температуру повышают всего на 2—10 за с за счет раз- [c.90]


    Наиболее правильный метод определения критической частоты или критической длины волны состоит в снятии всей кривой дисперсии. Можно также рассчитывать эти величины, а следовательно, и время релаксации, на основании косвенных данных. [c.109]

    Необходимо учитывать, что все эффекты, вызывающие дополнительное уширение линий, такие, как частичное насыщение резонансных сигналов или неоднородность поля, приводят к завышению значений к в области медленного обмена и к занижению в области быстрого обмена. В результате вычисленная энергия активации оказывается слишком низкой. Эти ошибки в некоторой степени можно устранить, наблюдая сигнал протонов, не участвующих в обменном процессе, например сигнал внутреннего эталона. Но нужно, однако, помнить, что времена релаксации и, следовательно, естественные ширины линий сигналов от различных веществ и даже от разных протонов одной и той же молекулы не обязательно одинаковы. Во многих случаях возникают дополнительные осложнения за счет спин-спинового расщепления, которое затрудняет интерпретацию. Таким образом в общем нужно очень тщательно рассматривать, какие факторы и как могут повлиять на результат и как избежать связанных с этим осложнений. При тщательном выполнении эксперимента ошибки в определении энергии активации обычно можно ограничить величиной около 2 кДж/моль (0,5 ккал/моль), а в благоприятных случаях они могут быть еще меньше. Для многих систем с относительно высокими барьерами были осуществлены измерения как методами классической кинетики, так и методом ЯМР, Было получено удовлетворительное согласие между результатами. [c.262]

    Практическая трудность, возникающая при исследованиях методом ЯМР с использованием изотопа С, связанная с медленной релаксацией (большим значением Ту), обусловлена частичным насыщением. В результате на тех атомах углерода, для которых релаксация особенно неэффективна, наблюдаются сигналы меньшей интенсивности. Времена релаксации Могут быть измерены отдельно для каждого атома углерода в молекуле. Правильная интерпретация полученных данных дает ценную информацию о подвижности определенных фрагментов и групп внутри молекулы. Следует отметить, что соотношения между временами релаксации и [c.346]

    Учитывая большую разницу в величинах дипольных моментов, определенных двумя методами, можно было допустить, что изменение факторов, влияющих на равновесие в дисперсной системе, сопровождается не только изменением размеров ассоциатов, но также изменением их структуры и конформации. Данные, подтверждающие это допущение, были получены в результате анализа частотно-резонансных спектров растворов. Было показано, что при разбавлении бензольных растворов смол и асфальтенов максимум потери энергии смещается в область низких частот, т. е. время релаксации увеличивается. Такая картина возможна лишь в случае увеличения геометрических размеров частиц (молекул) при разбавлении, отражением чего является и резкое возрастание дипольного момента за счет увеличения расстояния между зарядами. Эти данные подтверждают представление исследователей, по мнению которых молекулы асфальтенов состоят из структурных фрагментов, соединенных метиленовыми либо иными мостиками, допускающими их взаимные повороты. Следует учесть, что пространственная деформация молекул может привести к нарушению сопряжения, вплоть до разъединения пар л-электронов, что может определенным образом влиять на реакционную способность веществ, особенно в реакциях со свободными радикалами. [c.789]

    Университет им. К. Маркса, Лейпциг Центральный институт физической химии Германской академии наук, Берлин). Для адсорбционных систем цеолит NaX — (вода, метанол, метиламин, пропан) были измерены времена релаксации ЯМР методом спинового эха на частоте 16 Мгц. На рис. 1 показана зависимость времен релаксации протонов воды от температуры. На этом и других рисунках показаны также значения определенные по затуханию сигналов свободной индукции (соответствующие точки обведены кружками вертикальные пунктиры соответствуют возможным ошибкам). Отношение сигнал — шум при 0 = 0,19 было равно примерно трем. Относительная погрешность измерения времен релаксации при больших заполнениях составляет 10%. При малых заполнениях возможная ошибка определения составляет 15%, а для — 30%. [c.223]

    Теперь обратимся к совершенно иному методу — определению диэлектрической проницаемости адсорбированных пленок, который тем не менее дает результаты, близкие к результатам метода ЯМР. На рис. ХП1-10 показана зависимость диэлектрической проницаемости адсорбированной воды от степени заполнения поверхности а-РегОз и частоты. По частотной зависимости диэлектрической проницаемости, особенно комбинируя эту зависимость с диэлектрическими потерями, можно оценить характерное время релаксации х. По существу, т — это время перемещения или переориентации молекул, вызванных изменением электрического поля. В рассматриваемом случае т меняется приблизительно от 1 с (при монослойном заполнении) до 10 с (при полимолекулярной адсорбции) [63]. Поскольку это характерное время оказалось значительно больше, чем для нормальной воды (10 с), авторы сделали вывод, что адсорбированная вода, подобно льду, структурирована вследствие интенсивного образования водородных связей, [c.430]


    Важной особенностью метода является не то, что через электрод пропускается определенный заряд, а скорее то, что электрод отклоняется от равновесия импульсом тока очень малой длительности и что последующая релаксация происходит в условиях разомкнутой цепи. Поскольку во время релаксации сколько-нибудь заметный ток отсутствует, омические потери не влияют на измерение времени релаксации. Это позволяет изучать растворы и электроды при малой проводимости [19]. [c.239]

    Чтобы определить время релаксации для реакции в данном растворе из измерений коэффициента поглощения а, можно поступать следующим образом сначала определить а р при самой высокой и самой низкой доступной частотах. Если нет заметной разницы, то следует сравнить значение а// с его значением для чистого растворителя если первая величина больше, то нельзя исключать возможности уменьшения при некоторой более высокой частоте. Если эти два значения неразличимы, то может наблюдаться уменьшение значения а// при некоторой более низкой частоте или же следует считать раствор слишком разбавленным, чтобы можно было отметить достаточное релаксационное поглощение. Если, однако, коэффициенты поглощения на двух концах интервала частот заметно различаются, это, по-видимому, обусловлено релаксацией проводя измерения при промежуточных частотах, можно найти область перехода, показанную на рис. 20. Затем, предполагая, что данные удовлетворяют уравнению (5.12), т. е. соответствуют одному процессу релаксации, можно найти наилучшие значения для А, В и /д [17—19, 25]. Если с ними хорошо воспроизводятся экспериментальные значения в широком интервале частот, следует сделать заключение, что имеет место только один процесс релаксации, и можно вычислить т как /ая/с. Из изменений т в зависимости от концентрации определяют константы скорости, используя соотношения, приведенные на стр. 70 и далее, и учитывая, если необходимо, коэффициенты активности. Если же уравнение (5.13) удовлетворительно не представляет имеющиеся данные, то, вероятно, имеет место более чем один процесс релаксации. (Это часто бывает в случае растворов, содержащих ионы.) В этом случае процедура более сложная, но если измерения проведены в достаточном интервале частот и концентраций, можно определить несколько времен релаксации [4, 38]. Майером [20] разработан другой метод определения констант скоростей но измерениям при нескольких температурах и при одной частоте. [c.99]

    В табл. Н.7 приведены некоторые данные [361] по величинам зацеплений, определенные различными методами. В табл. Н.7 имеются такие обозначения V — вязкость, Т2 — поперечное время релаксации из данных ЯМР, Е — модуль Юнга, 2 релаксационный модуль, соответствующий области каучукоподобного состояния, О — модуль сдвига, / — податливость при сдвиге, / — упругая податливость при сдвиге, /"—-податливость потерь при сдвиге, с — концентрация раствора, б — фазовый угол между напряжением и деформацией, V — объемная. доля полимера. О — упругий модуль сдвига, 0(/) — псевдоравновесный модуль сдвига, О—податливость при растяжении, АЯ — энергия образования зацеплений, Н—спектр времен релаксации при сдвиге. [c.205]

    Наиболее удобным методом определения коэффициентов вращательной диффузии является измерение дисперсии диэлектрической проницаемости, т. е. зависимости диэлектрической проницаемости от частоты приложенного поля. Диэлектрическая проницаемость возрастает при увеличении дипольного момента молекулы и практически линейно зависит от концентрации (разд. 2 гл. И1). Способность молекул изменять свою ориентацию в соответствии с изменением направления приложенного электрического поля позволяет рассчитать их время релаксации. Молекулы сферической формы характеризуются одним значением времени релаксации. В случае асимметричных молекул рассматриваемый метод позволяет определить два значения времени релаксации, если дипольный момент молекулы имеет отличные от нуля компоненты по обеим осям. Метод дисперсии диэлектрической проницаемости может быть использован для измерения малого времени релаксации порядка 10 сек, однако область его применения ограничена растворами с низкой удельной проводимостью. [c.179]

    Другой метод оценки влияния давления на времена релаксации состоит в определении повышения температуры, которое компенсирует увеличение давления, возвращая измеряемую характеристику вязкоупругости в ее прежнее положение на шкале времени. Это можно получить путем динамических измерений при некоторой частоте [79]. Если принять, что постоянство / соответствует постоянству времен релаксации, то условие для одновременного увеличения температуры и давления имеет вид [c.271]

    Так как в модели гауссовых субцепей времена релаксации определяются длиной соответствующего участка цепи, то согласно теоретическим представлениям наличие двух релаксационных спектров указывает на то, что за акустическое поглощение должны быть ответственны два набора кинетических единиц, которые можно условно подразделить на крупно- и мелкомасштабные. Поскольку из экспериментальных данных можно определить значения Тмин как для низкочастотного, так и для высокочастотного спектров, в рамках модели гауссовых субцепей можно оценить размеры минимальных участков крупно- и мелкомасштабных звеньев I и I". Результаты расчета приведены в та бл. 1, из которой следует, что значения I достаточны для образования гибкой субцепи и по порядку величины совпадают с длинами статистического сегмента, определенными другими методами. Это позволяет считать, что на низких частотах в соответствии с теоретическими представлениями [c.194]

    Для определения чисел гидратации был использован также и метод ядерного магнитного резонанса, при помощи которого определяли время релаксации и химический сдвиг. [c.72]

    Для определения температуры стеклования полимеров применяются разные методы. Полученные результаты не всегда хорошо согласуются между собой, но обычно находятся в одном и том же интервале температур. Методы измерения очень чувствительны к разным видам движения макромолекул. Особенно это касается диэлектрических и механических потерь . Разные времена релаксации и исключительно сильная зависимость диэлектрических потерь от наличия диполей свидетельствуют, по-видимому, о различном механизме колебательных процессов. [c.14]

    В этом параграфе выше шла речь только о нормальном падении света на ячейку. В [149, 150] рассчитаны и измерены характерные времена релаксации при различных углах падения и рассеяния, что позволяет существенно расширить диапазон углов, при которых д /д -С 1 или д /д -С1, а также, путем подгонки экспериментальных результатов по известным аппроксимациям, увеличить количество измеряемых таким методом коэффициентов вязкости. Определения углов падения рассеяния в жидкокристалличе ской среде (р, в) и в воздухе (< , 9 ), для гомеотропной и планарной ориентаций поясняются рис. 2.5.11 [149]. В обоих случаях директор находится в [c.73]

    Если внешние условия изменились и равновесие нарушено, то оно не может восстановиться мгновенно — для этого требуется конечное время, называемое временем релаксации (более четкое, количественное, определение времени релаксации будет дано ниже). В неравновесном состоянии значения внутренних переменных зависят не только от внешних условий, но и от того, как состояние изменялось в недавнем прошлом. Значит, эти параметры надо рассматривать как дополнительные термодинамические переменные. В термодинамике необратимых процессов постулируется, что для полной характеристики любого мгновенного состояния достаточно ограниченного числа таких переменных. Этот постулат может считаться обоснованным, если мгновенные (с точки зрения интересующего нас экспериментального масштаба времени) состояния остаются неизменными достаточно долго, чтобы успело установиться равновесие всех быстрых молекулярных процессов (более быстрых, чем рассматриваемые в явном виде в нашей теории). Мы оставляем открытым вопрос, в какой мере такое предположение применимо ко всем перечисленным выше типам внутренних процессов выяснение этого вопроса — задача кинетической теории. Несомненно, что оно справедливо для некоторых типов процессов, например для не слишком быстрых химических реакций. По всей вероятности, методы термодинамики необратимых процессов можно без опасений применять для описания процессов, времена релаксации которых велики по сравнению со средним временем менаду столкновениями молекул в газе (10" сек) или периодом колебаний молекул или звеньев полимерных цепей в конденсированной фазе (10 сек). [c.130]

    Температуру появления максимума D можно рассматривать как температуру, при которой появляется подвижность молекул адсорбированной воды [времена релаксации, определенные с помощью соотношения (16.3), составляют ж 10 с]. В самом деле, температура, при которой наблюдается заметная (методом ЯМР) подвижность молекул воды в цеолите NaA, составляет 185 К, что практически совпадает с температурой исчезновения максимума D [695]. Температура максимума D не слишком отличается от температуры релаксации молекул во льду [696] и близка к температурам, при которых наблюдается релаксация адсорбированных молекул воды в полимерах [682, 683]. Поляризация процесса D довольно велика (например, 1,2-10 Кл/м — при адсорбции 1 молекулы воды на полость), и ее естественно связать с релаксацией квазидиполя, г., л д в состав которого входит молекула воды. 6 Таким образом, вследствие взаимодействия с молекулами воды температура проявления максимума смещается примерно / на 50 градусов в сторону низких " температур. Взаимодействие с [c.261]

    Значение гиромагнитного отношения для ядра зна чительно меньше, чем для протона (см. табл. 1 приложения). Резонансная частота поглощения в поле 1,12 10 А/м равна 24,288 МГц. Кроме того, величина у входит в уравнение для фактора насыщения, и потому сигналы ЯМР ядер меньше насыщаются, чем сигналы протоноЕ , так как время релаксации для ядер Р в жидком состоянии примерно такое же, что и для ядер Н, т. е. 0,01 —10 с. При равной концентрации ядер Ф и 44 чувствительность ядер фосфора составляет 6,63 % чувствительности протонов. Следо1зательно, для измерения спектров ЯМР Р растворы должны быть более концентрированные. При этом нужно учесть, что большой диапазон химических сдвигов ядер Ф (500 м. д. и более) дает возможность использовать большую скорость развертки для определения химических сдвигов. В свою очередь, это дает возможность работать при большей мощности радиочастотного поля Н , чем при использовании протонов, что способствует повышению чувствительности метода. [c.146]

    Трудности, возникающие на стадии формализации, связаны с определением, во-первых, скорости производства энтропии в процессе релаксации и, во-вторых, времени перехода из исходного неравновесного состояния в равновесное. Дело в том, что в физических системах определение величин иногда производится довольно простым методом. Так, например, время релаксации физической системы может быть определено [57] в виде T=d/V, где d - средняя длина свободного пробега, V - средняя скорость. Для реальных систем величина т столь мала, что ею можно пренебречь. Поэтому анализ физических систем может быть ограничен анализом лищь старого и нового равновесного состояний, т. е. речь будет идти, по существу, не о термодинамической, а о термостатической системе, где задано только положительное направление изменения энтропии. [c.105]

    Кинетика М. изучена разл. методами, используемыми для быстрых процессов. Показано, что М.-кооперативный процесс, включающий быстрые ассоциативно-диссоциативные равновесия. Релаксац. спектры мицеллярных систем имеют характерные времена от секунды до 10 с. Времена релаксации 10 -10" с связаны с процессом обмена типа неассоциир. молекула ПАВ-мицелла (быстрая релаксация), а времена релаксации от секунды до 10 с (медленная релаксация) связаны с изменением чисел агрегации мицелл. Одновременное определение времен быстрой и медленной релаксации позволяет независимым путем определять числа агрегации при М. [c.96]

    Кинетические измерения в интервалах времени, составляющих десят-ки микросекунд и менее, проводят с помощью кратковременного возмущения системы, приводящего к небольшому смещению положения, равновесия реакции (или серии реакций), и дальнейшего наблюдения За скоростью достижения нового равновесия (т. е. за процессом релаксации). Наиболее широко применяется метод температурного скачка,, предложенный Эйгеном (Eigen) и его сотрудниками. Между Электродами, помещенными в исследуемый раствор, за 10 с создают разность-потенциалов 100 кВ. Быстрый электрический разряд от группы конденсаторов, проходя через раствор (и не приводя при этом к образованию искр), повышает его температуру на 2—10°. Равновесие всех химических реакций, для которых АНФО, смещается. Измеряя Какой-либо параметр системы (например, оптическую плотность при определенной длине волны или электропроводность раствора), можно регистрировать-очень малые времена релаксации. [c.25]

    Для протекания стадии транскарбоксилирования необходимо присутствие определенного, связанного с белком иона двухвалентного металла, обычно Мп +. Это обстоятельство позволило исследовать геометрию связывания субстратов относительно Мп + релаксационными методами (ЭПР и ЯМР) [8—10]. Роль металла может состоять прежде всего в облегчении енолизации акцептора карбоксила. Однако в случае пиру-ваткарбоксилазы анализ влияния связанного Мп + на времена релаксации С в субстрате показал, что расстояние между карбонильным углеродом и составляет 0,7 нм. Это слишком большое расстояние, чтобы можно было предположить образование прямой координационной связи между металлом и карбонильным кислородом. Другое довольно привлекательное объяснение состоит в допущении образования связи между металлом и карбонильной группой биотина, как показано в уравнении (8-7) результатом (который мог бы быть вызван и образованием водородной связи с протоном) будет улучшение свойств биотина как уходящей группы в реакции замещения [11]. [c.198]

    При изучении сорбции воды цеолитами были измерены времена релаксации протонов [69, 99, 106]. Грехем и сотр. [66] приводят результаты исследования методом ЯМР низкого разрешения межслоевой воды в гидратированных силикатах, например в вермикулите, монтмориллоните и гекторите, как в кристаллических участках, так и при осмотическом набухании. В кристаллических участках подвижность протонов зависит от содержания воды. Суюнова и сотр. [192] получили спектры протонного резонанса для К-, Ма-, Мп- и Си-форм монтмориллонита. Эти авторы измеряли ширину линий и вторые моменты для этих линий в процессе гидратации. Овчаренко и сотр. [133] регистрировали спектры ЯМР широких линий для поликристаллических образцов Ы-, Са-, Mg-, 2п-, Си +- и Со +-форм вермикулита. В спектрах имеется одна широкая линия, характерная, вероятно, для полностью гидратированной структуры, которая сохраняется вплоть до определенного уровня содержания воды. [c.486]

    Поглощение сверхвысоких частот используется для определения содержания воды в терпингидрате и в некоторых других фармацевтических препаратах. Бензар и Юдицкий [11] показали возможность применения этого метода для контроля качества продукции в промышленности. Интересная спектроскопическая методика, предложенная Фельнер-Фельдегом [30а], основана на измерении отражения прямоугольных импульсов длительностью от 30 ПС до 200 НС, что соответствует частотам от 1 МГц до 5 ГГц. С помощью этой методики в течение долей секунды можно измерить в тонких слоях изучаемого материала значения диэлектрической проницаемости, соответствующие низким и высоким частотам, времена релаксации и диэлектрические потери. Леб и сотр. [57а] развили этот метод, обеспечив возможность измерения диэлектрических проницаемостей в области высоких частот (10 МГц — 13 ГГц). С помощью разработанной аппаратуры можно измерять диэлектрические характеристики твердых и жидких веществ относительно воздуха. В работе [57а] приведены данные для полярных жидкостей, в том числе для спиртов и водных растворов сахаров. Те же авторы предложили применять при описанных измерениях электронно-вычислительную машину, обеспечивающую сбор и обработку экспериментальных данных и Фурье-преобразование получаемых спектров. Новый импульсный метод нашел применение для определения влаги в молочных порошках. Кей и сотр. [44а ] приводят методику измерений, включающую следующие операции 1) из порошка готовят шарик массой 63 мг 2) взвешивают образец и помещают его в коаксиальную воздушную линию 3) измеряют высоту импульса с помощью осциллоскопа с градуированной шкалой, аналогового или цифрового вольтметра, двухкоординатного самописца или автоматической системы обработки данных 4) устанавливают соотношение между высотой импульса и массой воды в образце. [c.510]

    Процессы перехода к состоянию термодинамического равновесия в полимерах осуществляются за счет самых различных видов молекулярного движения. Каждому виду молекулярного двил екия соответствует определенный релаксационный процесс, который характеризуется своим временем релаксации. Для того чтобы наблюдать и исследовать какой-либо релаксационный процесс в полимерах и соответствующий ему тип молекулярного двил<еиия, необходимо, чтобы время воздействия на полимер (или время наблюдения) было соизмеримо со временем релаксации. Следовательно, для изучения релаксационных процессов акустическими методами (а это один из наиболее распространенных методов их изучения) необходимо, чтобы период звуковых колебаний был того же порядка, что и время релаксации полимера. Рассмотрим линейный аморфный полимер, находящийся в высокоэластическом состоянии. В этом случае число возможных конформаций, которые мол ет принимать каждая макромолекула, достаточно велико, и в полимере реализуются весьма разнообразные виды молеку-лг рного движения. Пусть в таком полимере распространяются звуковые колебания, частоту которых можно изменять в широких пределах. Если частота звуковых колебаний очень мала, т. е. период звуковых колебаний очень велик по сравнению с временем релаксации са- . ых больших кинетических элементов макромолекул, то энергия звуковых колебаний, которую получат за период элементарный объем полимера, будет быстро перераспределяться по всему объему полимера вследствие сегментальной подвижности микроброуновского типа (диффузии сегментов макромолекул). В этом случае процесс рассеяния энергии носит квазиравновес-ный характер, механические потери невелики, и полимер быстро восстанавливает свои размеры и форму пос.п -снятия приложенного внешнего напрял ения. Естественно, что и динамический модуль упругости полимера (а также скорость звука в нем) будет очень малым, т. е. такого л<е порядка, как и жидкости. [c.254]

    Если температура ионов не очень сильно превышает температуру электронов, то очевидно, что время релаксации температуры значительно превышает времена релаксации как электроппого, так и ионного импульса. Поэтому можно мыслить себе такую ситуацию, в которой хотя характерные времена изменения распределения частиц будут велики в сравнении с временами релаксации импульса, они все же окажутся сравнимыми с временем релаксации температуры. Это означает, что для плазмы следует иметь уравнения, описывающие усредненные макроскопические движения, в условиях, когда температуры различных компонент плазмы различны. Для получения таких уравнений можно определенным образом модифицировать метод Энскога — Чепмена (21. Однако [c.146]

    Крейлик и Вейссман нашли константы скорости реакции 2,4,6-три-третичнобутилфеноксила с фенолом такого же строения. Определение констант производилось методом ядерного магнитного резонанса по уширению линий гидроксильных ядер водорода за счет присутствия неспаренных электронов, уменьшающих время релаксации протонов, а также при осуществлении элементарных актов реакции передачи атома водорода от молекулы к радикалу. Уширение этих линий является мерой частоты передачи атома водорода между частицами, если, конечно, ввести поправку на уширение за счет межмолекулярных соударений с радикалами, не приводяш,их к актам реакции. Найденная таким образом константа скорости при 30 С в ССи равна 5-10 см 1сек, а энергия акти- [c.92]

    Как указано выше, определение I не всегда дает удовлетворительные результаты, и ниже обсуждается дрзггой метод исследования, в котором применяется соотношение (д), требующееся в любом случае для получения полного представления о процессе. Метод этот может состоять в определении И. Однако концентрация радикалов слишком низка (порядка для того, чтобы обнаружить их непосредственно, даже магнитными методами. Целесообразный путь заключается в измерении среднего времени жизни X = Мк К радикалов. Если % рассматривается как время релаксации , то можно отчетливо представить три вероятных метода его определения 1) по влиянию на скорость реакции периодического поля переменной частоты 2) по скорости распада радикалов после удаления поля и 3) путем измерения скорости достижения стационарного состояния после приложения поля. Поле можно заменить активатором свободных радикалов, т. е. практически для методов (1) и (2) радиацией. Интенсивность последней изменяется или в пространстве (при помощи частичного освещения реакционного сосуда), или во времени (при помощи вращающегося перед источником света диска с вырезанными секторами) [54]. Теория последнего метода более проста. Метод (2) включает анализ фотохимического последействия, а (3) — анализ периода индукции. [c.180]

    То обстоятельство, что в пределах интервала размягчения вязкость различных веществ имеет соизмеримые значения (при одинаковых методах и скоростях измерения) свидетельствует, что этот интервал, а так-же Го и Гтек характеризуются определен- ной скоростью молекулярных перегруппировок и близкими значениями времен релаксации. Мы можем поэтому считать Г,-, температурой, при которой время релаксации (время, необходимое для перегруппировки частиц) становится равным времени наблюдения, времени действия напряжения. [c.87]

    Чтобы избежать ошибки в результате неравномерного насыщения пиков, было предложено несколько путей. Один из них состоит в использовании быстрого прохождения сигнала. На практике при ширине сигнала 1 гц ж времени релаксации 1 сек скорость развертки спектра 25 гц1сек практически исключает ошибку от насыщения. Такой путь, однако, приводит к повышению погрешности интегратора, которая возрастает с повышением скорости развертки. Другой метод устранения насыщения состоит в добавке парамагнитных соединений. При незначительных добавках парамагнитных веществ время релаксации настолько уменьшается, что насыщения не происходит даже при значительном повышении уровня высокочастотного поля. Этот путь также имеет определенные недостатки. При добавке парамагнитных примесей происходит значительное уширение сигнала, так что теряется возможность различить отдельные пики. Малая же добавка может привести к тому, что условия насыщения исследуемого и эталонного пиков будут заметно различаться, что вызовет существенную ошибку. [c.49]

    Мак-Колл с сотр. [27] измерил методом ядерного магнитного резонанса времена релаксации для нефракционированных образцов разветвленного нолиэтилеиа, обладающих различной шириной распределения по молекулярным весам, и обнарунлил определенную корреляцию мея ду формой релаксационной кривой и степенью полидисперсности образца, однако преобразования кривой релаксации в кривую распределения не проводилось. [c.403]

    В работе авторов с сотр. [57, 143] кинетика поворотно-изомерных переходов изучалась на такой же модели, но с тетраэдрическим валентным углом. Наряду с расчетом функции С ( ,, для определения скорости поворотно-изомерных переходов использовался метод первых времен перехода. Для рассмотренных значений 1/о = 2,4,вк Т функции С(( , г) описываются простыми экспонентами. Времена релаксации для этой функции оказались пропорциональнь 1и тt=(K) , где К - [c.128]

    Процессы перехода к состоянию термодинамического равновесия в полимерах осуществляются за счет самых различных видов молекулярного движения. Каждому виду молекулярного движения соответствует определенный релаксационный процесс, который характеризуется своим временем релаксации. Для наблюдения и исследования какого-то релаксационного процесса в полимерах и соответствующего ему типа молекулярного движения необходимо, чтобы время воздействия на полимер (или время наблюдения) было соизмеримо со временем релаксации. СледоЕнтельно, для изучения релаксационных процессов акустическими методами необходимо, чтобы период звуковых колебаний был того же порядка, что и время релаксации полимера. [c.45]

    Измерение скорости релаксации может быть выполнено несколькими методами. Надежным и универсальным является, например, импульсный вариант метода ЯМР или, как его обычно называют, метод спинового эха. При измерениях по этому методу на исследуемый образец в магнитном поле через определенные промежутки времени накладывают кратковременные радиочастотные импульсы в области резонансного поглощения, и в приемной катудпке появляется сигнал спинового эха, максимальная амплитуда которого связана с временем релаксации простым соотношением. С помощью установки спин-эха можно определять времена релаксации от 10- до 100 с с погрешностью 3—5%. [c.82]


Смотреть страницы где упоминается термин Время релаксации методы определения: [c.26]    [c.316]    [c.44]    [c.429]    [c.57]    [c.296]    [c.396]    [c.274]    [c.286]   
Механизмы быстрых процессов в жидкостях (1980) -- [ c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Импульсные методы определения времени релаксации

Методы определения ширины спиновых пакетов и времени спин-решеточной релаксации для парамагнитных центров, описываемых на основе представлений о невзаимодействующих спиновых пакетах

Определение времени релаксации методом насыщения

Релаксация время

Релаксация определение

Ультразвука поглощения методы определение времени релаксации

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте