Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотермы адсорбции реакции уравнение

    С. Брунауэр, П. Эммет и Е. Теллер (1935—1940) создали наиболее общую теорию полимолекулярной адсорбции (сокращенно — теорию БЭТ), в которой описание процессов адсорбции увязывается с представлениями и методами статистической физики. Используя ряд положений теории Ленгмюра, они сделали дополнительное допущение об образовании на поверхности адсорбента последовательных комплексов между адсорбционным центром и одной, двумя, тремя и т. д. молекулами газа. Адсорбция рассматривается как ряд последовательных квазихимических реакций со своими константами равновесия. На активных центрах поверхности адсорбента могут образоваться конденсированные полимолекулярные слои. Авторы теории на основе уравнения изотермы адсорбции Ленгмюра получили приближенное уравнение полимолекулярной адсорбции, которое щироко применяется для определения удельной поверхности адсорбентов и теплоты адсорбции. [c.338]


    Особенности кинетики реакций на неоднородной поверхности не исчерпываются, однако, простым изменением формы изотермы адсорбции. Поверхность, неоднородная по теплоте адсорбции, должна быть неоднородна и кинетически. Будем считать, следуя Рогинскому [14], что в ходе процесса зависимость скорости реакции от концентраций реагентов остается неизменной на всех участках и температурная зависимость скорости реакции по-прежнему описывается уравнением Аррениуса. При этом величина предэкспонента постоянна на всех участках, а значение энергии активации распределено по некоторому закону. Все эти допущения являются дискуссионными, но в первом приближении они достаточны, так как главным эффектом действия катализатора обычно бывает именно изменение энергии активации реакции. [c.86]

    Простейшим уравнением для изотермы адсорбции является уравнение Ленгмюра. Оно выводится в предположении, что на поверхности имеется определенное число центров, каждый из которых способен независимо от остальных центров связать одну частицу адсорбата. Процесс рассматривается как полностью обратимый и представляет собой своего рода реакцию между молекулами адсорбата и центрами адсорбции, уравновешенную обратным процессом—освобождения молекул адсорбата-десорбцией. Его мож- [c.315]

    Скорость реакции в гетерогенной систе.ме зо многих случаях зависит прежде всего от скорости адсорбции. Тогда при выводе кинетических уравнений можно пользоваться уравнением изотермы адсорбции Лангмюра [уравнения .36) и (37)]. Этот способ часто используется при вычислении скорости реакции в гетерогенной системе, а в некоторых случаях применим и для процессов разложения и синтеза аммиака. Сложные зависимости между скоростью реакции и явлениями, происходящими на поверхности катализатора, являются причиной того, что вид кинетических уравнений реакции, протекающей в гетерогенной системе, иной, чем для гомогенных реакций. [c.506]

    Этот результат можно сравнить с данными, которые получают для энергетически однородной поверхности. Предположим, что рассматриваемая реакция представляет собой такой процесс, в ходе которого реагент адсорбируется, перегруппировывается в результате поверхностной реакции с образованием молекул иного строения, а получающийся в результате этой перегруппировки продукт десорбируется. Если реакция на поверхности (стадия 3, см. разд. 2.4) определяет скорость процесса и по сравнению с ней десорбция происходит быстро, то скорость реакции прямо пропорциональна доле поверхности, занятой реагентом. Из уравнения изотермы адсорбции Ленгмюра [уравнение (93)] следует, что в таком случае скорость выражается уравнением [c.60]


    Очевидно, что скорость каталитической реакции симбатна количеству хемосорбированных молекул одного или нескольких субстратов. Поэтому для расчета скоростей каталитических реакций надо знать зависимость этой величины от непосредственно определяемых параметров — температуры и концентраций. Графическим выражением такой зависимости является изотерма адсорбции. Впервые уравнение изотермы адсорбции было выведено Лэнгмюром. Он исходил при этом из следующих постулатов 1) адсорбция молекул на твердой поверхности ограничивается монослоем 2) твердая поверхность энергетически однородна 3) отсутствует взаимодействие между адсорбированными молекулами 4) характер поверхности не меняется в ходе адсорбции. Хотя, как было показано выше, постулаты Лэнгмюра соблюдаются далеко не всегда, логика его рассуждений используется при выводах более сложных адсорбционных закономерностей, а его уравнение изотермы адсорбции хорошо описывает многие экспериментальные данные и является удобной формой аппроксимации истинных закономерностей. Рассмотрим поэтому, следуя Лэнгмюру, кинетический вывод изотермы адсорбции, который был позже подтвержден более строгими термодинамическими рассуждениями, при сохранении исходных постулатов. [c.21]

    Лимитирующей стадией может быть реакция в адсорбционном слое. При этом концентрации адсорбированных веществ на поверхности в простейшем, но весьма распространенном случае определяются уравнением изотермы адсорбции Ленгмюра. Как было показано в 17 главы VII, при адсорбции смеси газов А и В эти уравнения имеют вид  [c.309]

    Кривые рис. 4 получены путем численного интегрирования, при допущении, что реакция имеет первый порядок по пропилену, а зависимость от концентрации кислорода основана на лэнгмюровской изотерме адсорбции. Дифференциальные уравнения имели вид  [c.237]

    Уравнения изотермы адсорбции для этих случаев были приведены выше. Кинетические уравнения, выведенные на основании данных предположений, в большинстве случаев обеспечивают расчетные значения скорости контактной реакции, совпадающие с экспериментально найденными. Это, возможно, свидетельствует о правильности как одной, так и другой гипотезы. Однако предположение о неоднородности поверхности получило лучшее обоснование. [c.280]

    Для вывода уравнения изотермы локализованной адсорбции рассмотрим химическую или квазихимическую (для локализованной физической адсорбции) реакцию [c.443]

    Кинетика реакций на неоднородной поверхности. При невыполнении одного из постулатов Лангмюра (см. раздел 1.2) вид изотермы адсорбции меняется. Подставляя в формулы (11.88)—(П.90) уравнение любой изотермы адсорбции, отличной от лангмюровской, получаем видоизмененные кинетические зависимости, характеризующие процесс на неоднородной поверхности или при взаимодействии молекул в адсорбированном слое. Если адсорбционное равновесие не достигается, соответствующие неравновесные зависимости получают, заменяя уравнения изотерм адсорбции зависимостями степеней заполнения поверхности от концентраций реагентов в объеме, определенными из условия баланса потоков адсорбции, собственно реакции и десорбции. [c.85]

    Особенность кинетических закономерностей гетерогенно-каталитических реакций (в отличие от реакций в объеме) состоит в том, что устанавливается зависимость скорости реакции от парциального давления реагентов в объеме газа (которое измеряется на опыте), хотя фактически они определяются количествами адсорбированных веществ. Поэтому при выводе кинетических уравнений гетерогеннокаталитических реакций нужно знать адсорбционные свойства всех газов в газовой смеси на поверхности катализатора, т. е. изотерму адсорбции. Полагаем, что справедлива изотерма адсорбции Ленгмюра. [c.431]

    Типичная форма изотерм адсорбции (связанная с заполнением свободного поверхностного слоя и задержкой процесса по мере заполнения) и подчинение уравнению Ленгмюра считались ранее признаком, позволяющим отличить коллоидно-химический процесс адсорбции от гетерогенной химической реакции, описываемой законом действия масс. Этот критерий различия между двумя типами процессов упоминался в учебниках и использовался в научных работах. Однако между изотермой Ленгмюра и законом действия масс не существует принципиального различия. [c.91]

    Из уравнения изотермы адсорбции Лэнгмюра можно сделать кинетически важные выводы. Если реагирует одно вещество, адсорбирующееся на поверхности катализатора, а продукты реакции десорбируются, не мешая адсорбции новых молекул реагента, то в зависимости от интенсивности адсорбции возможны три случая, [c.105]

    Импульсный гальваностатический метод используется также для изучения строения двойного электрического слоя и адсорбции веществ, которые могут окисляться или восстанавливаться на поверхности электрода. При концентрациях органического вещества <10" моль/л и 1>100 А/м величина п, рассчитанная из переходного времени на хронопотенциограмме, равна пРГ, где Г — адсорбция органического вещества. Однако в ходе восстановления (или окисления) адсорбированных частиц их убыль пополняется за счет диффузии вещества из объема раствора. Влияние диффузии на хронопотенциограмму определяется видом зависимости между приэлектродной концентрацией органического вещества и величиной адсорбции его на электроде, т. е. изотермой адсорбции. Поэтому поправку на диффузию по уравнению (42.6) проводить нельзя. Кроме того, необходимо учитывать последовательность, в которой вступают в электрохимическую реакцию заранее адсорбированные и диффундирующие из раствора частицы. Адсорбцию деполяризатора, накопленного предварительно на поверхности электрода, рассчитывают по соотношению [c.215]


    При протекании катодного процесса с медленной предшествующей химической реакцией должен наблюдаться предельный кинетический ток, а при протекании анодного процесса — выполняться тафелевская зависимость (58.9). Уравнение (58.9) строго справедливо, если только степень заполнения поверхности веществом Н мала. Действительно, при выводе уравнения (58.9) предполагалось, что потенциал определяется поверхностной концентрацией вещества Н по уравнению Нернста. Но это верно, если адсорбция вещества на электроде пропорциональна его активности в объеме раствора, т. е. при выполнении адсорбционной изотермы Генри. Если же степень заполнения поверхности веществом Н стремится к единице, то и при катодном процессе с последующей химической стадией (соответственно — для анодного процесса с предшествующей химической стадией) должен наблюдаться предельный кинетический ток (рис. 162). Величина этого предельного тока определяется уравнением изотермы адсорбции для вещества К, [c.301]

    Напомним, что при конструировании приведенных выше уравнений использовалась изотерма адсорбции. В определенных условиях проведения процесса может оказаться, что равновесие нарушено сразу в нескольких стадиях каталитической реакции, адсорбция или десорбция реагентов и разные стадии химической реакции на поверхности катализатора сравнимы по скорости, так что среди них нельзя выделить лимитирующую. В таких случаях этот способ конструирования кинетических уравнений непригоден и для описания кинетики реакции в рамках модели идеального адсорбированного слоя необходимо пользоваться теорией стационарных реакций. [c.77]

    Если пренебречь 1/а1п С, то в результате получается логарифмическая изотерма адсорбции. Наконец, при определенных значениях констант а и 1 1 получаем уравнение Фрейндлиха. В связи с этим возникла острая необходимость в развитии экспериментальных методов, которые позволили бы отличать эффекты неоднородности от эффектов отталкивания. Это тем более необходимо, поскольку кинетика гетерогенных процессов описывается уравнениями, исходящими из адсорбционных изотерм. Поэтому вопрос о наличии неоднородности поверхности или сил отталкивания, возможность выбора между ними или же возможность учета обоих типов эффектов приобретает важное значение не только для теории и механизма адсорбции, но и для определения механизма каталитических реакций. [c.53]

    Общие уравнения скорости гетерогенной реакции, выведенные с учетом изотерм, применимы для всех катализаторов. Для учета специфики процесса на заданном катализаторе требуется делать ряд дополнительных предположений. Прямые экспериментальные методы определения адсорбционных коэффициентов трудно выполнимы и поэтому необходимо определение порядка реакции по реагирующим веществам. Таким образом, применимость выведенных теоретических уравнений становится очевидной только после сопоставления их с экспериментальными данными. Кроме того, в кинетические уравнения вводятся равновесные поверхностные концентрации реагирующих веществ, отвечающие изотермам адсорбции, в то время как реакция осуществляется при некоторых стационарных концентрациях, устанавливающихся в ходе реакции. Как показало применение электрохимических методов при исследовании жидкофазных процессов гидрирования, реакции гидрирования очень часто протекают в условиях значительного заполнения поверхности катализатора водородом. Следовательно, только часть сорбированного водорода участвует в реакции и обусловливает наблюдаемую скорость реакции. [c.63]

    Типичная форма изотерм адсорбции (связанная с заполнением свободного поверхностного слоя и задержкой процесса по мере заполнения) и подчинение уравнению Лэнгмюра считались ранее признаком, позволяющим отличить коллоидно-химический процесс адсорбции от гетерогенной химической реакции, описываемой законом действия масс. Этот критерий различия между двумя типами процессов упоминался в учебниках и использовался в научных работах. Однако, как показали современные работы , между изотермой Лэнгмюра и законом действия масс не существует принципиального различия. Для того чтобы убедиться в этом перейдем от кинетической трактовки к термодинамической. Запишем для химической реакции /L -f тМ (/Q rR известное выражение равновесия через химические потенциалы [c.89]

    В общем случае, рассматривая электрохимическую кинетику на твердых электродах, необходимо учитывать энергетическую неоднородность твердой поверхности. Поэтому логарифмическая изотерма адсорбции, которую используют при выводе уравнения замедленного разряда, учитывает неоднородность поверхности. Влияние энергетического состояния поверхности на кинетику электрохимической реакции отображается в уравнении замедленного разряда коэффициентами переноса аир. Они являются коэффициентами пропорциональности между изменением теплоты реакции и изменением энергии активации ири возникновении перенапряжения. Однако теплоты реакции па поверхностях с разными энер- [c.523]

    При решении вопроса о том, какому механизму соответствует найденное кинетическое уравнение (1.9), необходимо иметь в виду, что водород может адсорбироваться на поверхности катализатора и реагировать с адсорбированными молекулами толуола в молекулярной форме либо в виде атомов или ионов. Выше отмечалось, что изомеризация углеводородов при гидрировании олефинов свидетельствует о диссоциативной адсорбции и последовательном присоединении атомов или ионов водорода к ненасыщенным связям гидрируемого соединения. Поэтому логичным будет допустить, что и при гидрировании ароматических углеводородов происходит диссоциативная адсорбция водорода и что лимитирующей стадией является присоединение первого атома или иона водорода к ароматическому кольцу. Тогда в случае лэнгмюровских изотерм адсорбции исходных веществ можно написать следующее выражение дпя скорости реакции  [c.32]

    Скорость катализируемых поверхностью реакций часто подчиняется кинетическому уравнению, которое можно вывести на основании изотермы адсорбции Ленгмюра (разд. 8.9). Скорость (йх/Ш) образования продукта поверхностной реакции пропорциональна доле поверхности, занятой реагирующими молекулами. Тогда, используя уравнение (8.30), для скорости реакции можно записать [c.325]

    На рис. 4-1 приведена кривая, характеризующая зависимость у (или АЛ) от [X] для некоторой гипотетической реакции (эту кривую -иногда называют изотермой адсорбции, поскольку для получения достоверных результатов эксперименты следует проводить при постоянной температуре). Из рис. 4-1 и уравнения (4-9) можно видеть, что когда величина fX] в точности равна 1/Kt (или /fd), то у = 0,5. Видно также. [c.250]

    Равновесные концентрации контактирующих фаз в процессах ионного обмена, как и в случае адсорбции, связаны уравнением изотермы (рис. 20-12). Наиболее часто уравнение изотермы устанавливают на основе закона действующих масс. Взяв в качестве примера реакцию катионного обмена, записанную в общей форме  [c.211]

    С помощью полученных выражений легко выписать уравнения для изотермы адсорбции и скоростей элементарных реакций на поверхности [72]. При этом энергии активации оказываются линейными функциями степеней заполнения, а теплоты адсорбции линейно снижаются но мере роста покрытия (при отталкивании >0, Вц >0). Линейная зависимость конфигурационных составляющих удельной мольной энтальпии адсорбции и активации от покрытий объясняется тем, что в исходном уравнении состояния двумерного газа учтено только парное взаимодействие между адсорбированными частицами. Если принять во внимание взаимодействие более высокого порядка, можно описать и нелинейную зависимость теплот адсорбции и энергий активации от степеней заполнения. [c.130]

    Типичная форма изотерм адсорбции (связанная с заполнением свободного поверхностного слоя и задержкой процесса по мере заполнения) и подчинение уравнению Лэнгмюра считались ранее признаком, позволяющим отличить коллоидно-химический процесс адсорбции от гетерогенной химической реакции, описываемой законом действия масс. Этот критерий различия между двумя ти- [c.82]

    Как показывают уравнения (Х1У-16) и (Х1У-19), см. гл. XIV, зависимость энтропии или энергии адсорбции от степени заполнения 0 приводит к усложнению вида изотерм адсорбции. Может показаться, что применение закона действия масс к этим изотермам должно приводить к уравнениям, которые трудно использовать и еще труднее проверить. Однако, как уже отмечалось в разд. хУ-4Б, гл. XIV, изменение Q при изменении 0 нередко компенсируется изменением частотного предэкспоненциального множителя в выражении для константы скорости каталитической реакции. Таким образом, влияние неоднородности поверхности на характер зависимости й от 0 часто не так уж существенно, как можно было бы ожидать. [c.535]

    Двухмерные концентрации т ,-, как и степени заполнения поверхности Qi, не принадлежат к числу непосредственно измеряемых величин поэтому кинетические уравнения процесса должны быть выражены через измеряемые концентрации реагентов в объеме. Для этого в формулы (11.78), (11.79) или (11.80) надо подставить выражения, связывающие степень заполнения поверхности с концентрацией соответствующего вещества в объеме. Для процесса с становившимся адсорбционным равновесием это будут уравнения изотермы адсорбции, а для реакции, скорость которой лимитируется скоростью адсорбции или десорбции реагентов, — более сложные зависимости, включающие в себя характеристики самой химической реакции. [c.102]

    Основополагающей в этом отношении следует рассматривать появившуюся в 1960 г. работу Бассета и Хэбгуда, в которой авторы, предположив линейную изотерму адсорбции, вывели уравнение, позволившее рассчитать константу скорости необратимой гетерогенной реакции первого порядка по измеренной экспериментально степени превращения. Теория реакций в импульсном микрореакторе за последние годы интенсивно развивалась как у нас, так и за границей. Были рассмотрены обратимые и необратимые реакции различных порядков как при мгновенном установлении равновесия газ — твердое тело, так и с учетом конечной скорости достижения адсорбционного равновесия в самое последнее время появились работы, в которых учтено также влияние продольной диффузии в потоке и диффузии реагирующего вещества внутрь поры твердого тела на характер протекания каталитических превращений в импульсном микрореакторе. Решение задач в случае нелинейной изотермы адсорбции требует более широкого использования современных методов вычислительной техники. Некоторые результаты, полученные в последнее время с помощью ВМ, описаны в пятой главе. Там же приведены результаты работ нашей лаборатории, в которых показана возможность измерения констант скоростей адсорбции и десорбции в ходе каталитического процесса по форме пиков реагирующего вещества и продуктов реакции. Пока в этом плане сделаны лишь первые шаги, однако в дальнейшем можно надеяться получить интересные результаты по расшифровке механизма сложных реакций, в особенности в тех случаях, когда скорости адсорбционных процессов явлцются лимитирующими. [c.6]

    Вопрос о том, из чего состоит активная поверхность при любой данной температуре, является сложным. Оп пе монсет быть решен па основе простой изотермы Ленгмюра. Как мы уже отмечали, в случае Иг наблюдаготся большие изменения в теплоте сорбщш. Эти изменения в свою очередь могут сильно изменить температуру активной поверхности и, таким образом, привести к аномальной зависимости скорости реакции от давления. Эти важ1ше детали могут быть выяснены только путем прямого непосредственного определения уравнения изотермы адсорбции. [c.549]

    Если скорость химической реакции на поверхности катализатора достаточно велика, то адсорбционное равновесие не достигается и степени заполнения поверхности молекулами реагентов нельзя определить из уравнения изотермы адсорбции. В предельном случае, когда адсорбция одного из реагентов является наиболее медленной стадией, скорость процесса лимитируется скоростью адсорбции этого реагента, и можно говорить о протекании реакции в адсорбционной области. Скорость адсорбции определяется константой скорости адсорбции и концентрацией сорбируемого вещества следовательно, кинетика процесса в адсорбционной области формально следует уравнению реакции первого порядка. Поэтому различить кинетическую и адсорбционную области только по кинетическим измерениям нельзя и при необходимости следует ставить специальные эксперименты по измерению скорости адсорбции или применять другие прямые методы исследования, например, спектроскопию адсорбированных молекул. [c.84]

    Приведенные случаи очень часты в гетерогенном катализе, и их применяют для расчетов кажущихся порядков реакции. И. Лэнгмюр показал, что его уравнение изотермы адсорбции хорошо выражает зависимость между величиной адсорбции газа и концентрацией при постоянной температуре. Из этого же уравнения можно путем расчета определить степень покрытия поверхности при максимальной адсорбции. Так, например, для адсорбции азота на слюде при 90° предел адсорбции найден равным 1,4-10 г-мол1см . Грамм-молекула жидкого азота содержит 6,06-10 молекул и занимает объем 35 см . Частное от деления объема 1 г-мол жидкого азота на число Авогадро [c.106]

    Особенно большое промышленное значение имеет гетерогенный катализ. Уже в самом начале исследований кинетики газовых реакций, происходящих на поверхности твердых катализаторов, было установлено, что каталитическая активность обусловлена явлениями адсорбции. Для приближенного рассмотрения кинетики подобных реакций целесообразно использовать уже упоминавшееся уравнение изотермы Лангмюра. Это уравнение устанавливает связь между степенью заполнения (9) поверхности катализатора молекулами реагирующего вещества и парциальным давлением этого веп1ества в газовой фазе р  [c.277]

    Уже на ранних стадиях изучения газовых реакций, происходящих на поверхности твердых тел, было найдено, что их первой стадией является адсорбция реагентов, а по завершении процесса десорбция продуктов. Поэтому при рассмотрении кинетики гетерогенных каталитических реакций используют различные изотермы адсорбции, которые позволяют определять связь между концентрациями реагирующих веществ па поверхности твердого тела и в объеме. Так, уравнение изотермы Лангмюра (гл. XV) применяют для рассмотрения кинетики мономолекулярной реакции Аг- Вг, происходящей на поверхностн твердого тела. Так как обычно адсорбционное равновесие устанавливается существенно быстрее, чем протекает химическое превращение, то скорость реакции пропорциональна поверхностной концентрации газа в адсорбированном слое или, что то же, доле занятых активных центров 0 на поверхности катализатора  [c.525]

    Предполагаем, что адсорбция участвующих в реакции веществ подчиняется изотерме Лаигмюра, тогда уравнение (3) запишем в виде [c.11]

    Матрицы 8 и 82 Баландин [3, 4] назвал структурными матрицами. ( овместно со стехиометрической матрицей X они позволяют находить стационарные суммарные реакции и уравнения их скоростей, константы и порядки, значения концентраций исходных веществ, промежуточных и конечных продуктов, связывая это при необходимости с формулами строения молекул, стереохимическими моделями, свободным вращением атомных групп около валентной связи, аддитивными свойствами, расчетом равновесий, изотермой адсорбции, направлением реакции и т. п. Одновременно структурные матрицы открывают широкие возможности использования аппарата теории графов для представления сложных реакций графически посредством кинетических формул, структурно соответствующих формулам строения молекул, -и посредством стереохимических моделей. Большинство из этих вопросов подробно разработаны Баландиным [3, 4]. [c.37]

    Пользуясь теорией, разработанной для поверхностей с однородными активными участками, часто не удается объяснить некоторые свойства реальных катализаторов, например наблюдаемое во многих случаях значительное отклонение не только кинетики каталитических реакций, но и изотерм адсорбции от теоретически ожидаемых. Эти отклонения, как теперь удалось установить, вызваны в большинстве случаев неоднородностью активных участков поверхности. Наиболее существенные успехи в разработке и математической формулировке теории процессов, протекающих на неоднородных поверхностях, достигнуты в последние годы советскими исследователями. Я. Б. Зельдович разработал рациональную статистическую теорию изотермы реального процесса адсорбции, которая дает возможность получить изотерму Фрейндлиха при больцмановском типе распределения отдельных участков поверхности по их активностям. С. Ю. Елович и Ф. Ф. Харахорин экспериментально доказали, что экспененциальное уравнение скорости активированной адсорбции, предложенное Я. Б. Зельдовичем и С. 3. Рогинским, соответствует определенной функции распределения участков поверхности по теплотам активации. С. 3. Рогинским разработана статическая теория каталитической активности и отравления катализаторов, кроме того, в общем виде рассмотрена проблема функций распределения участков поверхности по активности в связи с разработкой теории каталитического процесса 1. Большое принципиальное значение имеет разработанная М. П. Темкиным теория адсорбции и катализа на поверхностях, отличающихся равномерным распределением участков, на которые можно разделить поверхность реальных контактов, по их величинам теплот адсорбции и теплот активированной адсорбции. Разрабатывая термодинамику адсорбционного равновесия, М. И. Темкин дал рациональное толкование постоянной Ь уравнения Ленгмюра, связав ее простым соотношением с теплотой адсорбции. Серьезным достижением следует считать логарифмическую изотерму адсорбции, предложенную А. Н. Фрумкиным и А. И. Шлыгиным, которая позволяет теоретически обосновать возможность дробных порядков в кинетике каталитических реакций. [c.9]

    В работе [422] было показано, что при наличии соотношений линейности дробные показатели отвечают только случаям равномерного и экспоненциального распределений (П1.71), (П1.93) и (П1.107). Таким распределениям соответствуют логарифмическая, степенная и отрицательно-степенная изотермы адсорбции. Никакие другие распределения при наличии соотношения линейности не могут приводить к выражениям, содержащим дробные показатели степени. Поэтому факт выполнения кинетических уравнений с дробными показателями степеней, с гочки зрения теории процессов на неоднородных поверхностях, может сам по себе указывать на возможный характер распределения. Кроме того, существенно, что наличие кинетических уравнений с дробными степенями может также указывать на протекание реакции в области средних заполнений, поверхности (по каждому компоненту). Однако отсутствие дробных показателей степени еще не означает протекание реакции в других областях заполнений поверхности и не указывает на выполнение условий идеального адсорбированного слоя. [c.205]


Смотреть страницы где упоминается термин Изотермы адсорбции реакции уравнение: [c.189]    [c.386]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции изотерма

Адсорбция изотермы Изотермы адсорбции

Изотермы

Изотермы и изотерма адсорбции

Изотермы изотермы

Уравнение адсорбции

Уравнение изотермы

Уравнения реакций



© 2025 chem21.info Реклама на сайте