Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность адсорбция органических оснований

    Механизм адсорбции органических оснований на кремнеземной поверхности изменяется в зависимости от силы основания и значения pH раствора. Адсорбция аминов при нейтральном pH может протекать посредством образования водородных связей с поверхностью кремнезема  [c.941]

    При исследовании катализаторов методом адсорбции органических оснований удается определить их суммарную кислотность и распределение кислотности по силе. Авторами работы [149] изучено влияние содержания молибдена, никеля и цеолита на структурные характеристики и кислотность АНМ катализатора, полученных введением солей гидрирующих металлов в суспензию гидроксида алюминия. Из данных табл. 28 следует, что МоОз в количестве до 8,6% (образец 3) увеличивает поверхность катализатора по сравнению с у-АЬОз, тогда как NiO, напротив, несколько ее уменьшает (образец 2). Увеличение концентрации МоОз до 17,2% (образец 6) несколько уменьшает поверхность катализатора и практически не влияет на объем и средний радиус пор. АНМ катализаторы (образцы 4 и 7) по сравнению с алюмомолибденовыми катализаторами (образцы 3 и 6), содержащими одинаковое количество молибдена, имеют меньшую поверхность, а при 17,2% МоОз — объем и средний радиус пор. Это может быть связано либо с отложением NiO на поверхности при прокаливании катализатора, либо с химическим взаимодействием никеля с носителем и молибденом. [c.62]


    Кабанов и Лейкис выявили ускоряющее влияние адсорбции иона 0Н на кинетику растворения железа, а работы Колотыркина с сотрудниками показали, что первичный акт растворения большого числа металлов протекает через образование комплексов с участием адсорбированных анионов. Как нашел 3. А. Иофа, адсорбция органических оснований и их ингибирующее действие на кислотную коррозию железа и кобальта резко возрастают в присутствии анионов брома и йода, сообщающих поверхности отрицательный заряд. [c.18]

    Адсорбируясь на поверхности металла, эти вещества могут существенно снижать скорость электрохимических реакций, вызывающих коррозию. Ионы галогенов в кислых растворах способствуют адсорбции ряда органических соединений (преимущественно азотсодержащих органических оснований) на поверхности железа и мягких сталей и, следовательно, усиливают замедляющее действие ингибиторов. [c.641]

    В последние годы сконструированы устройства, основанные на принципе фазового детектирования, которые при условии (1.17) автоматически регистрируют емкость двойного слоя С и сопротивление раствора R. При этом средний потенциал исследуемого электрода медленно изменяется во времени по линейному закону и кривые зависимости R и С от Е регистрируются на ленте самописца или на экране катодного осциллографа. Протекание электрохимического процесса характеризуется резким увеличением сопротивления в схеме, изображенной на рис. 1.9. Поэтому по зависимости R от Е можно легко выделить область идеальной поляризуемости, где измеренные значения емкости дают сведения об адсорбции органических веществ на поверхности электрода. [c.24]

    В предельно гидроксилированном состоянии поверхность этих адсорбентов также и химически однородна, так как она не содержит примесей, образующих сильно специфически адсорбирующие акцепторные центры [52, 55, 81, 82]. В атом состоянии каждый поверхностный атом кремния непористого или достаточно широкопористого кремнезема удерживает в среднем одну гидроксильную группу [52, 83—85]. Эти гидроксильные группы определяют обратимую адсорбцию молекул органических оснований с образованием водородных связей [86], а также обратимую адсорбцию воды (см. обзор [54], а также [52,87—89]). Однако физически такая поверхность неоднородна, так как конденсированные кремневые кислоты образуют полисилоксановые цепи и кольца разных размеров, по-разному выходящие на поверхность, часто с разными зазорами между ними, и поэтому нет строгой периодичности в расположении и ориентации поверхностных гидроксильных групп. Тем не менее во многом адсорбционные свойства таких химически чистых поверхностей сходны с адсорбционными свойствами физически однородных поверхностей, [c.20]


    Нужны дальнейшие всесторонние исследования специфической адсорбции в области малых заполнений, когда сильно сказываются примесные центры, дефекты структуры, дегидроксилирование поверхности окислов, декатионирование цеолитов и т. п. Наиболее чувствительными методами являются в настоящее время газо-хроматографический, позволивший, например, наблюдать хемосорбцию органических оснований на примесных центрах поверхности кремнезема и определить концентрацию этих центров, а среди спектроскопических — метод ЭПР. Для изучения химии поверхности весьма важно использовать параллельно чувствительные модельные каталитические реакции. Интересны также метод люминесцирующего зонда (стр. 172), переход молекулярной адсорбции спиртов на кремнеземе в химическую при повышении температуры и GTG сигнала ЭПР хемосорбированных спиртов (стр. 229). Комплексное использование всех этих методов необходимо, в частности, нри изучении акцепторных центров поверхности алюмосиликатных катализаторов и декатионированных цеолитов.  [c.205]

    В последнее время все большее значение приобретают методы оценки пористости катализаторов (в особенности для органических реакций), основанные на адсорбции органических веществ спирта, бензола и т. д. Недавно Роде и Агрономов [28] по изотермам адсорбции бензола при 0° с помощью метода БЭТ определили величины удельных поверхностей и средний радиус пор окиснохромовых катализаторов, приготовленных разными способами. [c.166]

    Свойства возникающих при такой обработке аэросилогеля центров были исследованы в работе [54] путем съемки ультрафиолетовых спектров адсорбированных молекул ряда органических оснований. Было найдено, что на поверхности аэросилогеля [28], находящегося в предельно гидроксилированном состоянии (после откачки при 200°С), адсорбция молекул сильных оснований типа антрахинона остается молекулярной (рис. 69, кривая /), поскольку положение полос поглощения адсорбированного антрахинона близко к положению полос антрахинона, растворенного в гексане [55]. После же обработки этого образца в вакууме при 1000° С адсорбция молекул оснований сопровождается их ионизацией (рис. 69, кривая 2), поскольку положение полос поглощения адсорбированного антрахинона приближается к их положению в спектре молекул антрахинона в серной кислоте [55]. Последующая адсорбция молекул воды блокирует центры специфической адсорбции и спектр адсорбированных молекул (см. рис. 69, кривая 3) становится подобным спектру молекул, адсорбированных аэросилогелем, обработанным при 200° С в вакууме (см. рис. 69, кривая I). Последующая откачка восстанавливает спектр ионизованных форм адсорбированного антрахинона (см. рис. 69, кривая 4). [c.200]

    Механизм отравления органическими основаниями предполагает адсорбцию этого основания на координационно ненасыщенных поверхностных атомах алюминия или кремния. Образующийся при этом адсорбированный комплекс дает кислоту Льюиса на поверхности  [c.25]

    Адсорбционные индикаторы. Адсорбционные индикаторы представляют собой органические соединения, которые адсорбируются осадком или десорбируются с поверхности осадка, образующегося в процессе титрования. В идеальном случае адсорбция или десорбция наблюдается вблизи точки эквивалентности и сопровождается не только изменением цвета раствора, но и образованием окрашенного соединения на поверхности осадка. Метод, основанный на использовании адсорбционных индикаторов, иногда называют методом Фаянса в честь ученого, который многое сделал для его развития. [c.204]

    Рассматривая с подобной точки зрения процесс адсорбции, можно предположить, что образование донорно-акцепторной связи в этом случае связано с переносом электрона с одной из занятой орбитали молекулы на энергетический уровень в металле, значение которого зависиг от потенциала. Сделав такое допущение, можно ожидать, что максимальный выигрыш энергии в результате образования химической связи и замены молекул Н2О на поверхности металла молекулами органического вещества будет наблюдаться при тех условиях, когда разность значений энергетических уровней в металле и в молекуле минимальна. В случае равновесной адсорбции, на основании описанной модели можно предположить, что при этом условии будет наблюдаться и максимум адсорбции. [c.265]

    В случае адсорбции органических молекул потенциальные функции взаимодействия атомов молекулы с атомами адсорбента можно определить при использовании экспериментальных значений константы Генри К для адсорбции немногих простейших представителей рассматриваемого класса соединений на данном адсорбенте. Полученные так атом-атомные потенциальные функции далее могут быть использованы для определения потенциальной функции Ф и на ее основе расчета термодинамических характеристик адсорбции при нулевом заполнении поверхности для других соединений рассматриваемого класса на том же адсорбенте с погрешностью, близкой к погрешности соответствующих экспериментальных значений. Полученное хорошее согласие между значениями К, рассчитанными при использовании атом-атомного приближения, и экспериментальными значениями К для адсорбции на ГТС всех рассмотренных соединений, молекулярная структура которых хорошо известна, позволило поставить и решить обратную задачу молекулярной теории адсорбции — на основании термодинамических характеристик адсорбции определить или уточнить структурные параметры молекулы. [c.86]


    В соответствии с этими равновесными изотермами адсорбции, полученными статическим методом, такие вещества, как диоксан, ацетон, простые эфиры, бензол, толуол, циклогексанон и пиридин, т. е. слабые и сильные органические основания, ограниченно и неограниченно растворимые в воде, удерживаются на поверхности силикагеля из водных растворов, т. е. удерживаемые объемы этих веществ, исправленные на мертвый объем колонны по удерживанию, например тяжелой воды или галловой кислоты, значительные. Учитывая все эти факты, следует отметить, что подразделение жидкостной адсорбционной хроматографии на нормально-фазовую (положительное удерживание на полярном адсорбенте из неполярного элюента) и обращенно-фазовую (положительное удерживание на неполярном или слабополярном адсорбенте из полярного элюента) с точки зрения межмолекулярных взаимодействий не обосновано. Оно является поэтому не только условным, но и вводящим в заблуждение, так как органические вещества могут удерживаться на полярном адсорбенте и из чисто водных элюентов. [c.176]

    Смедения полосы поглощения валентных колебаний свободных силанольных групп поверхности аэросила Л-Уон увеличиваются сим-батно с увеличением разности теплот адсорбции органических оснований В на гидроксилированной и дегидроксилированной поверхности (А ) по мере увеличения энергии водородной связи 81—ОН. .. В. В случае особенно сильных оснований образование водородной связи может завершиться переходом протона сила-нольной гр уппы поверхности на основание с образованием иона. Этот переход облегчается при возникновении с данной группой 81—ОН внутримолекулярной водородной связи по ее кислороду со стороны соседней силанольной группы (см. табл. 3.2 и раздел 3.6). [c.69]

    Влияние электроноакцепторных примесей можно наблюдать, измеряя теплоты адсорбции органических оснований на чистом и содержащем при-L месь Al образцах кремнезема до и после вакуумной обработки при высоких температурах. Удельная поверхность макропористых кремнеземов "при этом не изменяется, так что изменения д вызываются только изменением химии поверхности. В случае чистого кремнезема с ростом температуры прокаливания дифференциальная теплота адсорбции д пара триэтиламина уменьшается (см. рис. 3.18). Для кремнезема, содержащего примесные центры координационно ненасыщенного алюминия (рис. 3.21), обработка в вакууме при возрастающих температурах (до 1100°С) приводит к уменьшению д только в области больших Г, когда заполняется силоксановая часть поверхности. В области же небольших Г значение q с ростом температуры прокаливания образца растет и после обработки образца при ПОО°С достигает 200 кДж/моль. В этом случае молекулы триэтиламина химически взаимодействуют с обнажаемыми при термовакуумной обработке примесными центрами координационно ненасыщенного [c.72]

    При еще более высоких температурах для чистых, практически не спекающихся широкопористых образцов этот процесс замедляется, так что даже при 900—1000 °С на поверхности кремнезема еще остаются силанольные группы. Обратный процесс регидроксилирования [5] при очень низком давлении пара воды, которое может быть в газе-носителе, протекает весьма медленно, так что в газовой хроматографии можно применять силикагели и оилохромы с разной поверхностной концентрацией си-ланольных групп от аон 4 групп/нм2 после прокаливания при 400—450 °С (обычно это верхние температуры термостата колонны хроматографа) до аон 0,5 гpyпп/нм после прокаливания при температуре около 1000 °С [62]. Уменьшение аон в этих пределах вызывает сильное уменьшение теплоты адсорбции органических оснований, особенно при средних заполнениях поверхности— теплота адсорбции приближается к теплоте конденсации [63] в результате устранения с поверхности силанольных групп, образующих водородные связи с молекулами органических оснований. Поэтому, регулируя аон, можно изменять удерживание таких веществ. [c.27]

    Наличие в алюмосиликатных катализаторах протонных и апротонных кислотных центров доказано, с помощью ИК-спектроскопии. Найдено, что при адсорбции ам.миака илп органических оснований на поверхности алюмосиликатпого катализатора существуют соединения  [c.132]

    Адсорбция органических веществ может приводить к ускорению электродных процессов. Так, реакции электровосстановления анионов при отрицательных зарядах поверхности ускоряются в присутствии катионов тетраалкиламмониев (см. рис. 145). Это явление можно объяснить на основании уравнения (52.2) теории замедленного разряда, если учесть, что zo < О, а при специфической адсорбции катионов 11з1-потенциал сдвигается в положительную сторону. Принимая, что в первом приближении при адсорбции органических катионов выполняется уравнение (71.3), получаем экспоненциальное возрастание скорости электровосстановления анионов при заполнении поверхности катионами  [c.391]

    Указанные выше причины неоднородности поверхности ионных и молекулярных кристаллов относятся также и к кри - ллическим окисным адсорбентам, таким, как окись магния, .яатаз, рутил, кварц и др. В этом случае часто возникают дополнительные осложнения из-за химической неоднородности поверхности, так как дегидроксилированные окислы легко хемосорбируют воду, в результате чего на поверхности образуются гидроксилированные участки, которые при дальнейшей откачке перед опытами по адсорбции частично снова дегидроксилируются. Очень большое значение в этих случаях имеют примеси. В частности, примеси алюминия или бора на поверхности кремнезема создают сильные кислотные центры, вызывающие хемосорбцию многих органических оснований (см. обзоры (333— 335]).  [c.70]

    Очень важное значение для изучения химических свойств поверхности окисных катализаторов и адсорбентов имеет интерпретация спектральных проявлений адсорбции молекул аммиака и органических оснований. При этом основной интерес вызывает установление спектральных различий образования протониро-ванных форм этих молекул в результате проявления протонодо-норных свойств поверхности, а также заряженных форм, образующихся при передаче электронного заряда к поверхности в результате проявления ее апротонных кислотных свойств. Интерпретация спектров таких форм адсорбции целиком основана на сравнении спектров адсорбированных молекул оснований со спек-трами их растворов в типичных протонодонорных средах или со [c.42]

    С. 3. Муминов, Э. А. Арипов (Институт химии АН УзССР, Ташкент). Модифицирование глинистых адсорбентов поверхностно-активными веществами и органическими основаниями приводит к существенным изменениям как вторичной, так и первичной структуры, причем в формировании пористой структуры существенную роль могут играть органические вещества из окружающей среды, прочно сорбированные на внешней поверхности и в порах глинистых адсорбентов. В некоторых случаях органические вещества оказывают отрицательное влияние на поверхностные свойства и пористую структуру и в целом на их адсорбционные свойства. Это подтверждается результатами изучения адсорбции паров бензола на двух глинистых породах, являющихся смешанно-слойными образованиями типа гидрослюд. Экстрагирование органических веществ из пород смесью хлороформа с бензолом показало, что образцы двух пород содержат 0,65 и 0,32 % битуминозных органических веществ, состав которых следующий 56,25 и 71,43 мае. % масел 25,00 и 28,57 мас.% смол 18,75 мас.% асфальтенов слюды. [c.214]

    Количество основания, хемосорбируемое твердым веществом из газовой фазы, также служит мерой концентрации кислотных центров поверхности. В этом случае адсорбцию паров органического основания, такого, как пиридин или триметиламии, осуществляют после вакуумирования образца и измеряют на кварцевых весах. Основание считают адсорбированным химически, если после продолжительной откачки вес образца не изменяется [18]. По методу Миллса и др. [39] через трубку с образцом продувалась смесь газообразного азота и паров хинолина после установления адсорбционного равновесия через трубку пропускали чистый азот для удаления слабо удерживаемого, физически адсорбированного хинолина. Прирост веса образца за счет хемосорбции хинолина измеряли на химических весах, непосредственно связанных с адсорбционной трубкой. [c.30]

    Многочисленные исследования адсорбционного взаимодействия органических оснований и аммиака с поверхностью А12О3 позволили выделить, по крайней мере, четыре типа взаимодействий 1) физическая адсорбция с образованием Н-связей 2) координационное взаимодействие е льюисовскими кислотными центрами 3) поверхностные реакции с кислородными центрами 4) поверхностные реакции с бренстедовскими кислотными центрами [41, 60, 68]. Соотношение протонных и апротонных центров на поверхности А12О3 зависит от температуры его термовакуумной обработки при температурах выше 700 К на поверхности существуют преимущественно льюисовские кислотные центры [41, 61, 62, 65, 66]. [c.76]

    Изучению адсорбции на ртути гетероциклических соединений, представляющих собой органические основания (пиридин и его производные), посвящены работы Гирста [57], Конуэя и сотр. [58— <50], а также Нюрнберга и Вольфа [61]. Сопоставлению экспериментальных данных и теоретических выводов этих авторов была недавно посвящена работа [62]. В этой работе, в частности, было показано, что при не очень высоких степенях заполнения поверхности органическим веществом (9 < 0,6) экспериментально невозможно установить различие между изотермами Фрумкина (16) и Бломгрена — Бокриса (29) и (29а), так как это требует определения 0 с точностью не менее 0,01. Таким образом, найденные из опытных данных линейные зависимости AGa от 0 / (для нейтральных молекул) или AGI от 0 - 2 (для ионов) [44, 45, 58, 60] не исключают при существующей в настоящее время точности измерений линейной зависимости AGa от 0, отвечающей уравнению (16). Но поскольку изотермы Бломгрена — Бокриса при не слишком высоких 0 передают лишь отталкивательное взаимодействие (константы Р и Pi в уравнениях (29) и (29а) по своему физическому смыслу всегда положительны), то для описания экспериментальных данных следует предпочесть уравнение (16), которое в зависимости от знака аттракционной постоянной а приложимо как к системам с преобладанием притягательного взаимодействия а > 0), так и к системам, где преобладают силы отталкивания (а<0). [c.189]

    Использование уравнения (46а), не являющегося чисто термодинамическим, для изучения изотерм адсорбции вызвало возражение Парсонса [184], однако высказанные нами выше соображения относительно уравнения (9) дают основание использованию емкостных измерений для изучения изотерм адсорбции органических соединений на поверхности электрода. В работе Лайтинена и Мозьер [185] этим методом были изучены изотермы адсорбции на ртути тридцати различных органических веществ, причем было отмечено, что форма их приблизительно соответствует форме изотермы Ленгмюра. Следует, однако, отметить, что в ряде случаев, когда концентрация органического вещества была мала, а адсорбируемость его велика, при использовании капельного электрода с относительно небольшим периодом капанья (8—10 сек) адсорбционное равновесие, вероятно, фактически не успевало установиться [186, 187]. Это ограничивает значение выводов, относящихся к форме адсорбционной изотермы. [c.206]

    Приведем другой пример. В последнее время широко обсуждается механизм торможения кислотной коррозии железа смесями солей органических оснований в присутствии галоид-ионов38. 39.67 3 д Иофа , В. В. Лосев и др. предполагают, что первичным процессом является взаимодействие поверхности металла с ионами галоида. В результате этого взаимодействия заряд поверхности металла изменяется (увеличивается значение отрицательного потенциала металла) таким образом, что на поверхности становится возможной адсорбция органических катионов, например ионов тетрабутилизоамиламмония. [c.64]

    Во многих случаях активность катализаторов обусловливается небольшими количествами постороннего вещества, изменяющего [26] качественно и количественно хемосорбционные свойства поверхности. Если это изменение приводит к усилению каталитической активности, мы говорим о промоторах , если же активность уменьшается, мы говорим о ядах . От поверхностной концентрации часто зависит, действует ли примесь как промотор или как яд. Атомы серы на поверхности никелевого катализатора гидрогенизации могут действовать как яд по отношению к реакции гидрогенизации, но одновременно они могут приводить к промотированию процесса селективной изомеризации с участием в нем хемосорбированных атомов водорода. Селективная гидрогенизация тройной связи может быть проведена на осторожно отравленном металлическом катализаторе, промотирование которого осуществлено прочно адсорбирова-ными органическими основаниями или металлическими примесями [27]. Во многих случаях действие небольших количеств примесей сильно зависит от их распределения в катализаторах, обладающих микропористой структурой адсорбция в устьях пор может привести к очень сильному отравляющему эффекту, а равномерное распределение — к увеличению избирательности действия [28]. Качественно природа действия примесей часто зависит от знака диполей, которые они образуют на поверхности [13]. [c.159]

    Ранее считали, что взаимодействие органохлорсиланов с гидроксильными группами проходит уже при температурах кипения используемых хлорсиланов и именно при этих температурах и проводили силанизацию [29 ]. Однако в дальнейшем было показано,что обработка парами органохлорсиланов твердых носителей не всегда приводит к воспроизводимым результатам. Было предложено проводить силанизацию в вакууме [30]. Для этого носитель помещают в специальный реактор, нагретый до 200°С, пропускают поток сухого азота под давлением 6,7-10 Па в течение 2 ч, затем поток паров дипропил-дихлорсилана. Индексы удерживания ряда веществ, полученные на таком носителе, меньше, чем на несила-низированном, что свидетельствует о дезактивации активных центров. В одной из последних работ [31] проводили химическое модифицирование силикагелей с разной степенью дегидроксилирования поверхности. При этом весь цикл обработки образцов (частичное дегидроксилирование, впуск обезгаженного триметилхлорсила-на, модифицирование поверхности при 310°С, откачка при 200°С и адсорбция триэтиламина) проводили без доступа воздуха. Показано, что только после прогрева системы при 310°С реакция с триметилхлорсиланом прошла в заметной степени. Авторы считают, что приведенные в работе [32] теплоты реакции триметилсилилиро-вания представляют собой на самом деле теплоты молекулярной адсорбции триметилхлорсилана, так как химическая реакция с силанольными группами поверхности силикагеля при температурах ниже 300°С не идет. Считается, что для наиболее полного подавления способности поверхности кремнезема к образованию водородных связей с молекулами органических оснований необходимы, во-первых, резкое снижение поверхностной концентрации силанольных групп путем прокаливания в вакууме при температуре около 1000°С и, во-вторых, полная замена остающихся после такой обработки силанольных групп на триметилсилильные трехкратно повто- [c.29]

    Высокая селективность разделения изомеров на бептоне-34 объясняется, по-видимому, тем, что в этом случае происходит преимущественно адсорбция на поверхности модифицирующего слоя, а не растворение, хотя к поверхности привиты довольно длинные цепи, между которыми молекулы разделяемых веществ могут проникать ( растворяться ). Выше было показано (см. также гл. II, стр. 33), что изомеры, особенно пространственные изомеры, несмотря на близость химических и физических свойств, по-разному адсорбируются на плоской поверхности адсорбента, поскольку их чвенья находятся на разных расстояниях от этoii поверхности. Так как основу бентона составляют пластинчатые кристаллы монтмориллонита, которые после прививки органических оснований перестают сильно слипаться, адсорбция происходит в этом случае на довольно однородной поверхности. [c.186]


Смотреть страницы где упоминается термин Поверхность адсорбция органических оснований: [c.68]    [c.186]    [c.28]    [c.380]    [c.393]    [c.380]    [c.339]    [c.380]    [c.444]    [c.208]    [c.572]    [c.76]    [c.96]    [c.151]    [c.310]    [c.362]    [c.27]    [c.184]    [c.107]   
Химия кремнезема Ч.1 (1982) -- [ c.941 , c.953 ]




ПОИСК





Смотрите так же термины и статьи:

Органические основания



© 2025 chem21.info Реклама на сайте