Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возможности методов выделения для исследования химических процессов

    Возможности методов выделения для исследования химических процессов [c.218]

    Предлагаемый Справочник может служить прекрасным пособием, отвечающим самым строгим требованиям к подобным изданиям. Большая заслуга авторов состоит в логичной, хотя и не совсем традиционной для справочника систематизации материала она сделана с учетом прежде всего биохимических функций, что позволяет быстро находить описание соединений самых различных классов в интересующей читателя области. Не меньшее удовлетворение у читателя должен вызвать и тот факт, что авторы не просто ограничились перечислением многих соединений с описанием их химических и физико-химических свойств, но и в подавляющем большинстве случаев дали указания на оригинальные работы, где описаны биохимические свойства, методы выделения или синтеза кроме того, по возможности приводятся способы применения в медицине, фармакологии, агрохимии и других областях. Особую ценность представляют уникальные в справочной литературе разделы по субстратам ферментов, ингибиторам биохимических процессов, биохимическим реагентам. В книгу вошли также очень важные для экспериментаторов разделы, касающиеся описания конкретных аналитических методик, методов приготовления растворов различных реагентов, буферных систем, физиологических сред при этом многочисленные таблицы в этих разделах чрезвычайно облегчают практические лабораторные расчеты. Хотя справочник и не претендует на исчерпывающее представление всех сведений о химических соединениях, материалах и методах, вовлеченных в орбиту биохимических исследований, тем не менее он охватывает подавляющее большинство важнейших и наиболее часто используемых из них. Этой книгой можно пользоваться и как методическим руководством, и как учебным пособием для биохимических практикумов и наконец, как сборником ценных лабораторных прописей для повседневной работы. [c.6]


    В ходе работ по выделению ценных элементов из стоков процесса рафинации платиновых металлов было установлено, что все возможные методы, дающие отличные результаты при использовании синтетических модельных растворов, оказываются непригодными для обработки реальных стоков процесса рафинации. Химический анализ обработанных стоков не показывает присутствия значительных количеств элементов, однако при выпаривании раствора досуха спектрографическое исследование остатка позволяет установить, что в растворе содержится до 100 мг/л различных металлов. Поскольку не существует методов для выделения этих соединений, их структура не может быть установлена. Эти соединения разлагаются с малой скоростью, выделяя аммиак. Имеются доказательства того, что в их состав входят стабильные гидроксильные группы. [c.287]

    Большая энергоемкость процессов разделения определяет необходимость создания оптимальных условий разделения реакционной смеси на целевые продукты (или фракции, имеющие товарную ценность). Последнее может быть достигнуто в результате исследования химических и физико-химических свойств отдельных компонентов, различных составляющих смеси (бинарных, тройных и других смесей), а также разделяемой смеси в целом. Именно на этом этапе удается выявить все технологические ограничения для процессов разделения, которые обусловлены как химическими свойствами разделяемых веществ (термолабильность, реакционная способность в условиях разделения и т.д.), так и их физико-хими-ческими свойствами (азеотропия, относительная летучесть компонентов и т.д.). В условиях этих ограничений и выбираются методы разделения, позволяющие их преодолеть. Из всех отобранных таким образом вариантов технологических схем на основе критерия оптимальности выбирается наилучший. Так, например, возможные последовательности выделения компонентов или фракций из исходной смеси определяются свойствами разделяемой смеси и прежде всего термодинамическими ограничениями, обусловленными ее фазовой диаграммой. Для преодоления этих ограничений и разделения разных смесей на чистые компоненты или фракции применяют как отдельные приемы и методы разделения, так и их сочетание. [c.146]

    Современное развитие химических и биологических наук истребовало более глубокого проникновения в существо изучаемых процессов, детального анализа химического состава разнообразных смесей и биологических объектов. Кроме того, для химического и биотехнологического ироизводства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев ири оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Рещение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой различной природы — от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хроматографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций ио различным вопросам теории и применения метода, общее же их число в несколько раз больше. [c.5]


    Наличие среди природных радиоэлементов радиоизотопов радона (эманации) радона-222, радона-220 и радона-219, представляющего собой при обычной температуре газообразное вещество, приводит к возможности частичного выделения их из твердых тел в окружающую среду. Это явление, получившее название эманирования, имеет большое теоретическое и практическое значение. Им обусловлены радиоактивность природных вод и атмосферы, активирование воздуха и предметов, соприкасающихся с препаратами радия, тория, актиния и др.. Метод эманирования был применен для изучения процессов старения гелей гидроокисей тяжелых металлов, для исследования химической устойчивости стекол, процессов перекристаллизации и т. п. [c.7]

    Кристаллизация из растворов — наиболее распространенный метод выделения и глубокой очистки большого числа химических веществ, в том числе простых неорганических соединений, поэтому целесообразен систематический обмен мнениями в области углубленного исследования этого процесса. Расчетные и экспериментальные методы термодинамики в исследовании жидких и твердых растворов получили в последнее время большое распространение. Возрастающий интерес к указанному направлению научных исследований обусловлен в первую очередь возможностью прогнозирования коэффициентов разделения в многокомпонентных гетерогенных системах с учетом использования свойств чистых компонентов или бинарных растворов. [c.159]

    Нефть представляет собой сложную смесь жидких органических веществ, в которой растворены различные твердые углеводороды и смолистые вещества. Кроме того, часто в ней растворены и сопутствующие нефти газообразные углеводороды. Разделение сложных смесей на более простые или в пределе — на Индивидуальные компоненты называется фракционированием. Методы разделения базируются на различии физических, поверхностных и химических свойств разделяемых компонентов. При исследовании и переработке нефти и газа используются следующие методы разделения физическая стабилизация (дегазация), перегонка и ректификация, перегонка под вакуумом, азеотропная перегонка, молекулярная перегонка, адсорбция, хроматография, применение молекулярных сит, экстракция, кристаллизация из растворов, обработка как химическими реагентами, так и карбамидом (с целью выделения парафинов нормального строения) и некоторые другие методы. Всеми этими методами возможно получить различные фракции, по составу и свойствам резко отличающиеся от исходного продукта. Часто эти методы комбинируют. Так, например, адсорбция и экстракция при разделении смолистых веществ или экстракция и перегонка в процессе экстрактивной перегонки и т. п. При детальном исследовании химического состава нефти практически используются все перечисленные методы. [c.11]

    Константы скорости перехода серы из металла в шлак определялись[ ] с помощью радиоактивной серы Применение меченых атомов дает возможность производить подобные исследования значительно быстрее и проще, чем с помощью обычных химических методов, так как устраняет необходимость трудоемких операций по выделению и очистке исследуемых соединений. Радиоактивный метод позволяет непосредственно следить за течением процесса и определять момент установления равновесия. Автор указанной работы считает, что регистрация состояния процесса в каждый данный момент создает все предпосылки для автоматизации контролируемого процесса. При многотоннажном объеме производства это потребует, понятно, значительного расхода радиоактивных веществ. Необходимо отметить также, что благодаря высокой чувствительности метода скорость достижения равновесного распределения данного элемента между металлом и шлаком может быть измерена при предельно низком его содержании. [c.180]

    Авторы настоящей монографии в течение ряда лет занимаются разработкой жидкостных хроматографических методов разделения различных смесей органических соединений — от продуктов основного органического синтеза до лекарственных веществ и их метаболитов, выделенных из биологических объектов. В центре внимания постоянно находилась взаимосвязь, существующая между строением веществ, составом хроматографической системы, условиями ее работы и величинами удерживания разделяемых соединений. К сожалению, уровень теории жидкостной хроматографии, которая тесно связана с теорией растворов, пока не позволяет с достаточной для практических целей точностью описывать и предсказывать поведение сложных органических соединений. Именно ио этой причине мы вслед за нашими предшественниками широко используем феноменологическое моделирование. Этот путь, не претендуя на глубину физико-химического описания процесса, в то же время дает возможность выявить многие существенные его стороны и, по нашему мнению, в обозримом будущем останется в жидкостной хроматографии как единственный подход, приносящий реальные плоды хроматографисту-практику. Общую цель наших исследований можно сформулировать как создание системы представлений и моделей, пригодных в качестве инструмента при интерпретации и прогнозировании хроматографических данных. [c.9]


    Активность и прочность активных углей зависят не только от размеров исходных кристаллитов, но и от их взаимного расположения друг относительно друга, характера связи кристаллитов между собой в частице угля, взаимного расположения этих частиц, образующих вторичную пористость, т. е. качество активного угля определяется как видом исходного сырья, так и условиями его переработки. К сожалению, исследование процессов, происходящих на разных этапах превращения углеродосодержащего сырья в активный уголь, ограничено. Это обусловлено отсутствием возможности получения оперативной и объективной информации об изменении характеристик исходных углеродсодержащих материалов в процессе термообработки с использованием методов химического анализа твердого остатка и летучих выделений, РСА и исследований пористой структуры. [c.518]

    Анализ диаграммы состояния дает возможность судить о структуре застывшего сплава, а следовательно, и о механических его свойствах. Исследование диаграмм плавкости является одним из методов физико-химического анализа, который в настоящее время представляет собой хорошо разработанную специальную отрасль физической химии. Этот метод применяется не только к металлическим системам, но и к другим. Так, например, исследование диаграмм состояния водно-солевых систем дает возможность изучить процессы, происходящие при выделении солей из растворов, что очень важно для правильной эксплуатации соляных озер. [c.205]

    В качестве примера приведем такие задания, как крекинг нефти, гидрогенизация жиров, алкилирование бензола и др. Студент получает сырую ефть, характеристику которой он должен определить. Затем следует разгонка иа фракции и характеристика нужной фракции й, групповой состав и др.). Следующим этапом является сборка аппаратуры для крекинга и приготовление катализатора. Сам процесс проводится в различных условиях (температура, объемная скорость и др.), чтобы найти оптимальные условия. Продукты реакции анализируются газы — на содержание непредельных углеводородов, жидкость — на содержание эро- матики, нафтенов и др. Для выделения ароматических углеводородов применяется хроматография. Таким образом, студент получает возможность ознакомиться со всеми методами исследования и в случае необходимости градуирует термопару и применяет электронные регулирующие приборы. После введения такого порядка прохождения практикума интерес студентов к курсу химической технологии очень повысился и вопросы катализа заняли большее место. [c.214]

    Вопрос о возможности применения метода инфракрасной спектроскопии к исследованию столь сложных и мало изученных высокомолекулярных составляющих нефтей, какими являются смолы и асфальтены, заслуживает особого внимания. Конечно, пока нельзя рассчитывать на получение при помощи этого метода каких-либо количественных данных, характеризующих групповой состав смо-листо-асфальтеновой части нефти, или, тем более, на идентификацию индивидуальных соединений, входящих в состав этой, очень сложной, физически и химически неоднородной смеси веществ. Однако можно делать достаточно обоснованные и правильные заключения о характере структуры исследуемой фракции высокомолекулярных веществ нефтей, сопоставляя данные инфракрасной спектроскопии, полученные для большого числа различных фракций высокомолекулярных компонентов нефти, выделенных из нефти в результате применения разнообразных методов (хроматография, дробное осаждение, молекулярная перегонка и т. д.), и наблюдая изменения в спектрах поглощения в инфракрасной области от фракции к фракции, происходящие параллельно с изменением химического состава и свойств последних (элементарный и структурно-групповой состав, функциональные группы, молекулярно-поверхностные и электрические свойства а т. д.). Особенно полезной может оказаться инфракрасная спектроскопия для наблюдения за качественными изменениями фракций высокомолекулярных соединений в процессах их химических превращений — в реакциях окисления, гидрирования. В этом случае сравнение инфракрасных спектров фракций до и после реакции свидетельствует весьма наглядно и убедительно о направлении и глубине химических изменений. [c.477]

    Во всех случаях при использовании метана для восстановления железа или руд выделялся углерод. Обсужденные условия исключают возможность применения этих методов в восстановительной стадии металло-паровых процессов получения водорода высокой чистоты. (Рассмотренные исследования построены на эмпирическом подходе к выбору физико-химических условий проведения процесса. Поэтому происходит выделение углерода и восстановитель не может быть использован для окисления водяным паром и получения водорода высокой чистоты. [c.76]

    Следует упомянуть об использовании элементарного анализа как химического метода идентификации и характеристики полимеров. Этот метод всегда можно применять для высокомолекулярных соединений, так же как для любого органического вещества, которое подвергается исследованию. Элементарный анализ позволяет сделать предварительные выводы о составе полимера и, кроме того, дает возможность определить, не происходят ли в процессе синтеза полимера существенные изменения в составе или строении элементарного звена. В особых случаях при вторичных реакциях замещения в макромолекулах можно на основании данных элементарного анализа делать выводы о степени превращения. При выделении полимеров из природных продуктов по данным элементарного анализа в некоторых случаях можно судить о достигнутой чистоте веществ и влиянии отдельных обработок на степень очистки. [c.191]

    ЛЯЮТСЯ теоретические значения свободной энергии, свободной -энтальпии ), энтропии и других термодинамических функций. Такой расчет связан с большими математическими трудностями. Поэтому в процессе расчета делаются различного рода упрощения. Теоретические значения термодинамических функций всегда получаются приближенными, во-первых, вследствие упрощений, содержащихся в молекулярной модели раствора, во-вторых, вследствие упрощений, допущенных в процессе расчета. В зависимости от вида упрощений теории подразделяются на строгие и мепее строгие . Это—одна сторона работы по созданию теории растворов. Другая сторона заключается в систематическом исследовании растворов методами физико-химического анализа и построении различных диаграмм состав—свойство. Это создает возможность выявления характерных закономерностей и выделения групп растворов, подчиняющихся найденным закономерностям. В сочетании с упомянутой выше теоретической работой систематическое исследование растворов методами физико-химического анализа приводит к постепенному выяснению природы растворов и механизма процессов, в них протекающих. [c.27]

    Физико-химические и методические основы адсорбционно-комплексообразовательного хроматографического метода были освещены в ряде работ [16—23]. Были показаны также возможности применения этого метода в различных областях науки и промышленности, как, например, глубокая очистка содей металлов, разделение солей металлов на группы или выделение одного из компонентов смеси, концентрирование растворов солей металлов, качественный анализ смесей ионов, исследование процессов комплексообразования, попутное извлечение редких и рассеянных элементов при комплексном использовании рудного сырья, разделение близких по свойствам элементов, разделение органических веществ и осуществление некоторых химических реакций в органической химии [16—53]. Но наибольшие успехи применения этого метода были достигнуты при глубокой очистке веществ и получении их в спектрально чистом виде. [c.102]

    Извлечение и потери микроэлементов удобно изучать с помощью радиоактивных индикаторов. Радиоактивный изотоп микроэлемента в небольших количествах добавляют к пробе перед стадией концентрирования и следят за его поведением, измеряя радиоактивность. Метод быстр, чувствителен и селективен. Существенные преимущества метода заключаются в том, что извлечение и потери микроэлемента определяются независимо от возможных загрязнений. Обычно изотопный эффект и эффект излучения незначительны, однако следует помнить, что добавляемый к пробе радиоактивный изотоп должен находиться в той же химической форме, что и исследуемый микроэлемент. Ограничения метода заключаются в трудности введения индикатора в твердые пробы при исследовании извлечения и потерь микроэлементов в процессе разложения, их выделении из твердых проб испарением и селективной экстракцией. Иногда применяют облучение твердых проб тепловыми нейтронами или синтезируют образцы с радиоактивными изотопами [c.17]

    Физическая химия применяет законы термодинамики, статистики, классической и квантовой механики для исследования химических явлений. Непосредственные контакты между химией и физикой долгое время оставались неопределенными и ограничивались развитием атомистики древних (П. Гассенди, 1592—1655) и использованием атомистических представлений прирешении физических задач (Бернулли, 1700—1780). М. В. Ломоносов был, по-ви-димому, первым, кто оценил необычайные возможности физики в раскрытии природы химических явлений. По крайней мере именно он был автором первого курса физической химии (1752), прочитанного им студентам Академии наук и названного Введение в истинную физическую химию . В дальнейшем методы этой науки развивались и совершенствовались медленно, так как ее прогресс зависел от успехов и химии, и физики. Лишь в 1887 г. в Лейпциге была учреждена кафедра физической химии, ставшая впоследствии крупным центром физико-химических исследований. Период между этими датами можно охарактеризовать как время напряженных поисков общих физических принципов, которые могли бы стать фундаментом для создания методов исследования химических процессов. В начале XIX в. С. Карно, отправляясь от неверной теории теплорода, сделал правильное заключение о работе тепловых машин доля теплоты, превращенной в работу, будет тем больше, чем больше разность температур нагревателя и холодильника. Глубокий смысл этого вывода был понят лишь в сере- дине прошлого века Р. Клаузиусом и В. Томсоном. С именами этих ученых и связано открытие важнейшего закона природы, I который называют вторым началом термодинамики. Клаузиус показал, что в изолированной системе сумма выделенной теплоты и совершенной работы является функцией состояния. Клаузиус называл ее эргалом в настоящее время для этой функции при- j нято название внутренняя энергия. Несколько лет спустя Клау- ] зиус открывает другую функцию состояния — энтропию эта функ- А ция позволяет предвидеть принципиальную возможность того или 4 иного процесса.  [c.4]

    Дальнейшее развитие средств ААИ идет по пути совершенствования эксиериментальных методов визуализации объектов исследования — применения адсорбционных индикаторов для выделения определенных элементов структуры, применения различных люминесцентных индикаторов для визуализации потоков, применения рентгеновских ионных анализаторов в качестве приставок к электронным микроскопам, позволяющих проводить высокоспецифичный анализ распределения химических элементов в структуре [17] и многих других. Одновременно быстро развиваются методы [18] и средства для оптимизации и машинной обработки изображения. Увеличение объема памяти и быстродействия вычислительных машин, примененпе систем искусственного интел.лекта способствует развитию систем распознавания динамических образов и соответственно расширению возможностей анализа быстроиротекающих процессов и построению динамических моделей объектов со сложной пространственной структурой. [c.126]

    Природа реакции самцов на эти вещества обычно весьма характерна и специфична, так как она связана с половым поведением. Это означает, что мы располагаем очень чувствительным методом биологического анализа, который делает возможным (хотя, несомненно, это очень трудно) выделение природного полового аттрактанта в чистом виде и установление его химической природы. Объем такой работы можно оценить на примере группы немецких ученых, которые под руководством доктора Бутенандта собрали и выделили в чистом виде половой аттрактант самки тутового шелкопряда Bombyx mori). Чтобы оценить необыкновенное терпение и настойчивость, необходимые для подобных исследований, не обязательно подробно описывать все стадии этого процесса. Достаточно приводимого ниже краткого описания проделанной работы. [c.48]

    Еще 10 лет тому назад Н. Д. Иерусалимский — крупный советский микробиолог— писал Некоторые этапы химических синтезов трудны и сопровождаются образованием большого числа изомеров и побочных продуктов. В таких случаях полезную услугу могут оказать ферментные препараты или живые носители ферментов — микроорганизмы. От небиологических катализаторов они выгодно отличаются специфической направленностью своего действия. К тому же вызываемые ими биохимические процессы протекают при обычных температурах и давлении. Их осуществление не требует ни антикоррозийной аппаратуры, ни крупных энергетических затрат . В значительной мере благодаря его инициативе в СССР были начаты интенсивные исследования в области инженерной микробиологии. Однако, как уже говорилось выше, применение микроорганизмов в целях направленной трансформации органических веществ существенно ограничивалось спецификой работы с микроорганизмами или выделенными ферментами, которые требовали специальных условий для получения, сохранения и воспроизводства. В настоящее время известны пути стабилизации (иммобилизации) ферментов путем либо химической фиксации активной конформации с помощью дифункциональных (сшивающих) реагентов, либо химической прививки к полимерным носителям и даже к стеклу, либо включения в гель инертного полимера. Это позволило превратить ферменты из крайне нестойких веществ в довольно стабильные, препараты, которые могут неоднократно вводиться в реакционную массу в качестве катализатора. Более того, стало возможным, не выделяя фермент, проводить такую иммобилизацию прямо на клеточном уровне, используя выращенную культуру соответствующего микроорганизма. Все это позволяет рас-сч1итывать в ближайшие годы на широкое и эффективное В1недрение методов ферментативного превращения не только в лабораторную, но и в промышленную практику. Именно поэтому мы надеемся, что появление даже неполной сводки, составленной американскими специалистами, вызовет интерес у советского читателя. [c.6]

    Этот недостающий элемент был открыт в 1898 г. М. Кюри и П. Кюри [С45, С48], в результате сделанного М. Кюри наблюдения, что радиоактивность урановой смолки (руда, содержащая окисел идОд, источник получения природных радиоактивных элементов) оказалась в 5 раз больще, чем следовало по содержанию в ней урана. М. Кюри и П. Кюри переработали большие количества урановой руды из Иоахимсталя. Сильно радиоактивное вещество было осаждено из растворов в соляной кислоте при использовании в качестве носителя сульфида висмута затем это вещество было сконцентрировано путем дробного гидролитического осаждения нитрата висмутила, причем процесс концентрирования контролировался по измерениям радиоактивности. Химические эксперименты, проведенные со следами вещества, показали, что это радиоактивное вещество является новым элементом, и М. Кюри дала ему название полоний (символ Ро) в честь своей родины Польши. Полоний был первым элементом, открытым с применением радиохимических методов, и проведенное Кюри исследование процесса выделения полония и радия из урановой руды положило начало новой науке— радиохимии. Огромные возможности этого нового метода исследования были показаны, в диссертации М. Кюри [С48], несомненно являющейся одной из наиболее замечательных работ, когда-либо представленных на соискание докторской степени. [c.159]

    Методы изучения природных соединений. Полное изучение какого-либо природного органического соединения, как правило, разбивается на ряд последовательных стадий. Прежде всего, не обходимо изучаемое вещество выделить в индивидуальном состоянии и притом в количествах, допускающих всестороннее исследование его свойств и строения. В тех случаях, когда данное вещество содержится в продуктах жизнедеятельности организмов в значительных количествах, когда оно относительно устойчиво и сравнительно легко очищается кристаллизацией, перегонкой или иными приемами, выделение такого вещества не вызывает заметных трудностей. В виде примера можно привести выделение хинина, ализарина и т. п. Задача усложняется, когда изучаемое вещество недостаточно устойчиво и может претерпеть различные превращения в процессе его выделения в таких случаях выделяют более стойкие производные данного вещества. Так, красящие вещества цветов, ягод и фруктов — так называемые антоцианидиновые красители (стр. 261) были выделены Р. Вильштеттером в виде более стабильных хлористоводородных солей. Наибольшие трудности возникают в тех случаях, когда изучаемое вещество входит лишь в незначительных количествах в состав сложной смеси продуктов жизнедеятельности организмов. Выделение составных частей таких смесей стало широко возможным лишь недавно на основе метода хроматографической адсорбции (стр. 376, 390) и других тонких приемов химического исследования. Были выделены в чистом виде столь важные природные со- [c.394]

    Исследование распределения микрокомнонентов между расплавом и твердой фазой представляет большой интерес как с точки зрения выяснения закономерностей, которым подчиняется процесс сокристаллизации при выделении твердой фазы из расплава, так и с точки зрения возможности использования метода сокристаллизации для изучения состояния химических элементов, находящихся в очень малых концентрациях в расплаве и в твердой фазе при высоких температурах. [c.365]

    При этом для определения состава и свойств образующихся веществ выделение их в чистом виде не обязательно новые химические соединения изучаются в процессе их образования или, по удачному выражению Г. Г. Уразова, по месту их залегания , т. е. изучается фазовый состав равновесной диаграммы состояния. Исследование свойств без выделения чистых соединений делает возможным изучение проявления химизма в растворах, в трудноразделяемых смесях, во всех объектах, недоступных изучению методами препаративной химии. [c.65]

    Поскольку незначительные вариации в строении белковой молекулы ведут к изменению ее свойств, важно избегать таких изменений или контролировать их в процессе выделения белка. Такие модификации могут происходить а) благодаря химическим реакциям, в ходе которых разрушаются некоторые ковалентные связи в молекуле, б) вследствие изменения водородных и соле-выхчсвязей, обусловливающих трехмерную структуру молекулы, в) в результате изменения характера соединения с другими белковыми или небелковыми веществами, связанными с данным белком. Как было уже указано выше, изменения последнего типа необязательно должны сопровождаться изменениями самой белковой молекулы. Для процессов выделения белка такие изменения могут и не иметь особого значения, хотя они в конечном счете должны быть приняты во внимание, особенно при исследовании клеточных структур. При выделении неизмененных нативных белков следует избегать причин, обусловливающих изменения и относящихся к первым двум типам. Степень важности различных структурных изменений, а также устойчивость белков по отношению к факторам, вызывающим такие изменения, неодинаковы при переходе от одного белка к другому (см. статью VI т. II). Однако если нет специальных указаний, то лучше пользоваться, там где это возможно, только такими методами, о которых известно, что они обусловливают наименьшие изменения в структуре молекулы. [c.8]

    В значительной мере успехи, достигнутые в области изучения и освоения полугидратного метода, основаны на технических усовершенствованиях и достижениях производства экстракционной фосфорной кислоты дигидратным методом, осуществляемого на установках весьма большой мощности, а также на результатах физико-химических исследований свойств кристаллогидратов сульфата кальция. Оба процесса происходят с выделением твердых фаз — дигидрата или полугидрата сульфата кальция в метаста-бильном состоянии, но резко отличающихся по своей растворимости, стабильности и микрогранулометрической характеристике. Нахождение условий выделения достаточно стабильного полугидрата сульфата кальция в виде кристаллов, обеспечивающих возможность максимально полного отделения фосфорной кислоты от осадка с высокой производительностью фильтрации, и не гидратирующегося при водной промывке на фильтре, транспортировке и хранении, требует изучения свойств полугидрата сульфата кальция в более широком диапазоне параметров, чем это необходи.мо для дигидратного процесса. [c.5]

    Начиная со второй трети нашего столетня старая описательная фотобиология, изучавшая конечные ответные реакции организма на действие света и не рассматривавшая внутренние процессы, разделяющие вход и выход биологической системы, обогатилась новыми данными на квантовомеханическом и молекулярном уровнях. Расшифровка молекулярных механизмов фотобиологических реакций стала возможной благодаря расчленению клетки на фрагменты с выделением органелл, мембран, макромолекул, пигментов в чистом виде (ультрацеитрифугирование, хроматография, электрофорез) и разработке прецизионных физических, физико-химических и биохимических методов исследования (дифференциальная спектрофотометрия, ди- [c.3]


Смотреть страницы где упоминается термин Возможности методов выделения для исследования химических процессов: [c.53]    [c.8]    [c.7]    [c.103]    [c.477]    [c.12]    [c.125]    [c.27]    [c.4]    [c.96]    [c.501]    [c.34]   
Смотреть главы в:

Кинетика гетерогенных реакций -> Возможности методов выделения для исследования химических процессов




ПОИСК





Смотрите так же термины и статьи:

Выделения методы

Процесс исследование



© 2025 chem21.info Реклама на сайте