Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия взаимодействия движений

    Реакционноспособными являются лишь те частицы, энергия которых выше некоторой величины, ей соответствует порог скорости . Согласно изложенным представлениям энергия активации — это та минималь.ная избыточная (по сравнению со средней) энергия теплового движения некоторых молекул в реакционной смеси, благодаря которой при столкновении молекул возможно химическое взаимодействие. Доля активных молекул в реакционной смеси, обычно очень мала. [c.219]


    О влиянии кинетической энергии частиц на условия их агрегации говорится в [76] Кинетическая энергия взаимодействующих частиц способствует преодолению энергетического барьера и тем самым облегчает агрегацию . Так, например, вибрация бетонных смесей, которой придается особое значение в технологии бетонов, имеет двоякое значение. В начале процесса она разрушает коагуляционную структуру и тем самым придает бетонной смеси необходимую подвижность, после укладки в формы вибрация не только обеспечивает плотную ее упаковку, но и содействует преодолению энергетического барьера, приводит к образованию агрегатов. Все сказанное выше имеет отношение к агрегации частиц с линейными размерами больше или равными 5 мк, т. е. для которых имеют смысл уравнения движения (1.58), Наши выводы ни в коей мере не [c.86]

    Формулы (41.1)—(41.3) пригодны для расчета энергии в молекулярных кристаллах, где положение молекул фиксировано ((/ор кТ). В газах и жидкостях, в растворах и на поверхности (адсорбция) тепловое движение расстраивает ориентацию молекул (б/ р <к кТ). Усредняя энергию взаимодействия по всем возможным ориентациям с учетом теплового движения, получаем формулу для молекул с одинаковыми диполями [c.133]

    На отрезке — к молекулы А и В не взаимодействуют между собой, поэтому Е, Е% и Ег остаются постоянными. В момент и молекулы подходят на расстояния, на которых начинают проявляться межмолеку-лярные силы притяжения Ван-дер-Ваальса (3-5- 10 1 м). На этих расстояниях интегралы перекрывания МО практически равны нулю. Энергетическое возмущение электронов невелико. При дальнейшем сближении молекул происходит перекрывание МО. Если на МО находятся по два электрона, между ними возникают силы отталкивания, обусловленные принципом Паули. Дальнейшее сближение молекул приводит к изменению расположения ядер и электронной плотности в молекулах. При сближении молекул А и В, когда силы притяжения между молекулами преобладают над силами отталкивания, внутренняя энергия понижается, энергия поступательного движения молекул возрастает. Когда начинают преобладать силы отталкивания, а молекулы А и В в силу инерции продолжают сближаться, кинетическая энергия 2 поступательного движения молекул по линии, соединяющей их центры, уменьшается, внутренняя энергия Ез возрастает. На рис. 186 кривая 1 отражает изменение Е-1 и Еъ при чисто упругом столкновении кривая 2 — столкновение, при котором доля кинетической энергии поступательного движения, переходящая во внутреннюю энергию, невелика, и молекулы разлетаются с незначительно повышенной внутренней энергией кривая 5 характеризует изменение внутренней энергии при столкновениях, когда происходит значительное увеличение внутренней энергии Ел. Вероятность таких столкновений невелика. При столкновениях, заканчивающихся значительным увеличением внутренней энергии, расположение ядер атомов и распределение электронной плотности в молекулах А и В существенно меняется. Когда внутренняя энергия реагирующих молекул достигает максимума (интервал Д/), рас-. [c.560]


    Зависимость (212.2) может быть представлена графически в трехмерном пространстве или в виде изоэнергетических линий в двухмерной системе координат п и гг. Расчет энергии такой системы, состоящей из 3 ядер и 3 электронов, был сделан методом МО ССП с расширенным базисом. На рис. 188 приведены результаты одного из таких расчетов. Изоэнергетические линии системы вычерчены при изменении п и гг. Диаграмма подобна топографической карте. Рассмотрим, как будет изменяться внутренняя энергия при столкновении молекулы АВ с атомом С. Внутренняя энергия исходного состояния молекулы АВ (На) принята равной —440 кДж/моль, энергия атома С (атома Н) — равной нулю. Пусть кинетическая энергия поступательного движения молекулы АВ и атома С по линии, соединяющей центры атомов, будет равна (,. Примем за исходное состояние системы состояние, обозначенное на рис. 188 точкой 1. В этом состоянии атом С находится на расстоянии г% =2 10 м. Энергия межмолекулярного взаимодействия между АВ и С невелика, поэтому внутреннюю энергию системы можно принять равной энергии исходного состояния. При приближении атома С к молекуле АВ преодолеваются силы отталкивания между одноименно заряженными ядрами атомов В и С. Внутренняя энергия системы при этом возрастает. Точка, характеризующая состояние системы, будет двигаться по линии минимальных энергетических градиентов, изображенной на рис. 188 пунктиром. В интервале между точками 2 ж 4 система находится на перевале, разъединяющем исходное и конечное состояния. На вершине энергетического барьера, в точке <3, при г = гг, атомы А и С энергетически тождественны. Система находится в переходном состоянии (см. 210). Однако в состоянии атомов А и С есть существенное различие. Атом С продолжает движение по направлению к атому В за счет кинетической энергии поступательного движения, а атом А совершает колебательное движение относительно атома В. На вершине потенциального барьера возникает взаимодействие в форме притяжения между атомом С и молекулой АВ, обусловленное обменным взаимодействием энергетических уровней молекулы АВ и атома С. В точке 4 система находится в состоянии мо-кулы ВС и атома А. На пути от точки 4 к точке 5 энергия отталкивания переходит в энергию поступательного движения молекулы ВС и атома А. Внутренняя энергия системы уменьшается до энергии конечного состояния (молекулы ВС и атома А), равной —440 кДж/моль. [c.570]

    В отличие от газов в жидких системах потенциальная энергия межмолекулярного взаимодействия превышает кинетическую энергию поступательного движения молекул. Расстояния между молекулами имеют порядок 10" см. Поэтому движение молекул в жидкости можно рассматривать как движение частиц в потенциальном ящике, или в клетке , размеры которой порядка 10 см. При малой длине свободного пробега и наличии потенциального поля это движение имеет характер колебательного движения, в результате которого молекула сталкивается со своими соседями. Число таких столкновений в секунду порядка 10 , что примерно в 100 раз больше, чем число столкновений молекул в газовой фазе при нормальных условия . [c.592]

    Рассмотрим заряженное электронное облако сферического атома, заданное средним по времени движением его электронов вокруг ядра. Усредненное движение электронов вокруг ядра сферически симметрично, однако в любой момент времени в какой-то области может произойти кратковременное скопление отрицательных зарядов, в результате чего образуется мгновенный дипольный момент атома. Этот мгновенный диполь индуцирует соответствующие дипольные моменты в соседних атомах, между которыми и происходит мгновенное взаимодействие. Мгновенный диполь любого атома при усреднении по времени обращается в нуль, а средняя энергия взаимодействия отлична от нуля, так как мгновенные и индуцируемые диполи находятся в одной фазе, или, другими словами, связаны друг с другом. Средняя энергия взаимодействия мгновенных диполей уменьшается с расстоянием по закону т. е. так же, как и энергия, обусловленная взаимодействием постоянного и индуцированного диполей в соответст- [c.199]

    Молек ла углеводорода обладает определенным запасом внутренней энергии. Эта энергия слагается из энергии взаимодействия электронов с ядрами, из энергии колебательного движения атомов (линейного и деформационного), энергии вращательного движения атомов или групп атомов. Энергия взаимодействия электронов с ядрами (энергия электронных переходов) в 10—20 раз превышает энергию колебательных движений и в тысячу раз превышает энергию вращательного движения внутри молекулы. [c.32]

    Представим себе две ориентированные дипольные молекулы, находящиеся на расстоянии г друг от друга. При низких температурах, когда энергия притяжения больше энергии кинетического движения молекул, произойдет полная ориентация их. Взаимодействие молекул, находящихся на большом расстоянии друг от друга, опишется уравнением [c.75]

    Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения, т. е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии. Внутренняя энергия — это общий запас энергии системы за вычетом кинетической энергии системы в целом и ее потенциальной энергии положения. Абсолютная величина внутренней энергии тела неизвестна, но для применения химической термодинамики к изучению химических явлений важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое. [c.85]


    Переход из одного физического состояния системы в другое совершается в некотором диапазоне температур и соответствует определенной равновесной структуре аморфного вещества. Вязкотекучее состояние вещества характеризуется его способностью течь под действием внешних сил, поскольку при этих условиях энергия теплового движения значительно больше энергии межмолекулярного взаимодействия. [c.166]

    Если двойной слой образуется вследствие обратимой адсорбции из относительно большого объема раствора, то потенциал онределяется концентрацией потенциалопределяющих ионов, в то время как индифферентные ионы в основном влияют на толщину диффузного слоя. Метод вычисления для капель эмульсии рассмотрен ниже. Типичные значения лежат в области 25 н- 100 ме, а значения 6, которые могут быть рассмотрены как расстояния между поверхностью и центром заряда противоионов, колеблются от 1000 А (для дистиллированной воды) до 10 А [для 0,1 н. раствора (1 1) электролита]. Обычно считают, что если две коллоидные частицы, несущие подобные двойные слои, соприкасаются (например, в результате броуновского движения), поверхностный потенциал при их взаимодействии остается постоянным это означает, что адсорбционное равновесие устанавливается очень быстро. Альтернативно можно постулировать, что поверхностный заряд остается постоянным в результате медленной адсорбции. Видимо, истина находится между указанными двумя предположениями, которые, к счастью, не приводят к сильно отличающимся оценкам энергии взаимодействия. [c.97]

    Накопленная соударяющимися частицами потенциальная энергия может перейти обратно в кинетическую энергию поступательного движения в противоположном направлении. Произойдет отражение частицы В от частицы А под углом, равным углу падения, т. е. упругое соударение частиц А и В. Однако накопленная в момент соударения потенциальная энергия может быть использована и на преодоление потенциального барьера химической реакции. В этом случае произойдет неупругое соударение частиц, сопровождающееся химическим взаимодействием. Это возможно, если кинетическая энергия, обусловленная нормальной составляющей скорости ти1/2, будет больше, чем потенциальная энергия Е на верши- [c.75]

    Поскольку тепло — это есть энергия беспорядочного движения частиц, составляющих вещество, постольку температура однозначно характеризует тепловое состояние тела во всех случаях, когда можно пренебрегать энергией взаимодействия сил притяжения и отталкивания частиц. [c.23]

    С повышением температуры энергия теплового движения электронов внутри металлов растет и при некоторой, специфичной для каждого металла, температуре может стать столь большой, что наблюдается эмиссия электронов с поверхности. Такая эмиссия происходит не только в случае металлов или сплавов, но и при химических реакциях. Установлено, что при действии хлористого водорода, фосгена, водяного пара, кислорода, водорода и других веществ на щелочные металлы, их сплавы и амальгамы выделяется значительное число электронов в случае взаимодействия ККа-сплава с фосгеном на каждые 1600 молей сплава выделяется один электрон. [c.127]

    Компоненты нефтяных растворов имеют повышенную склонность к межмолекулярным взаимодействиям. В том случае, если энергия связи определенной группы компонентов сопоставима с энергией теплового движения и составляет [c.37]

    Таким образом, при описании фазовых переходов в газовых смесях необходим учет энергии взаимодействия между молекулами пара и конденсата при выполнении условия насыщенности конденсирующейся смеси и проявления в ней ван-дер-вааль-совых сил и водородных связей. Уравнения состояния, построенные с учетом ассоциации, описывают процессы в газах с большой точностью. Это объясняется тем, что присутствие молекулярных комплексов является одной из причин отклонения в поведении реальных газов по сравнению с идеальным газом. При сложных столкновениях может случиться, что молекулы после соударения не смогут преодолеть силы притяжения и будут двигаться совместно. Образующиеся комплексы могут быть достаточно устойчивыми и продолжают дальнейшее движение уже за счет собственной кинетической энергии. [c.101]

    Энергия системы атомов, если из нее исключить энергию поступательного движения и вращения системы как целого, складывается из кинетической энергии движения ядер Т, энергии электронов и потенциальной энергии электростатического взаимодействия между ядрами [c.52]

    Это соответствует максимальной энергии взаимодействия. При 0 = я /(г) = = —5,1 ккал/молъ, что соответствует минимуму. В последнем положении энергетический барьер вращательного движения составляет величину около 5,1/57 90 кал/град, так что связи в молекуле воды не могут свободно вращаться при комнатной температуре. Все эти величины имеют минимально возможшле значения, так как поправки на поляризуемость и определенные размеры частиц приводят к увеличению силы взаимодействия. [c.445]

    Сказанное выше в большей или меньшей степени относится также к циклопентанам. Стереохимия этих соединений в настоящее время изучена достаточно подробно. Экспериментальное измерение энтропии циклопентана [67], константы Керра [68] и расчетные данные [64] показали, что циклопентановое кольцо не может быть ко-планарным. На моделях хорошо видно, что в плоском кольце цнкло-пентана все 10 атомов Н были бы расположены так же, как в заслоненной конформации этана. Суммарная энергия взаимодействия этих атомов водорода составила бы не менее 58,7 кДж/моль. Чтобы избежать увеличения потенциальной энергии, кольцо изгибается таким образом, что один атом С оказывается выше, а другой ниже плоскости трех остальных атомов С кольца,—конформация полу-кресло . Другая возможная конформация — конверт из плоскости кольца выходит только один атом С. В обоих случаях потенциальная энергия молекулы циклопентана уменьшится на 15 кДж/моль. Согласно еще одной очень распространенной точке зрения [69], место выхода атома углерода из плоскости кольца циклопентана непрерывно перемещается по кольцу, т. е. атомы углерода кольца поочередно выходят из плоскости и затем возвращаются в нее. Такое движение называют псевдоаращением или псевдоротацией. Необходимо, однако, отметить, что эта концепция не бесспорна. Измеренные константы Керра плохо с ней согласуются [68] и отвечают только форме полукресла. Тем не менее, существует веское мнение [70], что сумма всех имеющихся данных говорит все же скорее в пользу псевдовращения. [c.43]

    Спектры поглощения растворов и веществ в жидком и твердом состояниях. Энергия межмолекулярного взаимодействия в конденсированном состоянии больше энергии вращения молекул. Молекулы не могут совершать полные обороты и вращательные полосы в спектрах не наблюдаются. Вместе с этим полосы поглощения, связанные с изменением энергии колебательного движения и электронного возбужде-1П1Я молекул, становятся более широкими. [c.21]

    Газы при высоких температурах. Повышение температуры прежде всего вызывает усиление всех форм теплового движения частиц. При высоких температурах энергия теплового движения частиц становится соизмеримой с энергией химической связи в молекулах, с энергией возбуждения новых электронных уровней и с энергией связи электронов в атомах и в молекулах. Поэтому при высоких температурах в газе образуются возбужденные частицы и продукты диссоциации молекул в виде свободных атомов или валентно ненасыщенных групп (радикалов), которые могут находиться в равновесии с исходными молекулами. Являясь вместе с тем очень реакционно способными, эти частицы могут вступать во взаимодействие между собой или с другими частицами, образуя новые сочетания. То же относится к продуктам ионизации. Наряду с этим при высоких температурах в газах могут содержаться пары веп1еств, практически не испаряющихся при обычных температурах, а также частицы, образующиеся при термическом разложении этих веществ. В результате при высоких температурах в газах содержатся (при равновесном состоянии системы) новые, часто совершенно непривычные виды частиц, отвечающие валентным состояниям элементов, нехарактерным или неизвестным для них при обычных температурах. Эти частицы могут быть или более простыми, чем отвечающие им. частицы при обычных температурах (например, ОН, 510, 50), или, наоборот, более сложными (Сз, Сд, Ыаг, Сев, Мда, Ыа(0Н)С1, ВагОз, М05О15 и др.). [c.117]

    В зависимости от условий вза-имодействия выделенный (вторичный) электрон может обладать самой различной кинетической энергией от энергии теплового движения частиц при данной температуре до энергии, близкой к энергии воздействовавшей (первичной) частицы. На рис. 193 представлено распределение вторичных электронов по энергии при выделении их действием первичных электронов с энергией 1 Мэе. Эти данные показывают, что большинство выделяющихся электронов обладает энергией, не превышающей 6 эв. В результате одна первичная частица может образовать в среднем примерно от десяти до ста тысяч вторичных электронов. Поэтому химическое взаимодействие в большинстве случаев вызывается действием не непосредственно частицей большой энергии, а действием вторичных электронов (или каких-либо других вторичных частиц). [c.554]

    Константы скорости измерены при 300°С и имеют большие значения, так как они относятся к взаимодействию двух заряженных частиц, сближающихся иод действием кулоновского притяжения. Впервые возможность такого механизма рекомбинации непосредственно бзлла доказана Роджерсом и Бионди [484] на примере процесса е -f Hbj == Ие -Ь Ие, с которым связывается большое сечение рекомбинации электрон — ион, наблюдаемое при разряде в гелии. Согласно этим авторам, один из атомов Не при этом образуется в возбужденном состоянии из доплеровской ширины испускаемой и.м линии (Я =5876,4) для. энергии иоступательного движения каждого атома Не получается около 0,1 эв — в соответствии с энергетикой процесса. [c.194]

    Остановимся на наиболее важной составляющей энергии молекулы — электронной энергии. Так как скорость тяжелых ядер во много раз меньше скорости легких электронов, приближенно можно рассматривать движение электронов в молекуле в каждый данный момент, считая ядра неподвижными [приближение Борна — Оппенгеймера). Выбранному фиксированному положению ядер R отвечает определенная энергия электронов E3 (R), включ-ающая их кинетическую энергию, энергию взаимодействия электронов друг с другом и энергию взаимодействия электронов с ядрами. Условимся включать сюда также энергию отталкивания ядер iZ e lR. Тогда название электронная для e R) = бэл + Z Z e lR указывает, что учитывается движение только электронов, но не ядер, а фиксированное расстояние между ядрами R рассматривается как параметр. Индекс <ел при этом отбрасывается. Если расстояние между ядрами R изменится, изменится поле ядер, в котором движутся электроны, изменится и электронная энергия системы t(R). В этом смысле электронная энергия суть функция межъядерного расстояния и по отношению к движению ядер играет роль потенциальной энергии. Вид функции e(R) для двухатомной молекулы АВ изображает кривая а рис. 14, называемая потенциальной кривой. Когда атомы А и В удалены на бесконечное расстояние, электронная энергия равна сумме электронных энергий невзаимодействующих атомов А и В в основном состоянии  [c.44]

    Термодинамические функции идеального газа, построенные из квазитвердых молекул, особенно просто вычисляются при условии, если энергию внутренних движений молекул ег можно разделить на слагаемые, соответствующие электронному, колебательному и вращательному движениям. Хотя такое разделение является приближенным, часто оно хорошо оправдывается (см. 13). Такое разделение используется при вычислении термодинамических функций многоатомных газов, для которых неизвестны постоянные, характеризующие взаимодействие отдельных видов движений. В предположении разделения энергии внутренних движений молекулы е,- можно написать [c.314]

    Направление движения зарядов определяется от.тичием величины работы выхода иона шш электрона из металла ( ) и энергии взаимодействия этой частищ,[ с молекулами растворителя -- энергии сольватации (U J. При этом возможны два случая  [c.109]

    На основе предложенной в [114] схемы метода Монте-Карло были проведены расчеты для реакции рекомбинации Н-ьН-ьН Нг-нНв интервале температур 2000—5000 К. При этих температурах длина волны де Бройля атомов водорода, участвующих в реакции, мала, и их движение можно описывать уравнениями классической механики. Поверхность потенциальной энергии взаимодействия трех атомов водорода достаточно хорошо исследо-аана [372], и, следовательно, в данном случае не было необходимости в процедуре восстановления реакционного потенциала. Исходя из данных работы [159], / о ===2,5 - 10 см. Начальные значения координат и импульсов атомов генерировались в соответствии с формулами (3.66) — (3.71), а затем осуществлялся переход в систему центра масс. Численное интегрирование системы уравнений Гамильтона проводилось на ЭВМ БЭСМ-6 методом Кутта-Мерсона 4-го порядка [324]. Контроль вычислений осуществлялся по сохранению полной энергии и каждой из компонент момента импульса (гамильтониан сохранялся с точностью 0,1%, компоненты момента импульса — 0,01%). Эффективность предложенной схемы метода Монте-Карло составила 20%, т.е. только одна траектория из пяти оказывалась интересной для рассмотрения, эффективность схемы работы [306] (расчет траекторий в фазовом пространстве взаимодействующих атомов) составляла около 11%. [c.102]

    Из результатов расчета (см. табл. 4.6, рис. 4.23—4.25) видно, что наибольшие значения получены для молекулы 31Н4, меньшие — для СН4 и С04, наименьшие — для Ср4. В обратном отношении находятся коэффициенты жесткости деформационных колебаний перечисленных молекул (см. табл. 4.4). На основании этих результатов и рассчитанной зависимости величины среднего квадрата изменения внутренней энергии молекул от прицельного параметра можно предположить, что реализуется следующий механизм передачи энергии во внутренние и колебательные степени свободы молекул при столкновениях с атомами инертных газов. Первоначально энергия поступательного движения передается во вращательные степени свободы молекулы и ее деформационные колебания, далее за счет сильного взаимодействия колебательных и вращательных [c.109]

    И. Ф. Ефремовым [13] развито представление о том, что при желатинировании многих золей и суспензий возникновение пространственной сетки обязано силам притяжения между частицами, действующим при сохранении разделяющего их потенциального барьера. При достаточно высоком потенщ1але поверхности и малой толщине двойных ионных слоев, что соответствует сравнительно большой концентрации электролита в дисперсной системе, на результирующей кривой энергетического взаимодействия появляется яма, отвечающая дальним расстояниям. Если глубина такого минимума велика по сравнению с энергией теплового движения, то частица может зафиксироваться в нем, и наступит коагуляция, называемая в отличие от случая непосредственного контакта поверхностей коагуляцией во вторичном миниму.ме (рис. 1.1). [c.13]

    Существует, однако, и другая возможность перераспределения избыточной энергии. Запас энергии, сосредоточенный на молекуле продукта первичной реакции, вместо рассеивания передается одной из реагирующих молекул непосредственио, как говорится, элементарным актом, приводя к ее активированию. Подобные условия гораздо более благоприятны для протекания реакции, чем условия, при которых химическая энергия взаимодействия переходит в энергию теплового хаотического движения. [c.24]

    При дальнейшем повышении температуры начинают устанавливаться химические связи, и наступает момент, когда энергия тепло -вого движения становится соизмеримой с энергией взаимодействия высокомолекулярных соединений. В этом случае, несмотря иа наличие межмолекулярного взаимодействия, возможно изменение взаимного расположения отдельных частей (сегментов) сложных молекул. Такое состояние именуется высокоэластичным . При дальнейшем повышении температуры энергия взаимодействия молекул и их частей становится настолько большой, что она начинает значительно превышать энергию теплового движения, длительность установления равновесной конфигурации молекул возрастает, начиная с некоторой температуры структура фиксируется, осуи1еств-ляется переход от равновесной к неравновесной структуре амор( )-ного вещества, т. е. происходит стеклование. Наиболее отчетливо этот процесс прослеживается по изменению концентрации асфальтенов в системе, 1к которых формируются надмолекулярные структуры. В зависимости от растворяющей способности среды концентрация асфальтенов в системе сначала повышается, проходит через максимум и затем падает. [c.166]

    Концепция строен Я ССЕ и НДС получила развитие в работах Ф. Г. Унгера его сотрудников [23, 127]. Сформулированные условия существования ССЕ в дисперсионной среде НДС заключаются в наличии убывающего градиента потенциала парного взаимодействия молекул в направлении ядро — сольватный слой — дисперсионная среда, ричем потенциал парного взаимодействия молекул превышает кинетическую энергию их движения. [c.79]

    Рассматривая жидкость вблизи температур кристаллизации, а точнее в некотором интервале температур между температурами кристаллизации и застывания, можно сделать вывод, что, вероятно, относительное перемещение частиц дисперсной фазы, обусловленное вязкостью жидкости при течении, может быть определено некоторым коэффициентом самодиффузии, стремящейся выравнить запас потенциальной и кинетической энергии (количества движения) перемещающихся частиц. Количество движения каждой движущейся частицы не остается постоянным. Очевидно, в этих условиях некоторые частицы не дисперсной фазы имеют различные дополнительные количества движения за счет межмолекулярных взаимодействий, которые и создают энергетический градиент между ними. Скорость ликвидации этого градиента практически пропорциональна коэффициенту самодиффузии, в свою очередь являющемуся функцией коэффициента вязкости и плотности системы. Однако в связи с непостоянством количества движения частиц дисперсной фазы, более корректно исходить непосредственно из подвижности отдельных частиц, т.е. средней скорости, которая приобретается любой из них по отношению к окружающим при внешних воздействиях на систему. Подвижность дисперсных частиц оценивается текучестью жидкости, измеряемой величиной, обратной коэффициенту ее вязкости. Последняя пропорциональна коэффициенту диффузии, откуда следует, что вязкость жидкости в рассматриваемом интервале пониженных температур обратно пропорциональна коэффициенту диффузии. [c.88]

    ИзучеЕ1ие эффектов ассоциации одноименных (пар-твердый конденсат) или разноименных (пар-газ) молекул привело к получению соответствующих зависимостей, Показано, что при конденсации пара в жидкость из парогазовых смесей скорость конденсации резко уменьшается с повышением содержания газа. Рассмотрение процесса конденсации во всей его сложности с учетом молекулярных взаимодействий дает возможность выявить особенности конденсации как в жидкое, так и твердое состояние. Общим является то, что обмен энергией между частицами в объеме и на поверхности происходит в состоянии ассоциации. Можно предположить, что фазовые превращения, например пар-жидкий конденсат, будут растянуты во времени, так как некоторое повышение температуры смеси при конденсации может привести к разрушению только образовавшихся кристаллических решеток за счет собственной энергии фазового превращения. У определенной части молекул кинетическая энергия может становиться больше потенциальной энергии взаимодействия, и эта часть молекул вновь испаряется с поверхности конденсации. В этих случаях процесс теплообмена по физической сущности представляет собой обмен энергией между частицами, находящимися в различном энергетическом состоянии. Такой обмен энергией между частицами обычно называют переносом тепла. При конвективном теплообмене поток тепла вызывается наличием градиента температуры. Однако даже при отсутствии температурного градиента за счет хаотического теплового движения молекул среды непрерывно происходит хаотический перенос тепла. [c.100]

    Для нефтяных систем должно быть характерно множество химических ММВ, энергия которых изменяется в широких пределах. К ним прежде всего относится Н-связь с энергией образования 1...82 кДж моль- (обычно 12...33 кДж-моль- ) в органических соединениях [17...19,55]. Энергия порядка 1 кДЖ Моль в пересчете на одну молекулу соиос1авима со средней энергией теплового движения 0,5 кТ, приходящейся на одну степень свободы молекулы при 20°С, когда термин "связь" теряет смысл [18]. Однако в случае ВМС число Н-связей на одну макромолекулу может быть значительным, а суммарная энергия ММВ сопоставима с энергией валентных связей или превышает ее. К таким Н-связям относятся связи С-Н...0 и С-Н...С с энергией 4 кДж-моль- в алканолах, алканах и других углеводородах. Молекулы бензола образуют л-ассоциаты с двумя С-Н...С - связями (Н=5,5 1,5 кДж моль- ) на каждую пару взаимодействующих молекул. Бензол образует п-ассоциаты с фенолом 0-Н...С - связь (Н = -6,7 кДж-моль- ), мегиланилином - связь Ы-Н...С (Н = - 6,3 кДж-моль- ) и хлороформом -связь С-Н...С (Н = - 5,4 кДж моль ) [17]. [c.65]

    Если между сталкивающимися частицами существует отталкивание, то необходимо обладать достаточной кинетической энергией, чтобы его преодолеть. Как известно из закона Максвелла, кинетическая энергия может быть самой разной, так что в этом случае слипнется только часть сталкивающихся частиц, а именно те частицы, кинетическая энергия которых превосходит максимальную энергию их взаимного отталкивания. Мерой средней кинетической энергии теплового движения является произведение кТ, поэтому эффективность соударений определяется отношением между Утах и АГ, где Ушах — максимальное значение энергии взаимодействия (отталкивания) между двумя частицами. Иными словами, величина коэффициента слипания в основном определяется энергетическим барьером отталкивания между частицами. [c.209]

    Дальнейшее развитие теории межионного взаимодействия дало возможность уточнить математические решения и расширить области ее применения. Для учета возможности образования ионных ассоциатов, влияния энергии теплового движения ионов, уменьшения диэлектрической постоянной с ростом концентрации раствора оказалось необходимым при вычислениях коэффициентов активности концентрированных растворов электролитов использовать полуэмпири-ческие ( юрмулы  [c.14]

    Основными факторами, определяющими структуру и реологические свойства дисперсной системы, являются концентрация частиц ф (объемная доля) и потенциал парного взаимодействия частиц. График зависимости энергии взаимодействия 21/ двух частиц от расстояния к между ними называют потенциальной кривой (рис. 93). Основными параметрами потенциальной кривой являются высота потенциального барьера А Утах, глубина потенциальной ямы Аб/щш (энергия связи частиц) и координата минимума энергии йо. В разбавленных агрегативно устойчивых дйсперсных системах (ДС/тах>А7, Аитш<.кТ, где Л7 —энергия теплового движения частиц) частицы сохраняют полную свободу взаимного перемещения или, как говорят, определенная структура [c.156]


Смотреть страницы где упоминается термин Энергия взаимодействия движений: [c.49]    [c.86]    [c.68]    [c.137]    [c.584]    [c.127]    [c.22]    [c.38]    [c.35]    [c.81]    [c.160]   
Введение в молекулярную спектроскопию (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия взаимодействия

Энергия движением



© 2025 chem21.info Реклама на сайте