Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотности градиент эффективность

    Если, с другой стороны, конвекция имеет место, то время установления градиентов будет сравнимо со скоростью конвекции. В этом случае от конвекции будут зависеть любые наблюдаемые эффекты и результаты будут противоположны приведенным выше данным, потому что при низких плотностях градиенты устанавливаются очень быстро [см. уравнение (XIV.2.8)]. Хотя градиенты будут пропорционально более низкими может наблюдаться уменьшение относительной эффективности конвекции. Таким образом, константы скорости, по-видимому, могут уменьшаться при более низких давлениях. Во всяком случае, можпо видеть, что благодаря тому, что температурное равновесие и температурные градиенты устанавливаются не сразу, данными о начальных скоростях в газовых системах нужно пользоваться с осторожностью. [c.375]


    Эффективность разделения зависит от свойств смеси и ее компонентов, а таюке от конструкции колонки и условий проведения опыта [55]. К основным свойствам смесей, определяющим термодиффузионный процесс разделения, относятся вязкость, коэффициент термодиффузии, обычный коэффициент диффузии, коэффициент расширения и плотность компонентов. К основным параметрам, определяющим работу колонки, относятся средняя температура, значение температурного градиента, высота и ширина щели, а также объем резервуаров наверху и внизу колонки. На процесс термодиффузии и его интенсивность оказывают влияние следующие факторы коэффициенты диффузии, средняя температура и температурный градиент определяют степень разделении в горизонтальном направлении, в то время как вязкость, коэффициент расширения и разность плотностей между компонентами, высота колонки, ширина кольцевого пространства и объем резервуаров оказывают влияние на интенсивность процесса термодиффузии. [c.392]

    Следует учитывать и влияние давления на термоосаждение. Так, в проектируемом ядерном реакторе с газовым охлаждением, работающем при давлениях около 50 МПа, могут возникнуть значительные градиенты температур, что приведет к осаждению частиц на поверхности теплообменников. Было рассчитано влияние давления на скорость дрейфа сферических частиц оксида бериллия (ВеО) диаметром 2 мкм в диоксиде углерода в щироком диапазоне давлений, соответствующих плотностям газа от 2 до 50 кг/м . Расчеты были основаны на уравнении Эпштейна (рис. Х1-13) [831] и показали, что если при атмосферном давлении термоосаждение составляет 85%, то при 5 МПа эффективность осаждения снижается до 10%. [c.541]

    При работе гальванических ванн приходится часто сталкиваться с явлениями естественной конвекции. Естественная конвекция вызывается изменением плотности раствора при протекании электродного процесса. Изменение плотности связано с расходом реагирующего вещества, а также с неравномерным распределением температуры. Естественная конвекция возникает в условиях, если градиент плотности раствора направлен перпендикулярно к полю тяжести или так, что плотность возрастает вверх. Наиболее просто описывается естественная конвекция к гладкой пластинке, расположенной вертикально в поле тяжести. Значительно сложнее теоретически обработать естественную конвекцию при горизонтальном расположении электрода, когда вблизи поверхности могут возникать турбулентные вихревые потоки. Эффективная толщина диффузионного слоя при естественной конвекции к вертикальной пластинке выражается уравнением [c.167]


    Влияние физико-химических свойств иефти на толщину граничного слоя". Исследования, проведенные с различными нефтями, показали, что толщина граничного слоя является функцией физико-химических свойств нефти. Так, нефти с большой плотностью, большим содержанием асфальтенов при одном и том же градиенте давления вытеснения, при одной и той же удельной нагрузке дают больший по толщине эффективный граничный слой (см. табл. 6 и 7). [c.55]

    Значительно более перспективным может оказаться применение насыпного биполярного электрода. В простейшем случае биполярный насыпной электрод будет состоять из чередующихся рядов электропроводящих и неэлектропроводящих гранул. Непосредственно с концевыми электродами контактируют электропроводящие гранулы. При прохождении тока каждый слой таких гранул начинает работать как биполярный электрод. При этом плотность тока распределится равномерно во всем объеме электрода. Испытание таких электродов в бездиафрагменных электролизерах, например, для получения оксида пропилена, дало вполне удовлетворительные результаты. Использование насыпных биполярных электродов позволяет в 5—8 раз повысить производительность электролизера с единицы реакционного объема. Ограничение производительности электролизера связано с тем, что частицы, работающие как биполярные электроды, должны иметь строго определенные размеры. Для того, чтобы частица, находящаяся в электрическом поле стала работать биполярно, надо, чтобы градиент падения напряжения на этой частице был не менее 2 В, что необходимо для преодоления падения напряжения на поляризованных участках. В водных растворах при плотности тока около 1 кА/м такое падение напряжения достигается при размере частицы 8—10 мм, который и является минимальным размером гранул, не позволяющим более эффективно развивать поверхность электрода. [c.229]

    Можно ограничить эффективный объем образца, применяя селективное возбуждение как градиентов естественных полей, так и приложенных сильных градиентов. Определение распределения плотности ядер внутри объекта путем изучения поведения сигналов ЯМР при наличии градиента постоянного поля является важным экспериментом, требующим селективного возбуждения или насыщения радиочастотным полем ограниченных областей образца. [c.135]

    Приводятся общие сведения о теплофизических характеристиках термопластов, графические зависимости их теплоемкости, теплопроводности, относительной энтальпии, плотности и удельного объема от температуры, общие сведения о свойствах полимеров в вязкотекучем состоянии, графические зависимости эффективной вязкости и напряжения сдвига при разных температурах от градиента скорости, а также примеры применения реологических характеристик для расчета энергетических характеристик машин для переработки пластмасс. [c.2]

    Неравновесные методы этого типа полезны лишь в том смысле, что они количественно характеризуют влияние переноса вещества. Перенос вещества может осуществляться тремя путями конвекцией, миграцией и диффузией. Строгая количественная оценка конвекционных процессов может быть сделана только при использовании вращающегося дискового электрода . Во всех других случаях нужно стремиться устранять конвекцию, которая может быть обусловлена механическим перемешиванием или градиентами плотности. Нельзя также количественно учесть и влияние миграции ионов, поэтому и ее нужно избегать. Это достигается добавлением электролита, являющегося в условиях опыта индифферентным концентрация его должна намного превышать концентрацию реагирующего вещества. Такая мера эффективна, поскольку в грубом приближении скорости миграции всех ионов одинаковы и поэтому раствор в целом должен оставаться нейтральным. Если реагирующие ионы составляют один процент ионов данной полярности, то обусловленный ими миграционный ток составляет 1%. Ток же реакции обусловлен только разрядом реагирующего вещества на электроде. При отсутствии конвекции и миграции реагент может переноситься к электроду только путем диффузии. Этот процесс количественно описывается законами диффузии Фика из первого закона, имеющего наиболее важное применение, следует, что скорость диффузии, а следовательно, и ток прямо пропорциональны градиенту концентрации. Если электродная реакция идет достаточно долго и с достаточно большой скоростью, концентрация реагирующего вещества вблизи электрода становится равной нулю, ток же будет пропорционален объемной концентрации реагента и не будет зависеть от потенциала. [c.13]

    На эффективность разделения влияют как параметры процесса, так и конструктивные особенности аппарата. К первым относятся температурный градиент, длительность процесса, концентрация и вязкость компонентов, ко вторым — зазор, длина рабочего пространства, плотность набивки, скорость вращения ротора и др. [c.120]


    Швеция) в двух модификациях, имеющих одинаковую высоту, но раз-, личный объем (ПО и 440 мл). Рабочей частью колонки, в которой помещаются амфолиты-носители и создается градиент плотности, является камера, имеющая в поперечном разрезе вид кольца. Нижний электродный раствор обеспечивает контакт с нижним электродом, расположенным в -центральной трубке таким путем достигается отвод газов из электродного пространства без нарушения градиента плотности. Эффективное термостатирование, препятствующее конвекции вследствие возможного нагрева, достигается с помощью внутреннего и наружного холодильников [2 и 3). Внутренний холодильник фиксируется с помощью конического шлифа, расположенного непосредственно под верхним электродом. По окончании фокусирования нижний электродный буфер (в центральной трубке) изолируют от рабочей камеры с помощью крана 6, после чего содержимое камеры сливают через капилляр 7. [c.303]

    Образец вносят либо в виде узкой зоны, либо распределяют по всему объему колонки при создании градиента. Фракционирование идет наиболее быстро и эффективно в том случае, когда образец внесен вблизи зоны фокусирования. Для внесения в виде узкой зоны образец (при создании ступенчатого градиента) растворяют в одной или двух промежуточных фракциях рабочего раствора или (при создании плавного градиента) в рабочем растворе промежуточной плотности, вытекающем из смесителя. Плотность зоны образца не должна превышать плотность нижнего слоя рабочего раствора. Плотность слоев можно определить ориентировочно с помощью обычного сахариметра. При распределении образца по всему объему колонки белок растворяют в разбавленном, а иногда и в концентрированном растворах, приготовленных для построения градиента. В этом случае раствор с образцом следует отделить от верхнего и нижнего электролитов, соответственно разбавленным или концентрированным рабочими растворами. [c.310]

    Процесс рекристаллизации приводит к повышению температуры в катодном пятне с 3600 К до 3800 К при постоянной плотности тока 2 10 А/м . Возрастает также тепловой поток в катод, градиент температуры у поверхности составляет 10 К/м. Значение эффективной работы выхода электрона при этом увеличивается от 4,2 до 4,4 эВ, что приводит к росту прикатодного падения потенциала. [c.77]

    Если частицы осаждаются в градиенте плотности, составленном с таким расчетом, чтобы он включал и плотность исследуемого вещества, то после установления равновесия они образуют слой, положение которого определяется их плавучей плотностью. В тщательно контролируемых условиях удается получать очень узкие слои, или полосы, и это обеспечивает эффективное разделение частиц, одинаковых по размерам и по форме, но несколько различающихся по плотности. [c.250]

    Пользование номограммами поясняется следующим примером. Требуется определить эффективную вязкость полиэтилена низкой плотности при 168°С, если аналитически рассчитанный градиент скорости равен 80 сек . На рис. проводят вертикаль с абсциссой, равной 80 до пересечения с кривой, [c.369]

    Прежде чем применять изложенные принципы к расчету скорости выпадения или концентрации взвешенной в воздухе пыли, выходящей из фабричных труб, следует принять во внимание некоторые дополнительные факторы. На расстоянии в несколько сот метров от трубы дымовой факел постепенно поднимается вверх благодаря начальной скорости, с которой газы выходят из трубы, а также вследствие их меньшей плотности по отношению к воздуху. Поэтому эффективная высота точки эмиссии пыли больше высоты трубы и тем больше, чем горячее дым. По мере подъема факела он охлаждается за счет адиабатического расширения. Если температурный градиент атмосферы меньше адиабатического, то температура факела понизится в конце концов до температуры окружающего воздуха, и подъем прекратится. Эти эффекты приняты во внимание в расчетах выпадения пыли, выбрасываемой дымовыми трубами Ч Если пыль со скоростью свободного падения частиц V выпускается горизонтально на эффективной высоте Н при скорости эмиссии Q и при горизонтальной скорости ветра и, то средняя скорость выпадения в точке Р земной поверхности на расстоянии X от основания трубы выразится следующим образом  [c.281]

    Метод градиента плотности при определении Молекулярного веса не обладает преимуществом перед обычным методом седиментационного равновесия, особенно потому, что любая небольшая неоднородность осаждающихся молекул будет приводить к расширению распределения, которое нелегко отличить от расширения вследствие большего значения а. Однако этот метод является эффективным методом, позволяющим выявлять макромолекулы с резко различными значениями v . Особенно важным является то, что смесь макромолекул, характеризуемая различными значениями Оз, т. е. различными эффективными плотностями, в отсутствие сильных взаимодействий будет разделяться на дискретные слои, причем каждый из них будет располагаться около г, при котором р==1/у,-. [c.314]

    Появление сольватированных электронов переносит зону электрохимической реакции восстановления с границы раздела электрод — электролит в раствор, т. е. превращает ее из поверхностной, гетерогенной, в объемную, гомогенную, реакцию, с катодно генерируемым восстанавливающим агентом. В связи с этой основной особенностью нового механизма восстановления роль транспортных ограничений становится несущественной реакция теперь не локализована в определенном месте, а распределена в объеме подвижность электронов выше, чем большинства других частиц кроме того, появление электронов в растворителе приводит к возникновению градиента плотности, а следовательно, к конвективному перемешиванию объема раствора, примыкающего к катоду. Эта особенность оказывается наиболее существенной в случае электровосстановления труднорастворимых органических соединений, которые при обычных условиях из-за крайне медленной доставки восстанавливаются с ничтожными выходами. В водных средах для ускорения подобных процессов применяются медиаторы потенциала — ионные редокси-пары, которые переносят мектроны от катода к восстанавливаемым частицам или от окисляющихся частнц к аноду, а затем сами восстанавливаются или окисляются на соответствующих электродах. Эффективность восстановления сольватированными электронами должна быть существенно выше, чем при применении медиаторов по уже указанным ранее причинам, а также потому, что ионам медиатора приходится проходить двойной путь — до реакции с частицей и после иее. Действительно, найдено, что токи генерации сольватиро-вапных электронов больше чем на три порядка превышают токи диффузии органических соединений к катоду. [c.444]

    При наличии градиента температуры в зернистом слое, заполненном жидкостью или газом достаточно большой плотности, может возникнуть естественная конвекция, приводящая к заметному увеличению эффективного коэффициента теплопройод-ности. [c.107]

    Законы переноса вещества и тепла идентичны. Из-за развитой внутренней поверхности имеет место интенсивный теплообмен между обеими фазами, приводящий к гомогенизации системы. Поэтому становится вполне приемлемым использование закона Фурье q = — Я-эф grad Т, определяющего плотность теплового потока q в зависимости от градиента температуры и величины коэффициента эффективной теплопроводности зерна катализатора Хэф. Экспериментальные значения Хдф, найденные различными авторами, например [73], свидетельствуют о том, что на теплопроводность пористых зерен относительно слабо влияют теплофизические свойства твердого материала. Большое влияние оказывает теплопроводность газовой фазы. Однако решающее значение на величину зф оказывают геометрические характеристики структуры, особенно величины площадей наиболее узких мест или окрестности областей спекания, сращивания, склеивания частиц друг с другом. Для приближенной оценки величины Хэф можно рекомендовать монографию [74], в которой представлен значительный объем экспериментальных данных по дисперсным материалам. [c.157]

    Движение границы можно наблюдать двумя методами — методом тени Теплера, например в варианте Филпота—Свенссона (1938—1939 гг.), или методом шкалы Ламма (1937 г.). Оба эти метода основаны на использовании изменения показателя преломления раствора при изменении его концентрации. При прохождении параллельного пучка света через кювету с раствором в области границы, где имеется градиент концентрации и соответственно показателя преломления, лучи искривляются в направлении к большему показателю преломления. Если спроектировать через кювету источник света в форме светяш,ейся горизонтальной линии, то на экране за кюветой кроме основного изображения источника (горизонтальной линии) получится и некоторое размытое изображение (под или над линией). Его можно эффективно зарегистрировать количественно с помощью наклонной щели и цилиндрической линзы. В результате на экране получается вертикальная линия для мест с постоянным показателем преломления и зубец для области границы. Форма и размер зубца позволяют оценить размытость границы и разность концентрации частиц по обе стороны, а его вершина фиксирует точное положение границы и перемещение ее во времени. В методе Ламма через кювету наблюдают и фотографируют светящуюся шкалу. Область границы определяется по изменению плотности линий на шкале. [c.157]

    С уменьшением диаметра матрицы при постоянной ее высоте градиент плотности вдоль высоты блока увеличивается. Это ухудшение равномерности уплотнения материала обусловливается увеличением потери напряжения на внешнее трение о стенки матрицы. Этим объясняется существенное для практики ограничение отношения высоты прессформы к ее диаметру. Обычно принимают это отношение не больше единицы. Это неправильно, так как неравномерность уплотнения зависит от механических свойств материала Ее можно уменьшить добавкой в материал пластификатора и смазкой стенок матрицы. Смазку применяют в промышленных условиях. Существует мнение, что смазка затрудняет выделение летучих веществ при обжиге, это не верно. Очень эффективна смазка олеиновой кислотой. [c.130]

    Упрощенная схема процесса пспарения каплн жидкости в сфероидальном состоянии основывается иа изложенных ранее закономерностях качественного характера и принимается большинством авторов, рассматривавших данный вопрос [2.13, 2.24—2.26]. Полагаем, что капля имеет форму полусферы. Зазор между основанием каили, которое считается плоским, и стенкой всюду имеет одинаковую величину йп и в несколько десятков раз меньше размера каили. Генерация пара осуществляется с поверхности основания каили в количестве, соответствующем поступающему сюда тепловому потоку без учета затрат теплоты на перегрев пара. Ламинарный поток пара.растекается к периферии капли под действием радиального градиента давления, испытывая, кроме того, воздействие сил вязкого трения (нормальной к поверхности испарения составляющей скорости пара пренебрегаем). Теплота от стенкн к основанию капли через слой пара передается с интенсивностью, определяемой коэффициентом теплоотдачи а=Яэф/бп, где в первом приближении можно считать Яэфя =Яп, т. е. эффективная теплопроводность зазора равна теплопроводности пара. Таким образом иод каплей в начальный момент времени т=0 автоматически устанавливается определенный размер зазора бп, так что плотность теплового потока //к= =ЯпА7 /бп ограничивается значением, обеспечивающим такую скорость парообразования, которая необходима для поддержания канли на паровой подушке и выталкивания пара из-под каили в окружающую среду. Следовательно, анализ сводится в основном к исследованию динамики парового потока под каплей. Уравнение движения для системы координат, принятой на рис. 2.4, молшо представить следующим образом  [c.60]

    Данный подход реализуется при исследовании процессов в газовых смесях, в многоатомных газах с учетом внутр. степеней свободы молекул (колебат., вращат. и т.д.), в плотных газах, при изучении влияния стенок сосудов на распределения молекул газа в приповерхностной области и мн. др. задачах. Анализ решений кинетич. ур-ния Больцмана позволяет обосновать область применимости условия локального термодинамич. равновесия и определить вклады в поток, обусловленные неравновесностью потока. Неравновесный поток импульса дает сдвиговую вязкость для газов с внутр. степенями свободы молекул он дополнительно содержит член, обусловленный объемной вязкостью. Плотность потока энергии пропорциональна градиенту т-ры (обычная теплопроводность), а в случае смеси газов она содержит член, пропорциональный градиенту концентраций (эффект Дюфура). Поток в-ва в смеси газов содержит член, пропорциональный градиенту концентрации (обычная диффузия), и член, пропорциональный градиенту т-ры (термодиффузия). Физ. кинетика дает для этих коэф. пропорциональности выражения через эффективные сечения столкновения, следовательно через потенциалы межмол. взаимодействий. Коэф. переноса удоалетворяют принципу симметрии, выражающему симметрию ур-ний механики относительно изменения знака времени (теорема Онсагера). [c.420]

    Одним из способов повышения эффективности процессов сепарации явялется использование в качестве интенсифицируюшего фактора вихревых потоков, создающих в камере аппарата своеобразную гидро- и термодинамическую обстановку. Закрученные потоки в силу их высокой тепло- и массообменной активности нашли широкое применение в различных отраслях техники Новой областью применения вихревых камер является их использование в качестве фракционирующих аппаратов. При теоретическом исследовании механизма фракционирования принимается условие, что плотность субстанции по радиусу вихревой камеры не изменяется. Такое допущение для сепараторов в принципе неправомерно, поскольку именно градиент плотности субстанции в центробежном поле вихревой камеры является движущей силой процесса фракционирования в таких аппаратах в сочетании с температурным градиентом по радиусу (эффектом Ж. Ранка). [c.61]

    Наконец, существует несколько важных экспериментов, требующих селективного возбуждения или насьпцения радиочастотным полем ограниченных областей образца. Одной из таких методик является определение распределения плотности ядер внутри объекта путем изучения поведения сигналов ЯМР при наличии градиента постоянного поля. Изменяя частоту облучения или создавая градиент магнитного поля, получают карту спиновой плотности внутри образца. Применяя селективное возбуждение как градиентов естественных полей, так и приложенных сильных градиентов, можно ограничить эффективный объем образца. Ответ ядерных спинов может управляться перемещаемыми прикладываемыми градиентами. Если прикладываемые градиенты выбираются так, чтобы согласовать доминирующие естественные градиенты, то возбуждаемый район образца соответствовал бы высокооднородному полю, а сигнал от этой области преобразовывался бы в спектр, в котором ширина линии значительно уже, чем естественная приборная ширина. Эквивалентное физическое уменьшение действительного размера образца невозможно, так как форма и положение района высокой однородности неизвестны. Эти эксперименты связаны с локальным насыщением, которое использовалось для прецизионного измерения радиочастного разделения в двойном резонансе высокого разрешения, а также д ля точных измерений естественной ширины линий. [c.6]

    Изоэлектрическое фокусирование [42 — 45] в линейном градиенте pH позволяет разделить белки, характеризующиеся различными изоэлектрическими точками. Для создания градиента используют носители с цвнттер-ионными свойствами — алифатические полиаминополикарбоновые кислоты, имеющие М 200 — 700. При движении в градиенте pH суммарный заряд белка постоянно меняется, и в области pH, близких к изоэлектрической точке, становится равным нулю. Соответствующий белок фокусируется , образуя узкую зону. При препаративном фокусировании в колонке стабилизация градиента pH осуществляется с помощью градиента плотности используемого буферного раствора, однако чаще работают с плоскими слоями полиакриламидного или гранулированного геля. Опубликовано краткое сообщение о непрерьтном электрофокусировании без носителя [46]. Эффективность электрофокусирования высока. Так, возможно, например, разделить белки, различающиеся по ИЭТ лишь на 0,01 единицы pH. При разделении сыворотки образуется более 40 белковых полос. [c.351]

    Для биофизики важен метод седиментации в градиенте плотности. В концентрированном растворе низкомолекулярного но-щества (в СзС1, в сахарозе и т. д.) при ультрацентрифугироиа-нии устанавливается градиент концентрации, т. е. градиент плотности растворителя макромолекул фо/йх. В таком растворе мак[)о-молекулы будут располагаться в той части кюветы, в которой 5 = 0, т. е. согласно (3.66), Умро = 1 или ро = рм- Иными словами, макромолекулы локализуются в той области кюветы, где плотность концентрированного раствора совпадает с плотностью макромолекул (р измеряется непосредственно). Гетерогенная смесь макромолекул разделяется и наблюдается спектр плотностей. Этот метод с большой эффективностью применяется при изучении нуклеиновых кислот. [c.82]

    Весьма перспективно для химической технологии теплообмен ное устройство, называемое теплопроводом. Оно пред ставляет собой полностью закрытую металлическую трубу с лю быми профилями сечения, футерованную каким-либо пористо капиллярным материалом (фитилем), например, шерстяной тканью, стекловолокном, сетками, пористыми металлами, полимерами, керамикой и т. п. В полость трубы подается теплоноситель в количестве, достаточном для полной пропитки фитиля. Температура кипения теплоносителя должна обеспечивать отвод тепла (путем испарения) из охлаждаемого рабочего пространства химического реактора или другого аппарата интервал зон температуры — от какой угодно низкой до 2000 °С. В качестве теплоносителя используют металлы (Сз, К, На, Ы, РЬ, А и др.), высоко кипящие органические жидкости, расплавы солей, воду, аммиак, жидкий азот и др.). Предпочтительны жидкости с высокой скрытой теплотой испарения, большим поверхностным натяжением, низкими плотностью и вязкостью. Трубка одной своей частью располагается в зоне отвода тепла, а остальной частью — в зоне конденсации паров. Пары теплоносителя, образовавшиеся в первой зоне, конденсируются во второй зоне, а конденсат возвращается в первую зону под действием капиллярных сил фитиля. Благодаря большому количеству центров парообразования резко падает перегрев жидкости при ее кипении и значительно возрастает коэффициент теплоотдачи при испарении (в 5—10 раз). Особенностью теплопровода является очень высокая эффективная теплопроводность вдоль потока пара (на 3—4 порядка больше, чем у серебра, меди и алю.миния), что обусловлено низким температурным градиентом вдоль трубы. Мощность теплопровода определяется капиллярным давлением, компенсирующим потери напора парового и жидкостного потоков. [c.336]

    Некогерентный оптический нагрев, схема которого приведена на рис. 100 [109], состоит из источника световой энергии (обычно это элек-тродуговой разряд), фокусирующего зеркала и образца. Кроме электроду-гового разряда используются также ксеноновые лампы мощностью 6 кВт. При диаметре зеркала порядка 0,6 м с углом охвата 180 ° максимальная плотность излучения в фокусе составляет 900 + 1000 Вт/см . При этом эффективный поперечный диаметр изображения источника нагрева в фокусе равен 8 мм. В варианте, изображенном на рис. 100, КПД системы составляет порядка 50%. При световом нагреве, однако, на образце возникают высокие градиенты температуры, для снижения которых зона плавления дополнительно нагревается. Мощность, расходуемая на нагрев единицы поверхности расплава, линейно уменьшается с увеличением диаметра исходного вещества D (при сохранении постоянной ширины зоны расплава). Эту зависимость можно представить следующим образом  [c.136]

    На рис. 5.13 приведена фотография, снятая во время работы оптимального шипа при максимальной нагрузке во фреоне-113. Она свидетельствует о целесообразности применения шипов для отвода тепла в кипящую жидкость. Подобный необычный профиль ребра оказался логически оправданным, что отчетливо выявилось при рассмотрении распределения плотности теплового потока по поверхности шипа. При конструировании шипа желательно свести к минимуму зоны, занятые малоинтенсивными режимами теплоотдачи при свободной конвекции и пленочном кипении, с тем чтобы на области пузырького и переходного режимов кипения приходилась максимальная доля теплоотдающей поверхности. Зона, занятая пленочным кипением, сводится к минимуму применением шипа с очень малым поперечным сечением в основании. Тем самым перепад температур в металле, необходимый для передачи тепла по ребру через зону пленочного кипения, срабатывается на очень коротком участке. В области переходного режима кипения, где начинается рост коэффициента теплоотдачи, диаметр шипа резко увеличивается. Рост диаметра снижает градиент температур в шипе на этом участке, тем самым высокоэффективные области пузырькового и переходного режимов кипения распространяются на поверхность сравнительно большой площади. И, наконец, по мере того как коэффициент теплоотдачи при меньших температурных напорах начинает падать, поперечное сечение шипа вновь уменьшается, сходясь у вершины в острие. Таким образом, оптимальное ребро передает тепло окружающей жидкости очень эффективно, используя обе ветви кривой кипения, прилегающие к точке первого критического теплового потока. [c.216]

    Особым случаем равновесного центрифугирования является седиментация при градиенте плотности [14, 76, 135], для которой применяют двухкомпонентные системы растворителей. Градиент плотности возникает вследствие седиментационного разделения составных частей растворителя вещества с различной плотностью распределяются в различных точках, где их эффективная плотность равна плотности окружающей среды. Вследствие диффузии в этих полосах накопления зависимость с от г в идеальном случае подчиняется закону Гаусса. Чаще всего этот метод применяли для исследования нуклеиновых кислот, но можно получить распределение в градиенте плотности и для полимеров умеренного молекулярного веса, если в качестве растворителей брать смеси 1,2-дибром-1,2-дифторэтана с циклогексаном и использовать оптическую шлирен-систему [221. Другая система описана Бреслером и сотр. [30]. Сведения о распределении сополимеров по составу можно получить также путем измерения рассеяния света[33]. [c.61]

    Результаты обширных исследований низкотемпературного струйного насоса приведены в работе [70]. Теоретические предпосылки, использованнью автором этой работы для объяснения результатов опытов, основаны на существующих теориях диффузионного насоса. Так, в соответствии с теорией Флореску эффект откачки рассматривается как результат соударений молекул рабочего газа с молекулами откачиваемого газа. Вследствие этих непрерывных соударений поток рабочего газа выполняет одновременно две функции. Во-первых, поддерживает градиент молекулярной плотности откачиваемого газа, причем плотность возрастает в направлении движения потока рабочего газа, а во-вторых, молекулы откачиваемого газа, проникшие в поток рабочего газа, уносятся им в направлении форвакуума. Эффективность первого действия определяется предельным давлением, которое устанавливается, а эффективность второго действия характеризуется быстротой действия насоса. Слабым местом теории Флореску является то, что при исследовании быстроты действия струи рабочего газа он допускает отсутствие молекул откачиваемого газа, которые возвратились бы со стороны форвакуума на. сторону всасывания. [c.36]

    При выборе газа-носителя в качестве подвижной фазы обращается внимание на его физические свойства, от которых во многом зависит эффективность работы колонки. От вязкости газа, например, зависит градиент давления в Iioлoнкe. Природа газа оказывает определенное влияние на диффузионные эффекты. Кроме того, от физических свойств газа-носителя во многом зависят показания детектирующих устройств. Замена азота на водород намного увеличивает чувствительность регистрирующего прибора (водород характеризуется меньшей плотностью и имеет большую теплопроводность, чем азот). При применении водорода для поддержания заданной скорости потока через колонку требуется меньшее давление. Однако в случае водорода большее значение приобретает диффузионный эффект, влияющий на качество разделения. Кроме того, водород гиожет взаимодействовать с некоторыми компонентами анализируемой смеси, например, гидрировать непредельные углеводороды. [c.196]

    Эго — Простое представление о катодной защите, но на практике она сложнее. Как и при всяких поляризационных экспериментах, следует учитывать фактор времени. Предположим, что металл Ме с валентностью г катодно защищен в среде, которая не содержит ионов Ме . Если эффективный потенциал металла снизить до обратимого потенциала анодной реакции Ме Ме + г электронов (точка Ег на фиг. 65), то в равновесных условиях (определенных в разд. 2.2) мегалл удет находиться в контакте со средой, уже содержащей ионы Ме с активностью, равной единице. Так как объем среды не содержит ионов Me то возникает градиент концентрации и ионы Ме начинают диффундировать от гюверхности металла. Для поддержания соответствующей концентрации ионов Ме вблизи поверхности металла последний должен растворяться. При потенциостатических условиях защитная плотность тока возрастает. При гальваностатических условиях, чаще осуществляемых на практике, увеличивается скорость коррозии. Скорость коррозии удет зависеть от факторов окружающей среды, опрёделяющих [c.129]

    Пористый электрод представляет собой систему с распределенными параметрами, и снижение эффективности связано с тем, что разные точки внутри электрода неравнодоступны для электродной реакции. В находящемся в порах электролите возможны омические падения потенциала, а также концентрационные градиенты. Поэто. 1у локальная плотность тока is.x (рассчитанная на единицу площади истинной поверхности) различна на разных глубинах, г пористого электрода. Она макси-.мальна вблизи наружной поверхности (.t = 0) и падает по мере продвижения в глубь электрода. [c.324]

    Явления свободной конвекции в зернистом слое. При наличии заметного градиента плотности газа (жидкости), возникающего при наличии градиента концентрации, в определенных условиях в зернистом слое могут возникнуть конвекционные токи, резко увеличивающие величины эффективных коэффициентов диффузии. Анализ явлений свободной конвекции применительно к условиям переноса тепла в зернистом слое дан в разделе V. 2. Лоренц и Змери [18] провели расчетный анализ конвективных токов в колонне. заполненной насадкой, с нагревателем и холодильником [c.206]

    Приближенное теоретпч. рассмотрение электроосмоса можпо провести следующим образом. Пусть жидкость, содержащая ионы (напр., р-р электролита), находится в капилляре радпуса R. На границе раздела фаз вдоль стенок капилляра существует двойной электрич. слой с эффективной толщиной диффузной части d. Предполагается, что d< R. Вблизи стеикп скорость течения жидкости равна нулю, а с той стороны двойного слоя, к-рая обращена к р-ру, эта скорость равна скоростп течения всей массы жидкости у. Т. обр., еслп предположить, что градиент скорости в двойном слое постоянный, то он равен vid. Тангенциальная сила трения, действующая на едпшщу новерхности, составляет x -(vld), где т] — коэфф. вязкости. Вызывающая движение электрич. сила, действующая на единицу поверхности, равна Eu, где Е — напряженность однородного внешнего поля, а — плотность электрич. заряда на новерхности, вдоль к-рой происходит движение. В стационарных условиях T]-(y/d)= a, откуда v = Ead x (1) [c.468]

    Задача оптимизации в данном случае заключается в поиске условий или значений факторов, при которых оптическая плотность раствора заданной концентрации по олову будет максимальной. Вполне понятно, что при изменении независии<ых переменных пропорционально коэффициентам регрессии функция отклика будет эффективно отражать суммарное действие всех факторов. Для получения максимального значения функции отклика необходимо увеличивать те переменные, которые входят в уравнение регрессии с положительным знаком, и уменьшать те, которые входят с отрицательным. Бокс и Уилсон разработали прием достижения максимума в функции отклика, получивший название крутого восхождения. Техника расчета по этой методике заключается в следующем. Один из факторов, например Хг, выбирают как базовый и вычисляют для него произведения коэффициента регрессии Ьг на интервал варьирования ЛХг, т. е. гАХг, и определяют шаг движения по градиенту ЛХ. Выбор АХ является очень важным элементом расчета. Чрезмерно малый шаг потребует очень большого числа опытов, а при слишком большом шаге могут быть не замечены важные особенности системы или будет очень быстро превышен предел физически возможных значений фактора (например, концентрация раствора превысит растворимость соединения и т.д.). Величина шага должна, конечно, существенно превышать погрешность измерения фактора. Обычно принимают АХ АХ. Затем вычисляют отношение [c.376]


Смотреть страницы где упоминается термин Плотности градиент эффективность: [c.375]    [c.33]    [c.58]    [c.268]    [c.60]    [c.192]    [c.764]    [c.150]    [c.486]    [c.311]   
Введение в ультрацентрифугирование (1973) -- [ c.198 ]




ПОИСК





Смотрите так же термины и статьи:

Градиент плотности

Плотности градиент эффективный

Плотность эффективная



© 2025 chem21.info Реклама на сайте