Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заместители, влияние на полимеризацию

    Той и Купер [842] исследовали влияние заместителей на полимеризацию и другие свойства аллиловых эфиров фосфиновых и других фосфорсодержащих кислот. Склонность к полимериза- [c.372]

    Для объяснения причин различий экспериментальных и рассчитанных по энергиям связи теплот полимеризации проведен ряд исследований. Их результаты показывают, что этими причинами являются 1) стабилизация электронов в мономере или полимере функциональными группами 2) стерические на- пряжения при полимеризации циклических мономеров 3) образование связей между молекулами мономера или полимера (типа водородных) и сольватация. Наибольшее значение имеет влияние заместителей, вызывающее стабилизацию электронов. [c.261]


    При кислотной полимеризации реакционная способность олефинов изменяется в обычном порядке, обусловленном индуктивным влиянием алкильных заместителей  [c.56]

    Во многих случаях двойные связи в молекуле диолефина инициируются при различных условиях. Рост цепи при полимеризации таких мономеров происходит вначале вследствие размыкания только одной, наиболее ослабленной, двойной связи. Благодаря сопряжению или влиянию полярного заместителя образующаяся макромолекула сохранит двойные связи в каждом звене и будет иметь линейное строение. Изменением дальнейших условий полимеризации можно вызвать разрушение оставшихся в макромолекуле двойных связей и продолжить процесс вплоть до образования [c.115]

    Реакционная способность мономера в процессе совместной полимеризации, как и в случае гомополимеризации, зависит от строения мономера. Сопряжение двойной связи в молекуле мономера, количество и взаимное расположение заместителей, их поляризующее влияние на двойную связь определяют участие данных мономеров в реакции сополимеризации. Ряды активностей, составленные по результатам изучения совместной полимеризации мономеров и по данным изучения их гомополимеризации совпадают  [c.117]

    На реакционную способность мономера оказывают влияние индуктивный эффект и эффект сопряжения, которые вызываются действием заместителей. Действительно, способность непредельных мономеров к полимеризации зависит также и от природы заместителей, их числа, расположения в молекуле мономера двойных связей. Введение в молекулу этилена различных по своей электронной, природе замещающих групп вызывает поляризацию двойной связи, что ведет к увеличению реакционной способности мономера. Как будет показано, процесс полимеризации часто связан с возникновением свободных радикалов, которые реагируют с мономерами (радикальная полимеризация). При этом со свободным радикалом, обладающим электрофильными свойствами, легче будет реагировать именно поляризованная, а значит, реакционноспособная моле  [c.387]

    Существенное влияние на способность к полимеризации оказывает расположение в мономере кратных связей, а также расположение, количество и тип заместителей. Выше уже указывалось, что наиболее склонны к полимеризации соединения с сопряженными двойными связями (стр. 81) и непредельные соединения, имеющие при атоме с кратной связью заместитель, вызывающий поляризацию этой связи (стр. 100). Поляризация двойной связи пропорциональна полярности заместителей. На склонность к полимеризации влияет также объем заместителя при двойной связи. Если радиус замещающей группы велик, то реакционная способность сильно понижается вследствие пространственных затруднений. [c.444]


    Активными мономерами при ионной полимеризации являются винильные соединения, имеющие электронодонорные или электроноакцепторные заместители. Под влиянием такого заместителя происходит поляризация двойной связи. [c.450]

    Способность непредельных соединений к полимеризации зависиг от расположения двойных связей, характера и числа заместителей. Общие закономерности влияния строения непредельных соединений на их способность к полимеризации были впервые установлены С. В. Лебедевым. Впоследствии был получен дополнительно значительный экспериментальный материал, но этот вопрос не получил пока еще исчерпывающего теоретического объяснения. [c.102]

    Систематическому изучению влияния состава и строения алкилалюминиевого компонента на процессы полимеризации и сополимеризации этилена посвящены работы [17, 24, 74]. Изучались АОС с различными алкильными группами, что позволило исследовать влияние заместителей с разными электроноакцепторными характеристиками, а также с различной способностью вызывать стерические препятствия для подхода нуклеофильных агентов. Показано, что активность каталитических комплексов, содержащих алюминийтриалкилы нормального строения, в процессе полимеризации этилена падает с увеличением длины алкила (температура полимеризации 60 °С, давление 0,3 МПа, растворитель гексан)  [c.65]

Таблица 2.1. Влияние заместителей на относительную скорость полимеризации ( иенов Таблица 2.1. <a href="/info/37619">Влияние заместителей</a> на <a href="/info/1082446">относительную скорость полимеризации</a> ( иенов
    До сих пор, рассматривая влияние заместителей на скорость радикальной полимеризации, мы учитывали только роль сопряжения. Такой подход характерен для теории идеальной радикальной реакционности, где реакционная способность мономеров и радикалов оценивается по одной энергии сопряжения без учета пространственных и полярных эффектов, обусловленных заместителем. Вместе с тем эти эффекты в некоторых случаях могут оказывать существенное влияние на энергию активации полимеризации. [c.236]

    Заместители в молекуле бутадиена оказывают более сложное влияние на активность мономеров, чем заместители в молекуле этилена (табл. 2.2). При введении одного заместителя влияние эффекта поляризации двойных связей на полимеризацию сохраняется, что видно, например, при сопоставлении скорости полимеризации бутадиена-1,3, 2-метилбутадиена (изопрена) и 2-хлорбутадие-на (хлоропрена), дипольные моменты которых равны соответственно О, 0,38, 1,42 Д. Однако мономеры, содержащие заместители у первого или четвертого атома углерода, заметно уступают по активности изомерам, содержащим те же группировки у второго или третьего атома углерода. Среди мономеров с двумя заместителями наибольшей активностью обладают диены, содержащие полярные группы у второго и третьего атомов углерода, и т. д. [c.39]

    В молекулах различных аллилгалогенидов (аллилхлорид ал-лилбромид), имеющих общую формулу СНг=СН—СНгХ, атом галогена не оказывает такого заметного поляризующего влияния на It-связь, как в молекулах винилгалогенидов, так как двойная связь в аллильных соединениях не сопряжена непосредственно с атомом галогена. Кроме того, вследствие значительного объема заместителя при полимеризации таких мономеров возникают стерические препятствия. Этим объясняется меньшая активность аллилгалогенидов в реакциях полимеризации по сравнению с винилхлоридом или винилбромидом. Под влиянием кислорода воздуха (в темноте) в течение нескольких месяцев только 1—2% аллилхлорида превращается в низкомолекулярный полимер. На свету за это же время образуется 30—40% полимера. Под влиянием ультрафиолетовых лучей полимеризация заканчивается в течение 1—2 недель. Высокомолекулярный полиаллилхлорид получается только радиационным инициированием. Даже на твердых катализаторах анионной полимеризации получается низкомолекулярный полимер с неодинаковой структурой звеньев и с температурой текучести 70—110° С. Аллилбромид полимеризуется в тех же условиях, что и аллилхлорид, но еще медленнее. В присутствии перекисей скорость реакции полимеризации возрастает. [c.325]

    В молекулах различных аллилгалогенидов (аллилхлорид, лллилбромид), имеющих общую формулу СНг = СН—СНгХ, атом галоида не оказывает такого заметного поляризующего Бли.яния на л-связь, как в молекулах винилгалогрнидов так как двойная связь в аллильных соединениях не сопряжена непосредственно с атомом галоида. Кроме того, вследствие значительного объема заместителя при полимеризации таких мономеров возникают стерические препятствия. Этим объясняется меньшая активность аллилгалогенидов в реакциях полимеризации по сравнению с винилхлоридом или винилбромидом. Под влиянием кислорода воздуха (в темноте) в течение нескольких месяцев всего 1—2% аллилхлорида превращается в низкомолекулярный полимер. На свету за это же время образуется около 30—40% полимера. Под влиянием ультрафиолетового облуче- [c.316]


    Аналогичное качественное различие наблюдалось и для других пар, причем особо наглядный случай представляет собой система стирол—метилметакрилат, где сополимеризация смеси 1 1 первоначально дает под влиянием свободно-радикальных инициаторов сополимер с составом 1 1, но в процессах, протекающих под воздействием иона карбония и кар-баниона, соответственно [153] получаются практически чистые полистирол и полиметилметакрилат. Имеющиеся довольно ограниченные данные позволяют высказать предположение, что реакционные способности при полимеризации под действием карбаниона идут практически параллельно способности заместителей стабилизировать карбанионы, возрастая в следующем порядке акрилонитрил, метакрилонитрил > метилметакрилат > > стирол > бутадиен. Активными центрами в наиболее реакционных из них является в основном стойкий анион энольного типа. [c.161]

    На скорости полимеризации сказываются и, стерические и, особенно, электронные влияния заместителей у кремния. Она увеличивается при замещении метильных групп в Дз и Д4 электро-ноакцепторньти группами, облегчающими нуклеофильную атаку активным центром атомов кремния в цикле благодаря повышению их дробного положительного заряда. Сильно ускоряют полимеризацию фенильные группы Аз полимеризуется в 10,7 раза, а А4 — в 32,5 раза быстрее, чем Дз и Д4 соответственно [45, 46]. Слабее влияют 3,3,3-трифторпропильные группы (скорости возрастают в 3—4 раз при переходе от Дз к Фз и от Д4 к Ф4) [33, 40], что связано, вероятно, с противоположным действием сильных отрицательного индуктивного и стерического эффектов этих групп. Исключительно сильное ускорение полимеризации вызывают цианоалкильные группы [47]. Электронодонорные заместители, напри- [c.478]

    Особо следует остановиться на предельно допустимых концентрациях примесей титана в каучуках. Этот вопрос имеет большое практическое значение, так как большинство катализаторов стереоспецифической полимеризации содержат в своем составе трехвалентный титан. Известно, что окисление трехвалентного титана проходит через стадию образования свободных радикалов. При окислении трехвалентного титана кислородом наблюдается деструкция полибутадиена и полиизопрена [43]. В этой же работе было показано, что многие антиоксиданты, применяемые для стабилизации каучуков, не оказывают ингибирующего действия на процесс деструкции, вызываемый окислением трехвалентного титана кислородом. В этом случае ингибиторами являются такие соединения, как нитробензол, азобензол, бензохинон (которые, как известно, окисляют трехвалентный титан в четырехвалентный) или дифенилпикрилгидрозил, образующий с треххлористым титаном нерастворимый комплекс, выпадаюп1,ип в осадок. Совокупность данных по влиянию титана на стабильность полибутадиена и полиизопрена позволяет считать, что предельно допустимая концентрация этого металла лежит близко к 0,01% (масс.). Для каучуков, имеющих в основной цепи полярные заместители (например, для нитрильных каучуков) предельно допустимые концентрации примесей металлов переменной валентности могут быть несколько более высокими (это не относится к примеси железа). [c.632]

    Нужно отметить, что значения энергий связи, приводимые разными авторами, отличаются довольно значительно, вследствие использования различных подходов при промежуточном расчете теплоты атомизации графита. Если дополнительно сопоставить измеренные для реальной полимеризации и рассчитанные для газофазной гипотетической полимеризации теплоты (см, табл. 67 и 68), то становится ясным сильное влияние на АЯм природы заместителей у винильной, группы. [c.261]

    Активные мономеры образуют малоактивные начальные радикалы, так как в радикале сопряжение заместителя с непарным электроном приводит к смещению облака непарных электронов к другим 7С-СВЯЗЯМ, которые и нужно нарушить для протекания реакции присоединения. Активность мономера под влиянием сопряжения нарастает медленнее, чем снижается активность начального радикала, что следует из значений термохимического эффекта сопряжения мономеров и радикалов. Этим объясняется часто наблюдаемая большая скорость полимеризации мономеров, неактивных, но образующих реакционноспособные радикалы, по сравнению со скоростью полимеризации более активных мономеров, образующих нереакцпонноспособные радикалы. Ниже приведены значения термохимического эффекта сопряжения некоторых радикалов  [c.108]

    Влияние полярности заместителей и сопряжения двойных связей наряду со стсрическим эффектом способствует образованию полимерных молекул с относительно однородным сочетанием отдельных звеньев, го есть макромолекул более или менее одинакового строения. При полимеризации винильных соединений присоединение несимметрично построенной молекулы мономера к макрорадикалу может происходить по двум направлениям  [c.113]

    Наиболее активные в реакциях катионной полимеризации мономеры содержат электроположительные (электронодонорные) заместители при одном из углеродных атомов, соединенных двойной связью. По катионному механизму поликеризуются многие винильные соединения, в том числе изобутилен, простые виниловые эфиры, ие иолимеризующиеся по радикальному механизму. Под влиянием катализаторов катионного типа могут полимеризоЕзаться также циклические соединения. [c.135]

    Большие успехи в области применения регулируемой анионной полимеризации достигнуты за последние годы и в связи с открытием комплексных катализаторов Циглера—Натта . Под влиянием этих катализаторов были получены кристаллические полимеры этилек а, пропилена и других а-олефипов, обладающие регулярным строением с определенным расположением заместителей в пространстве (изотактические и синдиотактические полимеры, стр. 57 ел.). По типу полимеров, получаемых под воздействием катализаторов Циглера—Натта, последние называют с т е р е о-специфическими к а т а л и з а т о р а. м и. Стерео-специфические катализаторы состоят из смеси металлорганических соединений металлов П и 1Н гру[И1 и галогенидов металлов [ V и VI групп, включая торий и уран. Наибол ,шее распространение приобрел катализатор, получаемый смешением триалкил-алюминия и х. юридов титана при разл гчном молярном соотно-пн нии компонентов. [c.146]

    В молекулах различных аллилгалогенидов (аллилхлорид, аллилбромид), имеющих общую формулу СН2=СН—СНзХ, атом галоида не оказывает такого заметного поляризующего влияния на тс-связь, как в молекулах винилгалогенидов, и двойная связь в аллильных соединениях не сопряжена непосредственно с атомом галоида. Кроме того, заместитель имеет значительный объем, что является причиной возникновения некоторых стерических препятствий при полимеризации таких мономеров. Этим объясняется меньшая активность аллилгалогенидов в реакциях полимеризации по сравнению с винилхлоридом или винилбромп-дом. [c.277]

    Строение аллилового спирта оказывает существенное влияние па его активность в процессе полимеризации. Гидроксильная группа в молекуле аллилового спирта значительно отдалена от двойной связи, поэтому в данном соединении не наблюдается сопряжения связи с заместителем и поляризующее влияние (10 на тт-связь проявляется в значительно меньшей степени, чем н молекулах винильных соединений. Эти особенности химического строения аллилового С1 ирта обусловливают его малую реакционную способность в проц( -ссах полимеризации. [c.310]

    Влияние заместителей в фенильной группе на полимеризацию замещенного стирола различно, в зависимости от типа заместителя и положения его в бензольном ядре. В большинстве случаев заместитель, находящийся в фенильной группе, ускоряет процесс полимеризации, особенно если заместитель находится в орто-положении к винильной группе. С увеличением размера заместителя его ускоряющее влияние снижается, очевидно, вследствие нарастания пространственных трудностей, возникающих в реакциях присоединения таких мономерных молекул друг к другу. [c.360]

    Заместители, находящиеся в пара-положении, отдалены от винильной группы, и влияние их на скорость полимеризации значительно меньше. Поэтому в ряду 4-алкоксистиролов не наблюдает- [c.360]

    Наличие двух или более функциональных групп в молекуле мономера, используемого для синтеза полимера, — условие необходимое, но недостаточное. Необходимым является также отсутствие объемных заместителей рядом с двойной связью. В противном случае при синтезе высокомолекулярных соединений методом полимеризации возникают пространственные (стерические) затруднения, препятствующие образованию полимера. Например, 1,1-дифенилэти-лен СН2 = С(СбН5)а в отличие от стирола eHs—СН = СН,2 неспособен полимернзоваться из-за влияния больщих по объему фенильных групп-заместителей. По этой же причине не вступают в реакции полимеризации многие 1,2-производные этилена, в молекулах которых хотя бы один из двух заместителей обладает большими размерами. Однако некоторые даже тризамещенные этилена способны вступать в реакцию полимеризации, например трифторэтилен. Это связано с тем, что объем атома фтора близок к объему атома водорода. [c.387]

    Ионная полимеризация может характеризоваться значительно большей стереоспецифичностью, чем радикальная. Это обусловливается не только взаимодействием заместителей концевых звеньев растущих полимерных цепей, но и участием в элементарных актах роста других компонентов каталитического комплекса, в частности, противоиона. Если активным центром на конце растущей цепи является ионная пара, то противоион оказывается одним из компонентов переходного комплекса, образующегося в реакции роста цепи. Поэтому он может влиять на фиксацию той или иной пространственной конфигурации, концевого звена растущей цепи. В некоторых случаях влияние противоиона, по-видимому, сводится к чисто стерическим эффектам, т. е. можно рассматривать противоион как своеобразный дополнительный заместитель в концевом звене растущей цепи. Например, при катионной полимеризации винилизобутилового эфира на катализаторе ВРз-НаО (противоион ВРзОН-) при —70°С образуется атактический полимер, при полимеризации в тех же условиях на катализаторе ВРз-(С2Н5)20 противоион ВР3ОС2Н5) образуется изотактический полимер. Увеличение объема противоиона значительно усиливает стереоспеци-фический эффект при росте цепи. [c.26]

    Влияние заместителей связано с различным поляризующим действием их на двойную связь, что в большей или меньшей степени облегчает ее раскрытие ( 1). Поэтому несимметричные замещенные этилены проявляют ббльшую склонность к полимеризации, чем симметричные. Увеличение же числа и размеров заместителей осложняет процесс, что связано с пространственными затруднениями, возникающими при полимеризации. [c.378]

    После того как было изучено регулярное строение натурального каучука, исследователи неоднократно предпринимали попытки синтезировать полимеры, которые бы обладали сходными с ним структурой и свойствами. Многочисленные опыты полимеризации диенов дали интересные результаты, позволившие сделать теоретические выводы о влиянии температуры, инициаторов и роли поли-меризационной среды на способ соединения молекул мономера в цепи. Так, например, была высказана мысль о том, что более высокая температура способствует присоединению мономера по принципу А-Цис, а более низкая — по принципу , А-гранс это объяснялось различием в свободных энергиях активации этих типов реакций. И хотя долгое время не удавалось доказать справедливость этой гипотезы для полимеризации диенов, именно благодаря ее использованию был достигнут дальнейший прогресс в области получения полимеров с регулярной молекулярной структурой. Только недавно, с применением высокочувствительных физических методов, в особенности ядерного магнитного резонанса, было установлено, что при полимеризации виниловых мономеров с заместителями, имеющими большой объем, в условиях низких температур образуются соединения с повышенным содержанием фракций син-диотактической структуры. [c.8]

    Алкилбериллий, содержащий металл с наименьшим ионным радиусом, в присутствии треххлористого титана дает самый высокий выход изотактического полипропилена при больших скоростях реакции полимеризации. На степень изотактичности и скорость реакции оказывают влияние также стерические и химические свойства заместителей металлорганического соединения. При полимеризации пропилена в присутствии триметилалюминия образуется полимер с большим содержанием атактической фракции, чем при применении триэтилалюминия. Стереоспецпфичность, однако, падает и при высших алкилах. Если один алкил алюминия заменить на галоген, то скорость реакции снижается в ряд Р>С1>Вг>1 в том же порядке увеличивается молекулярный вес. Натта [28] в результате проведенных опытов по полимеризации п"ропилена с треххлористым титаном в среде толуола пришел к заключению, что стереорегулярность падает в ряду  [c.40]

    Наличие заместителей в молекулах днена оказывает еще более сложное влияние на активность мономера (табл. 2 I), Электронодонорные заместители у первого и.пи четвертого уг леродного атома снижают скорость полимеризации мономера, а у второго или третьего — несколько повышают. Электроноакцепторные заместители повышают активность мономера, особенно если они находятся не у концевых атомов углерода. [c.110]

    Общая особенность в поведении ионных частиц реакции - это зависимость активности от факторов внешней (сольватация ионов, электростатический эффект противоиона) и внутренней (влияние электродонорных заместителей) стабилизации, а различие - в обратимом и необратимом характере образования ионов аренония и карбония соответственно. Следовательно, при наличии в системе более сильного, чем арен, 71-акцептора должно происходить его протонирование. Это подтверждается при использовании для инициирования полимеризации изобутилена различных комплексов присоединения протона на основе замещенных аренов, в том числе в составе полимеров стирола. [c.84]

    В соответствии с электрофильной природой алкилирования фенолов и ориентирующим влиянием орто-пара-заместителей в ароматическом ядре (увеличение электронной плотности в положениях 2, 4 и 6 фенола) наблюдается преимущественное замещение атома Н на полиизобутилен в положение 4 для 2,6-дизамещенных фенолов, а также б / гб -алкилирование в случае 4-алкилзаме-щенных фенолов. Важную роль играют стерические факторы, например, 2,4,6-три-777ег-бутилфенол практически не влияет на полимеризацию изобутилена. [c.107]

    Указанные особенности строения лигандов и комплексов во многом определяют как химические свойства, так и методы получения этих веществ Обычно применяемая для синтеза многих азотсодержащих макроциклов конденсация карбонильных соединений с первичными аминами или их солями (с последующим восстановлением азометиновых связей) в данном случае применяется не часто, поскольку макроциклические основания Шиффа, образованные алифатическими альдегидами и алифатическими аминами, малоустойчивы Лишь по методу Барефилда предполагается промежуточное образование макроциклического основания Шиффа, которое затем восстанавливают без выделения полупродукта Низкая устойчивость алифатических азометинов — это в первую очередь следствие большой склонности таких соединений к реакциям полимеризации, проходящим по механизму альдольной конденсации Сказывается также устранение общего стабилизирующего влияния алкильных заместителей (см. с 67) [c.37]

    Представляет интерес рассмотреть влияние заместителей в фенильном радикале на эти константы. Как известно, скорость реакции роста цепи определяется в основном активностью полимерного радикала, а не мономера. Обобществление я-электронов в системе, т. е. появление сопряжения винильной связи с какими-либо группами, в большей степени снижает реакционную способность радикала, чем мономера. В молекулах метакриламидов наличие заместителей в бензольном кольце, связанном с азотом ЫН-группы, обладающим свободной парой электронов, смещает электронное облако в сторону сопряженной карбонильной группы, чем в определенной мере повышает электронную плотность на двойной связи С = С. Этим самым повышается реакционная способность радикала, обусловливающая скорость гомополимеризации. Таким образом, за счет наличия групп, отталкивающих электроны в направлении СО-группы, повышается реакционная способность полимерных радикалов и возрастает скорость полимеризации. При введении в бензольное кольцо электронофильных заместителей свободная пара электронов оттягивается в сторону фенильного радикала тем самым облегчается взаимодействие неспаренных электронов с карбонильной группой. За счет этого увеличивается степень делокализации электронов в радикале, что, в свою очередь, снижает реакционную способность такого радикала, а следовательно, и скорость гомополимеризации (см. табл. 21). Так как в реакции электровосстановления принимает участие двойная связь С = С, то полярографические характеристики также зависят от величины электронной плотности на этой группе. [c.188]

    Рассмотрение результатов исследования Старкуэзера приводит к выводу, что скорость полимеризации различных замещенных бутадиена-1,3 при высоком давлении зависит от положения и природы заместителей качественно так же, как и при атмосферном давлении. Так, например, наличие заместителей в а-иоложении увеличивает скорость полимеризацпи, причем влияние атомов галоидов больше, чем фенильной и алкильной групп. [c.191]

    Указанными исследованиями установлена различная склонность алкенилсиланов к полимеризации под давлением в зависимости от строения мономеров — в первую очередь от характера двойной связи и ее положения по отношению к атому кремния, Найдено, что в случае кремнийолефинов подтверждаются известные для углеводородных мономеров закономерности, характеризующие влияние заместителей на склонность замещенных этиленов к полимеризации. [c.192]

    Из таблицы видно, что на константу передачи цепи существенное влияние оказывает как строение макрорадикала, так и строение алкил (арил)фосфина. Полистирольные радикалы более реакционноспособны в реакции с фосфинами, чем полиметилметакрилатные, и этим объягаяется возможность выделения теломеров при реакции фосфинов с акрилатами. Фосфины более реакционноспособны по отношению к полиметилметакрилатному радикалу, чем к-бутилмер-каптан. В алифатическом ряду заместитель мало влияет на реакционную способность. При переходе от алкилфосфинов к фенилфосфину константа передачи цепи на фосфин возрастает почти в 10 раз, что связано с возможностью образования более стабильных (за счет участия в распределении электронной плотности ароматического ядра) фенилфосфинильных радикалов. Этим объясняется легкость присоединения фенилфосфина к различным непредельным соединениям, которую наблюдали Б. А. Арбузов с сотрудниками [14]. Реакция фенилфосфина с эфирами акриловой и метакриловой кислот, нитрилом акриловой кислоты идет без инициатора при 120—130° С. При указанных температурах чистый метилметакрилат подвергается термической полимеризации с ощутимой скоростью [13]. Кроме того, источником радикалов могут быть пероксиды, образующиеся при взаимодействии растворенного в мономере кислорода сего молекулами, или перокси-радикалы со структурой СН2(Х)СН—О—О.  [c.27]

    Электроноотталкнвающие заместители, такие, как СНз, усиливая электронную плотность у атома углерода, с которым они непосредственно связаны, в то же время способствуют смещению я-электронов от этого атома к соседнему атому углерода. Точно так же электронопритягивающие заместители (СООН, галоген, фенйльная группа и т. д.) создают повышенную электронную плотность у того атома углерода, с которым они соединены. В обоих случаях увеличивается реакционноспособность мономера по отношению к свободным радикалам, которые, будучи электрофильны-ми частицами (тенденция непарного электрона к образованию электронной пары), стремятся присоединиться в первую очередь у места повышенной электронной плотности. При ионной полимеризации смещение я-электронов под влиянием заместителей благоприятствует гетеролитическому разрыву двойной связи и возникновению ионов, легко реагирующих с положительными или отрицательными частями катализатора. [c.238]


Смотреть страницы где упоминается термин Заместители, влияние на полимеризацию: [c.477]    [c.106]    [c.134]    [c.471]    [c.404]    [c.94]   
Химия искусственных смол (1951) -- [ c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Заместителей влияние

Полимеризация влияние



© 2025 chem21.info Реклама на сайте