Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические свойства при малых деформациях

    Рассмотрим пример регулирования структурно-механических свойств 10%-ной суспензии черкасского монтмориллонита, характеризующегося большой лабильностью в водных системах и не удовлетворяющего нормальным условиям бурения нефтяных и газовых скважин. Анализ структурно-механических свойств показал, что данная суспензия принадлежит к пятому структурно-механическому типу и развивает очень малые относительные быстрые эластические и большие пластические деформации (рис. [c.249]


    Наиболее широкое применение находят эпоксидные компаунды, так как эпоксидные полимеры обладают малой усадкой, высокой адгезией, отверждаются без выделения летучих продуктов, отличаются высокими механическими и диэлектрическими характеристиками и по всему комплексу свойств превосходят материалы других типов [3], Одним из основных преимуществ эпоксидных полимеров является их способность хорошо работать в условиях стесненной деформации без нарушения сплошности. Именно эта способность, зависящая от всего комплекса механических свойств полимера, обусловливает широкое исполо-зование эпоксидных смол в компаундах. [c.155]

    Пьезоэлектрические материалы при деформировании электрически поляризуются (прямой пьезоэлектрический эффект, или эффект Кюри), и на электродах, нанесенных на поверхность пьезоэлектрика, возникает пьезоэлектрический заряд. Приложение электрического напряжения к электродам вызывает их механическую деформацию (эффект Джоуля, или обратный пьезоэлектрический эффект). Пьезоэлектрическими свойствами обладают очень многие (почти все) кристаллические диэлектрики, однако у большинства из них пьезоэффект мал. Многие из пьезоэлектриков не нашли широкого применения из-за неудовлетворительных физико-механических свойств. В настоящее время созданы синтетические материалы, обладающие хорошими пьезоэлектри -ческими и механическими свойствами, которые вместе с естественным пьезо-электриком - кристаллическим кварцем - широко используют в акустике. Основные преимущества пьезоэлектрических преобразователей - высокая эффективность преобразования и простота крнструкции. Для описания свойств пьезоэлектрических материалов используют тензорные представления теории электроупругости. [c.90]

    Процесс набухания может вызывать необратимые изменения механических свойств эластомеров за счет ослабления межмолекулярных связей. При малой степени набухания преобладает положительное влияние гибкости цепей, способствующее ориентации, и прочность повышается. Если же эффект повышения гибкости цепей незначителен, то превалирует понижение прочности. Долговечность ненапряженных резин уменьшается тем значительнее, чем больше они набухают. При набухании резин в водных средах в напряженном состоянии (НК, ХП) оказалось, что, наоборот, долговечность их при набухании возрастает. Это явление объясняется облегчением накопления остаточной деформации при увеличении степени набухания, что приводит к уменьшению действующего напряжения [c.117]


    Кристаллические структуры по-разному влияют на механические свойства кристаллических и кристаллизующихся полимеров. При приложении малых напряжений деформация кристаллических полимеров очень мала. Выше температуры плавления полимер переходит практически сразу в вязкотекучее состояние, при этом деформация резко возрастает (рис. И.8). Кристаллизующийся полимер того же химического строения имеет иную термомеханическую кривую. Так, если расплав кристаллизующегося полимера быстро охладить, то он не успеет закристаллизоваться и перейдет в стеклообразное состояние. До температуры стеклования он будет вести себя как обычный аморфный полимер, т. е. проявлять малые обратимые деформации. В отличие от-кристаллического, у кристаллизующегося полимера проявится и область высокоэластического состояния, и именно в ней, вследствие увеличения сегментальной подвижности макромолекул, наступит кристаллизация. Превратившись в кристаллический, полимер обнаружит высокие необратимые деформации лишь после достижения температуры плавления. [c.30]

    Размеры структурных элементов существенно влияют на механические свойства полимеров, при этом чем они больше, тем больше напряжение рекристаллизации, больше хрупкость образца и меньше его удлинение [23]. Наилучшие механические свойства достигаются при достаточно малых размерах сферолитов. Естественно, что процесс разрушения структуры полимера при приложении внешней силы, как и процесс ее образования, носит многоступенчатый характер. Это особенно существенно при изучении закономерностей деформации полимеров. При любом малом и кратковременном приложении внешней силы происходит разрушение каких-либо ступеней структуры полимера, которые в различной степени перестраиваются и вновь образуются как в процессе деформирования, так и после его прекращения. Поэтому под процессом рекристаллизации следует понимать любые преобразования как первичной, так и вторичной кристаллической структуры [19]. [c.21]

    Выяснить, есть ли пространственная структура в данном теле, можно с помощью измерения механических свойств или по картине развития деформации сдвига под действием постоянного напряжения, постепенно увеличивающегося от опыта к опыту. Для жидкости при действии сколь угодно малых напряжений за время, большее периода релаксации, устанавливается стационарное течение с постоянной вязкостью, не изменяющейся при возрастании напряжений. [c.175]

    Одним из характерных механических свойств коагуляционных тиксотропных структур является их пластичность. Пластичные тела под действием внешних сил необратимо изменяют свои размеры и форму, которые после прекращения действия внешних сил самопроизвольно не восстанавливаются. При малых скоростях деформации пластичные тела текут без заметного разрушения структуры. Нарушенные в процессе деформации связи восстанавливаются на новых точках. При больших скоростях деформации (сдвига) [c.368]

    Наличие барьера вращения вокруг простой связи в главной цепи макромолекулы и существование узлов флуктуационной сетки в массе полимера предполагает ряд особенностей в характере зависимости механических свойств полимера от температуры. Эти особенности определяются тем, что при изменении температуры меняется соотношение между величиной барьера вращения или прочностью связи в узлах флуктуационной сетки и величиной флуктуаций тепловой энергии. При малой величине флуктуаций тепловой энергии (низкая температура) барьер вращения может оказаться непреодолимым и макромолекула потеряет способность к деформации. Этому, конечно, способствует и увеличение прочно сти узлов флуктуационной сетки при снижении температуры. Изучение зависимости механических свойств от температуры или, иначе говоря, получение термомеханической зависимости или термо- [c.100]

    В истории развития физикохимии полимеров самым крупным достижением является безусловно создание представлений о существовании длинных цепных макромолекул, обладающих гибкостью. Именно эти представления позволили применить к анализу деформационных свойств эластомеров законы статистической термодинамики и благодаря этому установить количественную связь между структурой макромолекулярного клубка и механическими свойствами полимера. Установление наиболее простой зависимости возможно лишь для идеально-упругого эластомера, для которого значение fu пренебрежимо мало и деформация осуществляется настолько медленно, что каждый раз успевает возникнуть равновесное значение деформации при данной величине действующего напряжения. [c.111]

    В настоящей главе освещены вопросы, связанные только с прочностью полимеров на разрыв, так как другие виды разрушения еще мало изучены. Изучение прочности полимеров и факторов, влияющих на нее, очень важно с точки зрения отыскания путей уменьшения скорости возникновения и роста трещин или надрывов, что, в свою очередь, даст возможность резко улучшить механические свойства этих материалов и удлинить срок службы изделий, полученных из них. При этом необходимо учесть, что возможность практического применения полимерных материалов определяется не столько их стойкостью к разрушению, сколько их способностью сопротивляться большим деформациям, сильно искажающим форму полимерного изделия. [c.425]


    Изучение механических свойств гелей и студней показало, что при малых деформациях эти системы ведут себя как упругие твердые тела. При больщих напряжениях, вызывающих разрушение структурной сетки, они текут как вязкие жидкости. Необходимо отметить, что студни высокой прочности под большим напряжением сдвига способны скорее разрушиться или деформироваться, чем обнаружить подлинное течение. [c.232]

    Прочный агломерат можно поднять, держа пальцами уголек, при этом агломератная масса не сваливается и не сползает, а агломерат сохраняет свою форму. Механические свойства агломерата зависят от влаги в спрессованном агломерате. Влажность обычно находится в пределах 16,5—19%. При малой влажности появляется хрупкость агломерата, а при избытке влаги — чрезмерная пластичность, которая проявляется в сползании массы с угольного стержня и деформации электрода. Кроме того, количество воды оказывает влияние на концентрацию электролита в элементе и его емкость, поэтому влажность агломератов контролируется не менее одного раза в смену. [c.140]

    Основной технический показатель очистной машины - выполнение требований, предъявляемых к качеству подготовки перед нанесением изоляционного покрытия, так как от состояния поверхности зависит прочность сцепления (адгезия) покрытия с поверхностью. Обрабатываемую поверхность трубопроводов обычно рассматривают как поверхность кругового цилиндра. В отличие от идеальной (кругового цилиндра) реальная поверхность отличается от цилиндрической в результате появления сварных швов и деформации при изготовлении труб, монтаже трубопровода и др. Наружная цилиндрическая поверхность трубопровода в отличие от идеальной, изображенной на чертежах, никогда не бывает абсолютно гладкой, а всегда имеет неровности с большой (отклонения) и малой (шероховатости) длиной волны (рис. 4). Уменьшение отклонений поверхности можно достичь соблюдением технологических правил погрузки, транспортировки, хранения труб и монтажа трубопровода. Несмотря на исключительно малые размеры неровностей, составляющих шероховатость, они оказывают существенное влияние на прочность и качество изоляционного покрытия. Необходимая для адгезии шероховатость поверхности трубопровода создается при работе очистной машины и зависит от состояния исходной поверхности металла, физико-механических свойств очищаемого слоя загрязнений, конструктивных параметров очистного инструмента, усиления его прижатия к трубопроводу и режимов работы машины. [c.52]

    Соотношение взаимности для коэффициентов Lis = L31 показывает, что влияние изменения поверхностного натяжения на дислокационный ток определяется степенью воздействия напряжения на скорость изменения площади поверхности. Если эта скорость невелика (малая скорость деформации), то и вклад поверхностных эффектов в уравнении (206) мал, т. е. на механические свойства металла в таком случае не оказывают заметного влияния изменения величины поверхностного натяжения, и наоборот. Это согласуется с существованием оптимальной скорости деформации для проявления эффекта адсорбционного понижения прочности по П. А. Ребиндеру [108]. [c.137]

    В реальных условиях эксплуатации резин и переработки эластомеров практически не встречаются случаи очень малых скоростей деформации, поэтому механические свойства эластомеров при конечных скоростях деформации будут определяться как ее равновесными свойствами, так и релаксационными. [c.15]

    Механические свойства полимера зависят от его структуры. Вверху на рис. 14 показана структура линейного полимера, а внизу — сетчатого. Для структуры линейного полимера характерны длинные цепи, которые не имеют поперечных связей и могут проскальзывать одна относительно другой. Такой полимер допускает растяжение, но при продолжительном нагружении проявляет свойство ползучести. Сетчатый полимер, имеющий неупорядоченные поперечные связи между цепями макромолекул, обладает большей стабильностью формы. Если поперечных связей мало, то такой полимер, называемый эластомером, может деформироваться под действием приложенной нагрузки и принимать первоначальные размеры после ее снятия. Напротив, идеальный трехмерный полимер с упорядоченной структурой является хрупким и допускает относительное растяжение лишь в несколько процентов. Механические свойства сетчатого полимера зависят от количества поперечных связей и висячих звеньев (последние связаны лишь одним концом с пространственной сеткой полимера). На рис. 15 схематически показано поведение сетчатого полимера — связующего ТРТ в верхней части — перед деформацией, в нижней — после приложения нагрузки. Отчетливо видно влияние на характер деформации поперечных связей и висячих звеньев. Обычно желательно иметь связующие с таким количеством поперечных связей, которое [c.40]

    Винипласт — термопластичный м.атериал, состоящий в основном из макромолекул поливинилхлорида с молекулярной массой от 18 до 120 тыс., к которому для предотвращения термической деструкции добавлен стабилизатор. Винипласт удачно сочетает антикоррозионную способность с хорошими физико-механическими свойствами. Он не подвергается разрушению в минеральных кислотах (за исключением сильных окислителей), щелочах, в солевых растворах, во многих органических растворителях, кроме ароматических и хлорированных углеводородов. Ценным свойством винипласта является его пластичность прн нагревании, которая позволяет легко изготавливать материалы, детали и конструкции любой формы штампованием, выдавливанием и гнутьем, так же как из металлов. К тому же его можно резать, строгать, сверлить и полировать. Изделия из винипласта можно сваривать токами высокой частоты и склеивать специальными клеями. К недостаткам относятся малая термическая устойчивость (выше 50 °С), набухаемость в воде, низкая ударная вязкость, большой коэффициент термического расширения и постепенная деформация под нагрузкой. [c.142]

    Глобулярные структуры оказывают сильное влияние на механические свойства полимеров. Например, прочность казеиновых пленок глобулярного строения намного меньше прочности пленок, состоящих из вытянутых молекул того же вещества. Разрушение полимерных стекол с устойчивой глобулярной структурой происходит при очень малых деформациях вследствие распада тела по границам глобул. [c.432]

    Ранее, в гл. 3, было показано, что термодинамические параметры полимеров хорошо описываются методом инкрементов. Рассмотрим теперь, как, исходя из метода инкрементов и полученных в гл. 3 значений энергий химической связи, ван-дер-ваальсового взаимодействия, можно определить упругие и неравновесные свойства полимеров. При описании механических свойств полимеров будет использована модель [44], состоящая из двух элементов Александрова — Лазуркина [45], соединенных под углом. Эта модель дает возможность хорошо описать экспериментальные данные как при больших, так и при малых деформациях. Найденный с помощью данной модели спектр времен релаксации позволяет установить связь между временами релаксации (или переходами), определяемыми из акустических экспериментов, и временами, определяемыми из экспериментов по статической релаксации напряжения или ползучести. Кроме того, будет установлена зависимость между энергиями химической и межмолекулярной связи и упругими параметрами модели. Полученные соотношения имеют простой физический смысл и дают возможность рассчитать упругие свойства полимеров по химическому строению повторяющегося звена. [c.151]

    Свойства сварных соединений оценивают в ряде случаев теми же характеристиками или критериями, что и однородный основной металл, но при этом в них вкладывают иное содержание. Например, распространенной характеристикой прочности является временное сопротивление Од. Можно говорить о временном сопротивлении металла шва или металла околошовной зоны, если образцы вз5ггы достаточно малыми, чтобы содержать в себе относительно однородный по свойствам металл. Временное сопротивление сварного соединения напротив, следует определять на достаточно крупных образцах, которые бы включали в себя все типичные зоны сварного соединения и обеспечивали такое взаимодействие их между собой, которое характерно для работы сварного соединения в конструкции. Такая характеристика, как предел текучести сварного соединения, в большинстве случаев вообще не может бьггь определена, так как, во-первых, из-за неоднородности механических свойств пластические деформации возникают не по всей длине образца одновременно, во-вторых, пластические деформации неравномерны в поперечном сечении образца из-за эффекта контактного упрочнения, в-третьих, натуральное сварное соединение с неснятым усилением создает концентрацию напряжений и даже может иметь собственные напряжения, что в принципе делает поле напряжений в образце неоднородным. Предел выносливости сварного соединения следует определять для практических целей также на достаточно крупных образцах, содержащих в себе все особенности сварного соединения, в том числе и остаточные напряжения, хотя последнему условшо часто трудно удовлетворить из-за необходимости увеличения размеров образца. [c.27]

    Микроструктура полиизопрена оказывает решающее влияние на физико-механические свойства резин на его основе. Прочность ненаполненных вулканизатов минимальна при суммарном содержании 1,2- и 3,4-звеньев 20—60% (рис. 3) [13]. Скачок на кривой (см. рис. 3) обусловлен прежде всего возможностью плотной упаковки регулярно построенных макромолекул и кристаллизации их в условиях деформации. Следует отметить, что полимеры с высоким содержанием 1,2- или 3,4-звеньев характеризуются очень малыми значениями эластичности (рис. 4). При содержя--нии 1,2- и 3,4-звеньев близком к 100% как каучук, так и вулканизаты на его основе сильно закристаллизованы. [c.203]

    Фторопласту-4 присущи недостатки он имеет малую твердость, плохо сопротивляется деформациям, при работе без смазки быстро изнашивается. Теплопроводность фторопласта-4, составляющая X = = 0,25 втЦм-град), исключительно мала — приблизительно в 180 раз меньше, чем у стали. Линейный же коэффициент теплового расширения этого материала весьма высок — в области температур, при которых в компрессоре работают подвижные уплотнения, он находится в пределах (110—150) 10 град , т. е. более чем в 10 раз выше, чем для стали и чугуна. В связи с такими недостатками фторопласт-4 для поршневых колец и уплотняющих элементов сальника применяют не в чистом виде, а с различными наполнителями, повышающими его износоустойчивость, прочность и теплопроводность. Наполнителями являются стекловолокно (15—25%), бронза (до 60%), графит или порошковый кокс. Применяются и композиции с комбинированными наполнителями — стекловолокно (20%) и графит, стекловолокно (15%) и двусернистый молибден (5%). Добавка стекловолокна чрезвычайно увеличивает износоустойчивость фторопласта-4 (в 200 раз), повышая одновременно его твердость и прочность. Графит и кокс также повышают механические свойства фторопласта-4, увеличивая одновременно его теплопроводность. Наибольшее повышение теплопроводности и износоустойчивости достигается при добавке бронзы, но ее нельзя применять при возможности коррозии или образования взрывоопасных соединений с газом. [c.647]

    Для объяснения сложных механических свойств высокоанизотропных полимерных сеток необходимо иметь простое модельное представление об организации и взаимодействии структурных элементов и об их деформировании. Подобные модельные представления будут полезны при дальнейших исследованиях, в которых придется ограничиться примерами отдельных структурных моделей, поверхностно их касаясь или исключая большую часть других. В этом разделе будут описаны предложенные формы структурных элементов и типы их взаимодействия на основе теорий деформирования композиционного материала. Подобные теории разработаны с учетом поведения при малых деформациях. Они могут быть распространены на теории прочности только в случае определения критериев ослабления, которые становятся эффективными в случае справедливости определенной теории деформирования. [c.43]

    Расплавы полимеров ведут себя как ньютоновские жидкости только при очень малых скоростях сдвига. Более того, как указывалось в разд. 6.3, уравнения ЛВУ ограничиваются очень малыми деформациями. При более высоких скоростях деформаций и при больших деформациях применяются нелинейные определяющие уравнения вязкоупругости типа рассмотренных в разд. 6.3 уравнений ЗФД, Уайта—Метцнера, ГМ, БКЗ, Лоджа или Богью. Только с помощью более сложных уравнений удается полуколичественно описать реологическое поведение расплавов полимеров, остальные согласуются с экспериментом лишь качественно. Тем не менее теория линейной вязкоупругости полезна по следующим соображениям 1) она дает возможность понять, почему полимеры проявляют вязко-упругое поведение, а также качественно показывает тенденции зависимости их механических свойств от времени 2) она объясняет наблюдаемую экспериментально температурно-временную эквива- [c.151]

    В таких системах компоненты при кристаллизации образуют твердые растворы замещения и внедрения. Твердые растворы внедрения образуют Обычно элементы, атомы которых имеют малый диаметр (водород, бериллий, бор, углерод, азот) это позволяет им внедряться в кристаллы металла-растворителя, располагаясь в междоузлиях. В результате виедреиия происходит деформация кpи тaJrлoв, что приводит к изменению их физико-механических свойств. Так, внедрение водорода, бериллия, бора, углерода или азота в кристаллы н елеза резко увеличивает его твердость. Это свойство широко используется в современном машиностроении. [c.120]

    Аморфное фазовое состояние линейного полимера в зависимости от температуры имеет три физических состояния упруготвердое (стеклообразное), высокоэластичное (каучукообразное) и пластическое (вязкотекучее). Взаимные переходы этих состояний сопровождаются изменением механических свойств полимера и изображаются в виде термомеханических кривых. На рис. 29.4. приведена зависимость относительной деформации А/// от температуры для линейного полимера. Деформация выражена отношением приращения длины А/ образца полимера при наложении нагрузки к исходной длине / того же образца. На кривой четко различаются три области /, II, III, границами между которыми служат два характерных значения температуры Тс — температура стеклования и Гт — температура текучести. Область низких температур I соответствует стеклообразному или упруготвердому состоянию полимера, который является жестким и почти не деформируется. Жесткость полимера связана с малой величиной кинетической энергии звеньев (кТ) по сравнению с энергетическим барьером АО (А(У> кТ). Звенья при этом не обладают вращательным движением, так как не могут преодолеть барьер, а проявляют лишь колебательное движение около положения равновесия. [c.463]

    Переход полимера в кристаллическое состояние приводит к потере им высокоэластических свойств. Типичные термомеханические кривые кристаллических полимеров представлены на рис. V. 6. Ниже Т л деформация, развивающаяся в кристаллическом полимере под действием небольшой нагрузки, мала. В полимерах с высокой степенью кристалличности переход из стеклообразного состояния в высокоэластическое мало влияет на механические свойства материала. Существенные изменения свойств кристаллических полимеров наблюдаются в области температуры плавления. При температуре плавления кристаллическая фаза полимера исчезает, деформируемость образца резко возрастает. Если степень полимеризации полимера сравнительно невысока, так что его Гт оказывается ниже Тпл, то при плавлении он сразу переходит в вязкотекучее состояние (см. рис. V. 6, кривая 2). При достаточно высоких степенях полимеризации Тт может оказаться выше Гпл. Тогда между Тпл и Тт на термомеханической кривой появляется плато вы-сокоэластичности (см. рис. V. 6, кривая /). [c.142]

    Механические свойства полимеров. Полимеры по своим механическим свойствам отличаются от остальных твердых и квазитвердых тел (стекла) ввиду сильно проявляющихся релаксационных явлений. Закон нормальной упругости Гука (см. гл. 10) к ним мало применим, так как относительная деформация зависит от многих переменных  [c.500]

    Если растяжение стеклообразного полимера прекратить задолго до разрыва, нагреть образец до температуры выше затем снова охладить до начальной температуры и вновь подвергнуть деформа-1[йи, то окажется, что полимер обладает такими же механическими свойствами, как и при первом испытании (до нагрева) ГТо-види-мому, при малых деформациях микротрещины не образуются или очень малы по размерам. [c.228]

    Установлено, что эксгиуатационные свойс сю деталей из жаропрочных сталей и сплавов зависят не только от исходных (до испытаний) физико-механических свойств деформированного металла, но и от степени их устойчивости в условиях температурно-силового нагружения. В зависимости от технологических методов и режимов обработки, физико-механических свойств металла и интенсивности релаксационных процессов долговечность деталей разделяется на три температурно-ресурсные зоны, В первой зоне сохраняется достаточно высокая степень устойчивости деформированной структуры металла, его физико-механических свойств и остаточных поверхностных напряжений, что предопределяет возможность эффективного использования здесь методов упрочняющей технологии. Во второй зоне вследствие наибольшей релаксационной стойкости дефортционного упрочнения и интенсивного снижения остаточных макронапряжений, максимальной прочностью обладают образцы, упрочненные с малыми степенями деформации. В третьей зоне, в связи с полной релаксацией остаточных технологических макронапряжений и интенсив-ным разупрочнением деформированного металла, максимальную долговечность имеют образцы, металл которых не претерпевал пластической деформации. [c.222]

    Металлографические исследования показали, что незначительная пластическая деформация (е = 0,12) при ВТМО мало влияет на средний размер и форму зерен аустенита. При увеличении степени деформации до е =1,0 и более число зерен аусте-нита на единицу площади шлифа резко возрастает вследствие появления большого количества мелких рекристаллизованных зерен. Процесс рекристаллизации интенсифицируется с увеличением температуры деформации, Кроме того, при больших степенях деформации, в закаленной стали появляются продукты немартенситного превращения в результате увеличения критической скорости закалки, т.е. интенсификации процесса изотермического превращения аустенита после пластической деформации. Таким образом, при малых степенях деформации при ВТМО мартенсит образуется только из деформированного аустенита, что вызывает повышение прочности. Снижение прочности с увеличением степени пластической деформации стали 45 при ВТМО выше оптимального диапазона, вероятно, можно объяснить различием механических свойств мартенсита, образовавшегося из деформированного аустенита, и мартенсита, полученного из рекристаллизованных зерен аустенита, а также появлением в закаленной стали продуктов немартенситного превращения. [c.57]

    Молекулярный вес. Разные свойства полимера зависят от величины молекулярного веса в различной степени. Так, при механических нагрузках, связанных с малыми деформациями или малыми скоростями деформации, с изменением молекулярного веса (и то лишь у полимеров с низким молекулярным весом) такие свойства полимера, как предел текучести, модуль упругости или твердость, изменяются незначительно. Механические же свойства полимера, связанные с большими деформациями, с изменением молекулярного веса изменяются гораздо сильнее. Например, показатели предела прочности при растяжении, относительное удлинение при разрыве, ударная вязкость при изгибе и растяжении с уменьшением молекулярного веса снижаются. На указанные свойства заметно влияет также полиднсперсность. Это можно объяснить тем, что при больших деформациях главную роль начинают играть атактические аморфные области полимера. Чем больше концов макромолекулярных цепей будет находиться в этих областям— а их концентрация, естественно, возрастает с уменьшением длины макромолекул, — тем быстрее происходит их взаимное ослабление, сдвиг или удаление друг от друга [1]. Вероятно, это обусловливается тем, что они связаны лишь межмолекулярными связями, которые значительно слабее, чем химические связи в цепи или силы сцепления, действующие в кристаллических областях. [c.96]

    Таким образом, термические напряжения и обусловленное ими разрушение полимера связаны с термическими коэффициентами расширения и механическими свойствами полимера. В этом кратко.м разделе мы не можем подробно расс.мотреть разрушение и деформацию эпоксидных полимеров, тем более, что механические свойства аморфных полимеров подробно описаны в ряде монографий [I, 71, 72, 73]. Между разрушением и деформированием линейных и трехмерных стеклообразных полимеров с феноменологической точки зрения нет принципиальных различий [1, 74], что дает воз.можность использовать прн изучении внутренних напряжений и растрескивания весь математический аппарат, разработанный в механике полимеров для описания дефоомиоованпя. релаксации наисяжения и разрушения. Для расчета произведения гАа из свойств полимера необходимы, как уже указывалось, значения нерелаксирующего модуля а зависимости от температуры, которые имеются для очень малого числа полимеров. Для описанных выше полимеров была проведена проверка возможности такого расчета и получено удовлетворительное совпадение с экспериментом [101]. [c.77]

    При поперечном шве результат мало зависит от расположения образца под пуансоном только в случае полной механической однородности во всех зонах сварного соединения. Чем больше различия в механических свойствах отдельных Зон соединения, тем в большей степени результат испытания будет зависеть от расположения образца под пуансоном. Имеется тенденция к сосредоточению изгиба в зоне с наиболее низким пределом текучести металла. Если эта зона оказывается под пуансоном, то она в основном и воспринимает деформацию изгиба. Более прочные, но, как правило, менее пластичные зоны деформ1фуются при этом меньше. Если под пуансоном расположить более прочную зону, то при значительной разнице в механических свойствах можно даже наблюдать, как деформируются соседние более мягкие зоны соединения, в то время как более твердый участок не прилегает по всей поверхности пуансона и испытывает меньшую деформацию, чем следовало бы случае полной механической однородности. [c.147]

    В стыковьгх соединениях при малой ширине зоны разупрочнения неблагоприятный эффект резкого скачка механических свойств, способный привести к концентрации деформаций, может сглаживаться эффектом контактного упрочнения, задерживающего развитие пластических деформаций. Циклические испьггания специально выполненньгх образцов с резкой механической неоднородностью при различной [c.316]


Смотреть страницы где упоминается термин Механические свойства при малых деформациях: [c.14]    [c.19]    [c.185]    [c.367]    [c.10]    [c.391]    [c.255]    [c.228]    [c.646]    [c.59]   
Смотреть главы в:

Полимерные смеси и композиты -> Механические свойства при малых деформациях




ПОИСК





Смотрите так же термины и статьи:

Деформации механические

Деформация свойство свойств

Механические свойства, измерение при малых деформация



© 2024 chem21.info Реклама на сайте