Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры поглощения для анализа смесей

    Разработаны методы инфракрасного анализа газовых смесей, состоящих из углеводородов. Для каждой длины волны наблюдается некоторое поглощение света каждым из углеводородов. Поэтому одновременное присутствие нескольких углеводородов затрудняет их анализ по спектрам поглощения. Такую смесь следует разделить на более узкие фракции, содержащие небольшое число компонентов. [c.318]


    Общий вид простого спектра поглощения показан на рис. 12. В фотометрическом анализе имеет значение ширина полосы поглощения. Очевидно, чем шире полоса,. тем труднее анализировать смесь нескольких окрашенных соединений. При широких полосах поглощения реактива и его комплекса более вероятно [c.44]

    Зонной очистке подвергались также искусственные смеси антрацена. С антрахиноном была приготовлена искусственная смесь (3% антрахинона), которая не давала люминесценции. После четырех проходов ампулы через установку, что соответствует 16 зонным проходам, выход люминесценции составил 0,68. Зонной очистке подвергались искусственные смеси антрацена с 3% карбазола и фенантрена. Контроль осуществляли по спектрам поглощения, полученным при использовании спектрофотометра СФ-4. Оказалось, что после четырех проходов ампулы, т. е. 16 зонных проходов, антрацен очищался от фенантрена (и наоборот), но не очищался от карбазола, что соответствует диаграмме состояния антрацен — карбазол. Недостаток анализа по спектрам в том, что обнаруживаются только примеси, влияющие на люминесценцию, однако не обнаруживаются все остальные примеси, влияющие на рост монокристаллов. Оказалось, что вырастить удовлетворительные монокристаллы можно только из антрацена, очищенного зонной плавкой. [c.208]

    Особое значение метод хроматографии приобрел для изучения природных соединений. Чувствительность метода так велика, что позволяет подчас разделять смесь веществ, близких по построению и обладающих одинаковыми спектрами поглощения. Рассмотрим некоторые случаи использования хроматографии в фармацевтическом анализе. [c.43]

    Принцип аддитивности (см. раздел 1.1.3) справедлив и для произ водных спектров смеси нескольких компонентов. Поэтому анализ сме сей по производным спектрам поглощения может осуществляться ме тодами, применяемыми при анализе по исходным спектрам (см. гл. 3) Преимущество производных спектров при этом определяется тем, что различия между производными спектрами компонентов больше, чем между их исходными спектрами. [c.26]

    На рис. 6.61 изображен ИК-спектр резиновой с.меси, применяющейся для изоляции кабелей, которая содержит буна S4T (каучук холодной вулканизации), пластификатор 32 и наполнители (26% каолина и 26% талька). При подготовке к анализу смесь механически измельчали и затем оставляли в S2 для набухания. Идентификация наполнителя не вызывает каких-либо трудностей, так как он содержится в большом количестве. Полосы при 455, 470, 672 и 1020 см- принадлежат тальку, полосы при 428, 540, 910, 1035 и 1120 см- — каолину. Из полос, относящихся к каучуку, отчетливо проявляется только полоса поглощения стирола при 700 см- . Для получения спектров лучшего качества необходимо отделить наполнитель. [c.383]


    Анализ многокомпонентных смесей более сложен, так как суммарная оптическая плотность складывается из поглощения различных компонентов. Проблема упрощается, когда для анализа можно выбрать длины волн, на которых поглощает только один компонент. Если необходимо измерить концентрацию лишь одного компонента смеси, то можно или удалить из смеси мешающее вещество, или выделить исследуемое. Другой путь — разрушение испытуемого вещества в исследуемой смеси и получение его спектра путем записи дифференциального спектра этой смеси. Если такие упрощения провести не удается, а вещества, составляющие смесь, известны, то возможны два других подхода. [c.24]

    Для проведения структурного анализа нужно иметь индивидуальное соединение, так как в большинстве случаев спектроскопическим путем нельзя отличить смесь веществ от чистого соединения. Индивидуальность исследуемого образца гарантируется подходящими методами разделения, особенно газовой хроматографией. Однако в случае очень близких по свойствам изомеров родственных соединений иногда и эти методы оказываются несостоятельными. Наиболее сильные полосы поглощения в регистрируемом спектре должны быть выписаны полностью. Расшифровка спектров осуществляется тем легче и однозначнее, чем больше имеется дополнительной информации об анализируемом образце уже из постановки задачи (молекулярный вес, данные элементного анализа, растворимость, схема синтеза и др.). [c.240]

    Методы, основанные на окислении иодида калия с выделением иода, уже давно широко применяют для определения перекисей 7—18]. Хитон и Юри [19] разработали иодометрический метод определения следов перекисей липидов с использованием спектрофотометрии. В качестве растворителя в этом методе используется непрерывно деаэрируемая смесь 2 1 уксусной кислоты и хлороформа. Из ионных соединений этим методом определили комплекс трииодида. Максимум поглощения наблюдался при 362 нм, однако поглощение измеряли при 400 нм, поскольку в этой области спектра меньше мешающих полос поглощения. Калибровочные графики, построенные по данным анализа перекиси линолевой кислоты, и для чистого иода были идентичны, причем закон Бера выполнялся для концентраций перекиси ниже 5Х 10 " М. Возможность применения этого метода к анализу других перекисей, имеющихся в продаже, в работе [9] не показана. [c.191]

    Ароматические соединения обладают резкими и интенсивными полосами поглощения в инфракрасной области спектра, которыми можно воспользоваться для количественного молекулярного анализа. Наилучшей аналитической областью является область 650— 1000 смГ , где расположены частоты неплоских деформационных колебаний незамещенных водородных атомов бензольного кольца [6]. Это дает возможность осуществить анализ о-, м-, и-ксилолов и этилбензола в смеси друг с другом. Различная природа заместителей также приводит к заметному изменению частот колебаний группы С—Н, что позволило анализировать смесь, состоящую из а-метилстирола, кумола и толуола. [c.39]

    Значительно лучшие результаты могут быть получены, если исследуемую смесь подвергнуть препаративному хроматографическому разделению на узкие фракции и их исследовать спектральными методами. Каждая такая фракция представляет собой смесь веществ определенного типа соединений, спектр которой содержит спектральные признаки СГ только этого типа. Изучение узких фракций и сопоставление со спектром исходной смеси позволяет уточнить отнесение полос поглощения, разобраться в системе -перекрывающихся полос и проконтролировать собственно метод разделения. Если исследуемая смесь имеется в достаточном количестве и является единственным образцом, предварительное изучение ее спектров не является обязательным. Основной анализ ведется по спектрам узких фракций и по данным хроматограммы. Спектры исходной смеси снимаются для контроля, на всякий случай . Хуже обстоит дело, когда исследуемая смесь имеется в микроколичествах. В этом случае спектр исходной смеси является единственным способом определения ее состава. [c.145]

    Для определения относительно больших количеств элементов, находящихся в экстракте в виде внутрикомплексных соединений, можно, вероятно, использовать поглощение и в инфракрасной области спектра. Чувствительность такого определения будет, по-видимому, довольно низкой, но избирательность, которая зависит от различий ИК-спектров комплексов различных металлов с данным реагентом, может быть удовлетворительной. Исследования в этом направлении, очевидно, не проводились. Имеются, однако, работы, в которых для анализа смесей твердых оксихинолинатов были использованы различия в ИК-спектрах этих соединений [574—578]. Например, анализировали смесь оксихинолинатов лантана и иттрия ИК-спектры этих комплексов заметно различаются [575]. Поисковые исследования по использованию подобных различий для экстракционно-спектрофотометрического определения представляли бы интерес. [c.188]


    Молярный коэффициент поглощения зависит от ряда факторов, из которых при изучении качественного анализа наиболее важны зависимости его от длины волны и рн раствора. Зависимость е от длины волны выражается сложной спектрофотометрической кривой, проходящей через один или несколько максимумов (рис. И.4—1). Эти максимумы могут быть расположены как в видимой части спектра, что нас особенно интересует, так и в ультрафиолетовой части. Как видно из рисунка, кривые 1, 3 и 4 сильно различаются своими максимумами, и, следовательно, по окраске эти вещества могут быть определены независимо друг от друга. В данном случае комплекс молибдена будет иметь си-не-зеленую окраску, дитизонат ртути — фиолетовую, комплекс хрома — синюю. При обычном визуальном колориметрическом определении по этим окраскам и обнаруживаем наличие данного элемента в растворе. При визуальном колориметрировании трудно провести определение в том случае, если в растворе имеется смесь окрашенных веществ. Снимая при помощи спектрофотометров спектрофотометрическую кривую исследуемого раствора, можно провести анализ смеси окрашенных веществ. Для этого определяют оптическую плотность раствора при каждой длине волны или на данном участке длин волн и вычерчивают, обычно автоматически, кривую зависимости оптической плотности или молярного коэффициента поглощения от длины волны. При помощи такой кривой можно определить в растворе смеси окрашенных веществ по максимумам поглощения, характерным для этих веществ. Понятно, что вещества, имеющие близкие области максимумов поглощения, раздельно определить нельзя. [c.226]

    Смесь оптически активных веществ может быть проанализирована спектрополяриметрическим методом, т. е. измерением угла вращения при разных длинах волн. Методика этого анализа очень близка к методике спектрофотометрического определения смеси двух окрашенных веществ. Расчетные формулы сохраняют свою применимость и в спектрополяриметрическом методе, если молярные коэффициенты поглощения е заменить удельными вращениями Оуд, учесть длину трубки и переход к другой концентрационной шкале. Точность анализа возрастает, если одно из анализируемых соединений (а еще лучше — оба) в исследуемой области спектра имеет длину волны нулевого вращения, так как при этой длине волны угол вращения будет определяться концентрацией только второго компонента. [c.158]

    Разработаны методы иифракрасного анализа сложных газовых смесей, состоящих пз углеводородов. Эти методы, как уже было упомянуто в главах II—IV, используются в сочетании с низкотемпературной дистилляцией и масс-спектрометрией для апализа фракции С . Для каждой длины волны наблюдается некоторое поглощение света каждым из углеводородов. Поэтому одновременное присутствие нескольких углеводородов затрудняет их анализ по спектрам поглощения. Такую смесь следует разделить на более узкие фракции, содержащие небольшое число компопентов. [c.286]

    Рассмотрим количественный анализ смесей нуклеозидов, входящих в состав нуклеиновых кислот растворы аденозина (А), цитидина (Ц), гуанозина (Г) и тимиди-на (Т) их смесей. Предварительно получают спектры поглощения каждого из этих компонентов при различных значениях pH. Это позволяет определять положение изобестических точек (длины волн). Коэффициенты поглощения двух форм различной степени ионизации одного и того же соединения в изобестических точках равны между собой. Измерения разности поглощения при длинах волн, совпадающих с изобес-тпческими точками для форм одного из компонентов, упрощают обработку экспериментальных данных. Действительно, пусть имеется смесь из двух компонентов АН и ВН с константами ионизации p/ i и рКъ где Я] и Яг —длины волн изобестических точек для соединения ВН, т. е. e (A,i) = eB-( i) и e ( 2) =e 2). Измеряя [c.280]

    Легче интерпретировать дихроизм п—я -переходов карбонильных соединений. В данном случае имеется набор правил, известных как правила октанта, которые позволяют предсказывать знак и величину КД простых соединений [47]. Разработан также теоретический подход к анализу КД-спектров и спектров поглощения белков в высокоэнергетической УФ-обла-сти. В пределах регулярной р-струк-туры, а-спирали и кристаллических областей электронные переходы соседствующих друг с другом амидных групп могут быть связаны, в результате чего имеет место делокализация возбуждения. Такая делокализация (экситон) приводит к расщеплению (давыдовскому расщеплению) на два перехода с различающимися энергиями и направлением поляризации [7, 44]. Так, полоса поглощения амидной группы с тах = 52 600 см- в случае а-спирали расщепляется на две компоненты с Vmax=48 500 и 52 600 см . Кроме того, низкоэнергетические я—п - и п—я -переходы весьма близки по энергии, что может приводить к формированию состояния, представляющего смесь двух указанных состояний с появлением вращательной силы в я—я -полосе, знак которой противоположен знаку вращательной силы в п—я -полосе (см. работу [44]). И знак, и интенсивность КД-полос зависят от конформации соединения, что позволяет четко различать а-спирали, -структуры и статистический клубок. В водных растворах измерения проводят при длинах волн, простирающихся вплоть до вакуумного ультрафиолета, т. е. до волновых чисел - бООООсм [48]. [c.26]

    Анализ нейтральных побочных продуктов (0,365 г) показывает, что в них содержится тол-ько 0,12% первоначальной активности, что исключает возможность содержания кетонных и спиртовых компонентов. Кислотный эквивалент нейтрализации вновь выделенной линолевой кислоты равен 298 (рассчитанное значение 280), Ч.ТО указывает на присутствие около 6% нейтральных продуктов. Ультрафиолетовый спектр поглощения свидетельствует о наличии 3,9% сопряженных диенов и 0,7% сопряженных триенов. Инфракрасное поглощение при 10,3 (х указывает па присутствие около 15% транс-изомера. Аликвотную часть кислоты превращают в 9, 10, 12, 13-тетрабромоктадекановую кислоту-1-С с т. пл, 114—115°. Смесь полученного продукта с заведомо чистым образцом депрессии температуры плавления не показывает [2]. [c.496]

    Для окрашенных комплексных соединений, применяемых в фотометрическом анализе, обычно можно установить, является ли поглощающим свет центром (хромофором) ион металла или лиганд [I]. Например, салициловая кислота образует прочные комц-лексы с А1 +, 1п +, Оа +, РеЗ+, Си + и другими металлами. Однако первые три комплекса бесцветны, салицилат железа (при рН 7) красный, а салицилат меди зеленый (смесь моно- я дисалицила-тов меди). Это дает основание утверждать, что в последних двух комплексах хромофором является ион металла. По. спектрам поглощения в ультрафиолете также видно, что полоса поглощения салициловой кислоты лишь очень мало сдвигается при образовании комплекса с алюминием. [c.64]

    При изучении концентратов нативных и модифицированных (переметаллизированных) нефтяных порфиринов необходимо знание точного содержания порфириновых соединений в концентрате. Использование спектрофотометрического метода [1] для этой цели затруднительно, так как в случае определения концентрации ванадилпорфиринов и свободных оснований порфиринов метод спектрофотометрии не учитывает влияния поглощения соединений непорфириновой природы, а также возможности изменения коэффициента экстипкции сложной смеси порфиринов при изменении соотношения порфиринов различной химической структуры, влияния эффектов ассоциации. В случае анализов кобальтовых комплексов нефтяных порфиринов задача становится еще более сложной в связи с тем, что полученные концентраты представляют собой смесь соединений, в которой центральный атом металла может проявлять различное валентное состояние, образовывать экстракомплексы с непорфнриновыми компопептами смеси и кислородом воздуха. Соответствующие формы имеют различные спектры поглощения. [c.76]

    В настоящей работе исследовалась реакция взаимодействия сульфолена-3 2,4- и 3, 4-диметилсульфолепа-З с масляным и эпантовым альдегидами. Опыты проводились при 20, 50 и 80°. В качестве конденсирующего агента применялся едкий натр (в виде 10%-ного раствора), ингибитором полимеризации служил пирогаллол (0,05% к весу компонентов). Молярное соотношение сульфолен альдегид составляло 1 2 (при соот-дюшении компонентов 1 1 конденсация не происходила — возвращался исходный сульфолен). Методика проведения реакции заключалась в том, что к водно-спиртовому щелочному раствору приливалось (дважды равными порциями) рассчитанное количество сульфолена и альдегида в этиловом спирте, после чего реакционная смесь энергично перемешивалась при заданной температуре в течение определенного времени и по охлаждении экстрагировалась бензолом. Из высушенного над хлористым кальцием экстракта бензол отгонялся при пониженном давлении, а оставшиеся в перегонной колбе продукты подвергались дальнейшей обработке (жидкие перегонялись в вакууме, твердые перекристаллизовывались до постоянной температуры плавления) и исследованию. При 20° (независимо от продолжительности) альдегиды частично осмолялись, а сульфолен выделялся неизменным. Однако при нагревании реакционной смеси до 80° в течение 1,5 ч и последующей ее обработке по приведенной методике наряду с большим количеством смолы были выделены масляная и энанто-вая кислоты (в количествах, позволивших идентифицировать их по температуре кипения, показателю преломления и плотности, а также оставшийся после их отгонки не растворимый в обычных растворителях желтый порошок. Последний после промывки эфиром и сушки на воздухе не плавился при 230°, разлагаясь при дальнейшем нагревании, и дальнейшему исследованию не подвергался. Выход этого продукта (по-видимому, полимера сульфолена) составлял 40—45% от веса исходного сульфолена. Наиболее благоприятным для конденсации оказалось нагревание реакционной смеси при 50° в течение трех часов. При этом после отгонки бензола из бензольного экстракта оставалось светло-желтое масло, представляющее собой раствор продуктов конденсации в масляной или энантовой кислотах. Разделение этих продуктов проводилось вымораживанием при —70° в эфирном растворе. Кислоты растворялись в эфире и переходили в фильтрат, а не растворимые в эфире продукты конденсации отделялись на стеклянном фильтре и перекристаллизовывались из спиртобензольной смеси до постоянной температуры плавления. Структура полученных соединений устанавливалась при помощи ИК-спектров поглощения и данных элементарного анализа. Для некоторых продуктов при- [c.230]

    Если для жидкостей можно избежать применения растворителей, ведя измерения в тонких слоях, то для твердых веществ задача становится гораздо более сложной. Метод приготовления пленок испарением при нагревании в вакууме не является надежным, так как для многих испытанных образцов были обнаружены новые полосы поглощения, что могло явиться результатом различных превращений вещества (образование изомеров, полиморфные превращения), происходящих при испарении [23]. Приготовление взвеси мелко растертого вещества в очищенном парафиновом масле (Ыи]о1) или гексахлорбута-диене в основном пригодно лишь для качественных измерений из-за наличия сильных полос поглощения носителя и из-за невозможности определения содержания вещества с достаточной точностью. То же можно сказать и о различных видоизменениях этих методов [24]. В последнее время рекомендуется новый способ приготовления образцов в виде тонких таблеток. Для этого порошок, представляющий смесь мелко растертого КВг, прозрачного в инфракрасной области, и исследуемого вещества, подвергается в течение 15—20 мин. давлению порядка 20 г. В результате таблетка принимает вид стеклообразной массы КВг с равномерно распределенными вкраплениями частичек исследуемого вещества. Опытная проверка показала пригодность нового метода для количественных измерений [25—27]. Однако надо иметь в виду, что применение спектров поглощения веществ, снятых в твердом состоянии, для анализа жидких фракций, в которых эти вещества находятся в растворенном состоянии, может привести к ошибочным выводам. Имеющиеся опытные данные го ворят о наличии довольно значительных расхождений между ними. Так, для твердых парафинов в области 13—14,5 ц наблюдается дублет, тогда как в жидком состоянии и в растворе изооктана сохраняется лишь одна длинноволновая компонента с резко ослабленной интенсивностью [28]. Не исключена возможность, что аналогичным свойством обладают спектры многих других классов органических соединений с длинными парафиновыми цепями. В настоящее время делаются попытки объяснить эти явления с точки зрения теории поворотной изомерии и особенностей меж-молекулярного взаимодействия в кристаллической решетке [81]. [c.421]

    Самое последнее и полное исследование излучательной рекомбинации атомов хлора выполнено Клайном и Стедманом [128, 129]. Молекулярный хлор частично диссоциировал при пропускании через микроволновой разряд частотой 27 МГц образующаяся смесь С1 и С1г далее смешивалась в потоке с инертными газами, при этом независимо контролировались концентрации С1, С1г и инертного газа. Излучение наблюдалось в области 5000—10000 А и соответствовало переходам из состояния с колебательными квантовыми числами О у 14. Заселенность низших уровней оказывается большей. Температурная зависимость интенсивности излучения (проинтегрированного по длинам волн) соответствует энергии активации [(—2,0 0,5) ккал/моль], равной значению, определенному для безыз-лучательной рекомбинации. Последнее обстоятельство исключает возможность излучательной рекомбинации с участием возбужденных атомов С1(2Р, ), находящихся в равновесии с атомами С1( Ра ), так как этот процесс полностью запрещен для безызлучательной рекомбинации. Поскольку состояние нельзя составить из атомов в основном состоянии, следует предположить, что его заселение происходит при переходах из какого-либо промежуточного состояния, вероятно Шы- Бадер и Огрызло [130] на основе анализа спектра поглощения [131] предположили спонтанное взаимодействие, но Клайн и Стедман [128, 129] пришли к заключению о необходимости присутствия третьей частицы, причем по оценкам эффективность СЬ примерно в 7 раз выще, чем Аг. Образующиеся таким образом возбужденные молекулы могут затем дезактивироваться по следующим каналам 1) процесс, обратный реакции образования 2) спонтанное излучение 3) электронное тушение 4) колебательная дезактивация в возбужденном электронном состоянии. Кинетический анализ, проведенный Клайном и Стедманом, показал, что единственно существенным процессом электронного тушения является процесс [c.168]

    Десюсс и Десбом [79] использовали смесь н-пропанола и аммиака в соотношении 9 1 и адсорбент силикагель G для разделения 11 красителей, применяемых при изготовлении губной помады. Рюдт [80] пользовался этой же смесью растворителей для разделения 12 ксантеновых красителей, применяемых в губной помаде, и получил количественные результаты, сняв спектры поглощения элюата в области от 450 до 550 нм. Давидек и др. [81] для разделения красителей, применяемых в губной помаде, провели хроматографирование на незакрепленном слое оксида алюминия. Эти авторы привели величины Ri ряда красителей и результаты анализа нескольких торговых образцов губной помады. [c.23]

    В литературе описаны спектры люминесценции де-зяти окси- и диоксинафталинов в растворах ЭПА и сме- и эфира, спирта и аммиака при 20 и 77 °К. Дан анализ колебательной структуры полос отмечается, что величина сдвига полос зависит от полярности молекул раство-эителя и растворенного вещества. Спектры поглощения и люминесценции моно- и диоксинафталинов описаны также 3 работе , спектры фосфоресценции оксинафталинов — 3 работе . Был произведен расчет спектров а- и -эксинафталинов и энергий электронных уровней окси-и аминонафталинов. [c.155]

    Разделение проводили до тех пор, пока центры зон хлорофилла а не продвигались на расстояние 10 см от линии старта. Пластинку вынимали из камеры и высушивали в течение 2 мин. Сканирование осуществляли с помощью установки hromas an, измеряя отражение света, пропущенного через фильтр Ilford 601 с максимумом пропускания 430 нм. Величину каждого выявленного пятна определяли с помощью интегратора по отношению к зоне хлорофилла а. Последующую идентификацию проводили в случае необходимости удаления зоны и экстракцией метанолом. Экстракт упаривали, затем пигмент растворяли в 1—2 мл гексана, после чего измеряли спектр поглощения. Хлорофилл с оставался при этом на стартовой линии, однако анализ успешно проводили, применяя двумерное, разделение. В качестве второго элюента использовали смесь легких нефтяных фракций (т. кип. 60—80 °С), этилацетата и диметилформамида (1 1 2). Величины Rp различных пигментов приведены в табл. 14.1. Указанные величины рассчитаны относительно расстояния продвижения зоны хлорофилла а, что для приведенных пигментов являются специфической характеристикой. [c.469]

    При окислении циклогексана образуется довольно простая смесь продуктов гидроперекись циклогексила, цикло-гексанол, циклогексанон, а на поздних стадиях реакции адипиновая кислота, выпадающая в осадок при охлаждении пробы, и эфиры адипиновой кислоты. Путем сопоставления спектров циклогексана, циклогексанола и циклогек-санона, а также пробы окисленного циклогексана можно выявить неналагающиеся полосы. Наиболее удобны для анализа полос следующие частоты циклогексанон—1718 и 749 слг циклогексанол — 971 и 799 см . Для всех полос поглощения, использованных в анализе, исследовали влияние ширины щели на коэффициент е. В табл. 9 даны значения коэффициентов погашения е и ширины щели монохроматора 5 для спектрометра ИКС-11. [c.46]

    Химический состав органического аэрозоля весьма сложен. В органическом компоненте атмосферного аэрозоля обнаруживают сложную смесь разнообразных алифатических и ароматических соединений, массовая концентрация которых обычно мало отличается от 1 г/см , сложные белковые соединения и др. Исследования проб атмосферных осадков и аэрозольного вещества на фильтрах показали, что растворенная в спирте фракция в высушенном состоянии представляет собой коричневую аморфную массу, в инфракрасном спектре которой наблюдаются полосы поглощения 2,8 6 и 7 мкм [292]. Менее окисленные органические соединения по сравненению с экстрактированным спиртом были получены промывкой сухого аэрозольного вещества в бензине. Полученная желтоватая маслянистая масса характеризуется полосами 2,8 3,4 5,8 и 6,9 мкм. Однако полученные экстракты детальному химическому анализу не подвергались. Имеющиеся сведения о химическом составе органического компонента атмосферного аэрозоля крайне бедны, что затрудняет исследования оптических свойств органического аэрозоля и выявление роли этого компонента в лучистом теплообмене атмосферы. [c.55]

    ИК-спектр полимерной фракции 4 содержит три амидные полосы поглощения 1695, 1495 и 1275 см , которые аналогичны полосам в спектрах второй и третьей фракций. Таким образом, результаты ИК-спектроскопического анализа полимерных продуктов пиролиза оксазолидона-2 позволяют предположить, что они представляют собой смесь низкомолекулярных фракций ПЭИ , часть которых имеет на концах цепей два имидазо-лидоновых кольца, присоединенные своими 1-положениями. [c.171]

    Анализируя смесь D O—Н О в диметилсульфоксиде, Ма-хадеван [162] измерял поглощение при частотах валентных колебаний групп О—Н и О—D, равных соответственно 1595 и 1402 см . Линейный градуировочный график зависимости отношения значений экстинкции при 1402 и 1595 см от содержания DgO в образце был получен по данным для стандартных растворов с концентрацией DaO 3—25%. Сначала 0,2 мл (или менее) стандартного раствора смешивали с 5 мл диметилсульфоксида, затем разбавляли растворителем до тех пор, пока не появлялись полосы, характерные для DgO. Для получения спектра использовали кюветы из aFg. Значения коэффициентов экстинкции вычисляли по высотам пиков при 1402 и 1595 см . Концентрации тяжелой воды находили по градуировочному графику. В интервале концентраций DgO 3—25% правильность анализа может составлять 5%. Полученные данные хорошо согласуются с результатами масс-спектрометрического анализа. [c.403]

    Наглядным примером использования метода ИК-спектроскопии для определения воды в полимерных пленках служит работа Ланг-бейна и Зейферта [150], которые исследовали пленки из полиэти-лентерефталата (ПЭТ). Измерения проводились в области 3300— 4100 см" (3,0—2,4 мкм) соответствующие спектры приведены на рис. 7-9. Заштрихованные участки в области 3400—3700 см соответствуют поглощению воды в полиэтилентерефталате. (Сильные и слабые полосы при меньших частотах, вероятно, соответствуют обертонам колебаний групп С=0 и валентным колебаниям групп ОН соответственно.) Для проведения количественного анализа требуется провести измерения значений Ig ( JI) = К (где /о — интенсивность падающего излучения, а / — интенсивность прошедшего через пленку излучения) при 3630, 4080 и 3750 см . Интенсивность поглощения (К) при 3630 см ( 2,755 мкм) определяется в основном наличием воды, поглощение при 4080 см ( 2,45 мкм) — пленкой ПЭТ, а поглощение при 3750 см ( 2,667 мкм) обусловлено в основном потерями на рассеяние света из-за внутренних неоднородностей. (Влияние отражения и рассеяния света поверхностью пленки можно устранить путем погружения пленки в смесь четыреххлористого углерода и сероуглерода.) [c.437]

    Медь реагирует с дифенилтиокарбазоном (дитизоном), имеющим зеленую окраску., с образованием продукта красно-фиолетового цвета 44]. Образец должен содержать не более 0,005 мг меди в объеме 5 мл 0,1 н. кислоты. Анализируемый раствор встряхивают в небольшой делительной воронке с 0,001 %-ным раствором дитизона в четыреххлористом углероде. Неводный слой будет содержать смесь дитизоната меди И избытка дитизона. Его исследуют на фотоэлектрическом фотометре в интервале длин волн 500—550 или 600—650 ммк. Калибровочная кривая должна строиться по измерениям свежеприготовленных растворов, непосредственно применяемых в данной серии анализов, так как концентрация реагента сохраняется постоянной лишь в течение нескольких недель. Указанный метод называется методом смешанной, окраски ввиду того, что раствор содержит как окрашенный в красный цвет комплекс, так и избыток реагента зеленого цвета. Если фотометрическое измерение проводится гари длине волны, лежащей з интервале 500—550 ммк, который соответствует зеленой области спектра, то поглощение в этом случае будет пропорциопальным концентрации комплекса, поглощающего в зеленой области, в то время как реагент зеленый цвет пропускает. Если раствор исследуется при длине волны в интервале 600—650 М.МК, поглощение -показывает избыток реагента. Для анализа можно использовать любой из этих вариантов. Дитизон вызывает аналогичную окраску с ионами металлов Мп, Ре, Со, N1, Си, 2п, Рс1, А , Сё, 1п, 5п, Р1, Ли, Нд, Т1 и РЬ. Несмотря на это, надежное определение осуществляется лишь благодаря избирательному действию реагента, достигаемому точной регулировкой значения pH, при котором проводится экстрагирование четыреххлористым углеродом (или хлороформом). Детали метода описаны Сенделом. [c.54]

    Количественный анализ часто необходим как при проведении лабораторных исследований, так и при управлении производственными процессами. В работах [37, 38] рассмотрена оценка достоверности и точности результатов, получаемых при работе на спектрометрах с встроенными микрокомпьютерами. В работах [59, 6] обсуждены в общих чертах некоторые из проблем, возникающих при количественном анализе как чистых соединений, так и смесей. Наибольший практический интерес представляет, конечно, анализ смесей, когда для решения математических уравнений может потребоваться компьютер. Эти уравнения представляют собой разложение величины полного поглощения смеси в ряд по значениям поглощения индивидуальными компонентами. Анализ спектров соответствующих компонентов смеси позволяет определить многие из коэффициентов, входящих в математические выражения. Если исследуемая смесь содержит п компонентов, то необходимо одновременно решить п уравнений, для чего потребуется п экспериментальных данных, измеренных при оптимальных значениях длин волн. В идеальной ситуации выбор оптимальных значений длин волн проводится таким образом, чтобы каждая длина волны соответствовала поглощению только одного компонента. Однако такая ситуация наблюдается очень редко, и поэтому обычно необходимо вводить поправки, учитывающие перекрывание пиков. Применение компьютерной техники для решения про- блем спектрального анализа многокомпонентных смесей описано в работе [63]. Пример малой компьютерной системы, связанной с ИК-спектрометром и предназначенной для вычитания [c.114]

    Сополимеры винилацетата с винилпирролидоном. Состав сополимеров винилацетата с винилпирролидоном определяли [106] по отношению интенсивностей полос поглощения 1740 см (винилацетат) и 1672 см (випилпирролидон). Для построения градуировочного графика использовали механическую смесь гомополимеров. Снимали спектры образцов в виде растворов в дихлорэтане с концентрацией 5 г/л толщина слоя 0,1 мм. Интервал анализируемых концентраций винилацетата О—80%. Можно использовать для анализа также отношение интенсивностей полос поглощения 1250 и 1195 см .  [c.108]


Смотреть страницы где упоминается термин Спектры поглощения для анализа смесей: [c.272]    [c.104]    [c.281]    [c.756]    [c.47]    [c.54]    [c.183]    [c.37]    [c.70]    [c.240]    [c.27]    [c.16]    [c.190]    [c.46]   
Спектрофотометрия (0) -- [ c.26 ]

Спектрофотометрический анализ в органической химии (1986) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ спектров



© 2025 chem21.info Реклама на сайте