Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водорода, миграция скорость

    С заполнением. В модели, которую рассмотрели Портер и Томпкинс [89], учитывается активированная миграция адсорбированных частиц. Эти авторы показали, что при хемосорбции водорода и окиси углерода на железных пленках, приготовленных путем напыления, полученные данные свидетельствуют о быстрой адсорбции до полного насыщения на местах с низкими значениями х (.В-места), за которой следует активированная миграция адсорбированных частиц с этих мест на другие места (Л-места), куда частицы не могут попасть непосредственно из газовой фазы. Принимая во внимание другие данные, они пришли к выводу, что Л-места находятся также на поверхности, но энергия активации процесса заполнения этих мест из газовой фазы намного превышает энергию активации миграции с В-мест. Их модель сохраняет свое значение и в том случае, если принять, что Л-места находятся на внутренних поверхностях адсорбента. Казалось бы, однако, что при активированной миграции скорость процесса адсорбции почти не будет зависеть от давления, но Портер и Томпкинс этого не наблюдали. [c.517]


    Хотя имеются примеры строго специфичной миграции Н-атомов (отсутствие рандомизации), все же при распаде или до распада (в том числе и с простым разрывом связей) молекулярных и осколочных ионов большого числа изученных соединений происходит Н-рандомизация. Это означает, что скорость миграции водорода превышает скорость простого разрыва связи. Такое отношение скоростей особенно характерно для масс-спектров, снятых при низких энергиях (10—15 эВ) ионизирующих электронов. [c.116]

    Обмен изотопного атома водорода катализатора с соседними с ним атомами водорода углеводорода идет со скоростью, по крайней мере, равной скорости миграции метила. Вероятно, это происходит за время существования иона карбония  [c.38]

    Кристаллические и, плотные аморфные материалы обычно непригодны для создания мембран. Это обусловлено малой долей свободного объема и большим временем релаксации для процессов перераспределения вакансий и других дефектов структуры, в результате чего резко снижается растворимость газов и скорость миграции растворенного вещества. Равновесные и кинетические свойства подобных систем во многом определяются высокими значениями потенциала межатомного (межмолекулярного) взаимодействия, обычно превышающего средние значения кинетической энергии КьГ этим объясняется малая подвижность структурных элементов. Однако легкие разы типа Нг, Не, Оа, N2 с наиболее низкими значениями параметров (е,/, о, ) парного потенциала молекулярного взаимодействия могут в некоторых плотных матрицах образовывать системы с повышенной растворимостью и удовлетво рительными диффузионными характеристиками. Наиболее перспективны металлические мембраны на основе палладия для извлечения водорода, а также стекла для выделения гелия [8, 10, 19—21]. [c.114]

    Установлено, что диффузия и миграция, дегидратация и адсорбция ионов водорода протекают с достаточной скоростью и поэтому эти стадии не могут лимитировать реакцию в целом. [c.41]

    В то же время, если 1,2- и 1,3-миграции водорода затруднены в энергетическом отношении, стерические факторы таких процессов должны быть достаточно высоки. Действительно, в рамках теории абсолютных скоростей реакций предэкспоненциальный множитель [c.198]

    Судя по количеству водорода, накапливающегося в котлах в зависимости от времени, а также по данным лабораторных измерений скорости коррозии, скорость роста оксида подчиняется параболическому закону 123], а следовательно, контролируется диффузией. Механизм этого процесса, как это описано в гл. 10, связан с миграцией ионов и электронов через слой твердых продуктов реакции. [c.283]


    Почва и растения, наряду с адсорбцией промышлен ных загрязнений из атмосферы, способны при определен ных условиях десорбировать накопленные соединения В первую очередь это относится к летучим соединениям В этой связи можно было ожидать, что ароматические угле водороды, находясь в почве, при соответствующих метеоусловиях могут загрязнять приземный слой воздуха. При изучении возможности подобной миграции экспериментальной моделью служили микроклиматические камеры объемом 200 л, где создавались различные параметры микроклимата. Опыт проводился в динамических условиях с подачей воздуха, воспроизводящей скорость ветра, равную 3 м/сек., что является средней в данной местности в летнее время. Результаты исследований показали, что бензол, толуол, альфаметилстирол и изопропилбензол легко мигрируют из почвы в атмосферный воздух. При этом было показано, что повышение температуры до 50°С и влажности до 60% значительно ускоряет процесс перехода веществ из почвы в атмосферный воздух. Максимальная концентрация в почве, при которой уровень миграции не будет превышать ПДК в атмосферном воздухе для бензола и толуола, равна [c.86]

    Возможные направления процессов изомеризации и восстановления при гидрировании метиллинолеата приведены иа схеме (30). Наиболее простым процессом должно было быть восстановление ДО эфиров 18 1 (9с н 12с) и далее до стеарата, однако конкурирующие реакции изомеризации приводят к нескольким диенам (сопряженным и несопряженным) и моноенам. Изомеры образуются в результате миграции двойной связи и изменения стереохимии Юлекулы. Состав продуктов частичного восстановления зависит от катализатора, температуры, давления н других факторов, влияю- Циx на степень доступности атомов водорода на поверхности ката-лизатора. Важное значение имеют также способность различных Ложных эфиров адсорбироваться иа поверхности катализатора и сорбироваться с нее н скорость их гидрирования. При гидриро- ании смеси эфиров относительная легкость адсорбции может [c.39]

    Миграционная полимеризация происходит также при смешивании диизоцианатов с полиаминами вследствие миграции водорода аминогруппы процесс протекает во много раз быстрее, чем при образовании полиуретанов со скоростью ионных реакций. Молекулярная масса получающихся при этом полимочевин зависит от природы растворителя известное значение также имеет температура-реакции. [c.209]

    Выясним сначала, какова должна быть абсолютная скорость реакции, если исходить из механизма миграции радикальных состояний. Для того чтобы свободный радикал смог оторвать атом водорода от соседнего звена полимерной цени, он прежде всего должен переместиться на расстояние б, отделяющее его от этого звена, т. е. в среднем на расстояние 3—5 А (диаметр поперечного сечения полимерной цепи). Частота соударений данного радикала с водородными атомами, очевидно, будет [c.457]

    Как видно из этой схемы, перегруппировка происходит в результате перемещения атома водорода в этильном радикале с последующим взаимодействием перегруппированного радикала с иодом. Степень изомеризации в этом случае должна зависеть, с од ной стороны, от скорости миграции водорода в этильном радикале от одного атома углерода к другому и, с другой стороны, от скорости взаимодействия радикалов с иодом, определяющейся концентрацией иода в системе. Действительно, как показали опыты, добавление в систему перед облучением незначительных количеств (- 1%) иода приводит к резкому снижению степени перегруппи- [c.252]

Рис. 3. Зависимость от состава N1—А1-катализаторов о—от постоянной их решетки в объеме (1) и на поверхности (2) б — скорости изменения потенциала катализаторов в процессе гидрирования в — энергии активации миграции хемосорбированного водорода г—энергии активации электроокисления водорода в интервале температур 30—80° (1) и 80—100° (2). Рис. 3. Зависимость от состава N1—А1-катализаторов о—от постоянной их решетки в объеме (1) и на поверхности (2) б — <a href="/info/306242">скорости изменения потенциала</a> катализаторов в <a href="/info/311077">процессе гидрирования</a> в — <a href="/info/431365">энергии активации миграции</a> <a href="/info/1727859">хемосорбированного водорода</a> г—<a href="/info/2894">энергии активации</a> <a href="/info/1712044">электроокисления водорода</a> в интервале температур 30—80° (1) и 80—100° (2).
    Такое же явление наблюдается у катализаторов N1 — А1, полученных восстановлением из солей N1 и А1. Кривая на рисунке 3, б проходит через максимум при 1 ат. % А1. При этой же концентрации параметр решетки катализатора является наименьшим. Исходя из исследований жидкофазного гидрирования малеиновой кислоты определены скорости и энергия активации миграции водорода на поверхности катализатора [c.241]

    Оба процесса проходят через промежуточный перэфир (32) [схема (74)], который образует продукты за счет миграции арила или водорода относительные скорости этих двух направлений реакции зависят как от pH, так и от заместителей в арильной группе (табл. 5.3.9) [150]. Реакция Байера — Виллигера наблюдается только в том случае, если в орто- или пара-положениях ароматического кольца имеются электронодонорные заместители ей способствуют также кислые среды. Она служит прекрасным методом специфического синтеза полиалкокснфенолов [151], применимым для получения природных соединений, например метаболитов лишайников, депсидонов схема (75) [152]. Реакция ароматических альдегидов с щелочным пероксидом водорода (реакция Дакина) дает аналогичные продукты [153]. [c.731]


    Согласно Рогипскому [534] в выражение (VIII. 138) в общем случае должна входить и энергия активации адсорбции, т. е. q Ф Е , и тогда оно должно быть справедливо и для химической адсорбции. Медленная диффузия в поверхностном слое, в принципе, может быть одной из стадий каталитического процесса. В работе [373] предполагается, что реакция изотопного обмена водорода на платине при низких температурах осуществляется через миграцию атомов водорода по хемосорбированному слою до образования молекул и удаления их в газовую фазу на участках с низкой энергией адсорбции. Существенное значение имеет и миграция активированных комплексов, что рассматривается в работе [561 ]. В общем случае, однако, мало вероятно, чтобы стадия миграции определяла скорость процесса. Это отмечается Или и Нортоном [562] применительно к реакциям пара-орто-конверсии и изотопного обмена водорода, где скорость миграции по расчету оказывается значительно большей. Поверхностная миграция может играть решающую роль при диффузии через очень тонкие поры [550]. [c.285]

    Нп гидродинамическая, ни электростатическая теории не дают полного и количественного истолкования и онисання электропроводности растворов электролитов. В частности, пи одна из ннх пе позволяет раскрыть молекулярный механизм миграции ионов, выяснить природу стал.ни, определяющей скорость процесса, найти энергию активации, объяснить причины аномально высокой ионной электропроводности ионов водорода и гидроксила и т. д. [c.128]

    Считается, что энергия активации определяется в первую очередь работой создания полости в растгюрнтеле, куда ион переходит из предыдущего положения равиовесня. Энергия активации, подсчитанная из температурной зависимостн скорости движения иопов, оказалась примерно одинаковой для всех нонов, кроме ионов водорода. Ее значение для водных растворов колеблется между 16 и 18 кДж-моль-, что довольно близко к энергии активации вязкого течения воды обычно это связывают с тем, что перескоки совершают гидратированные ионы, хотя возможны и другие объяснения. Энергия активации миграции иоиов водорода составляет всего лишь [c.129]

    Приведенная схема построена с учетом двух важных обстоятельств а) одновременного протекания реакций гидрирования и миграции двойной связи по кольцу и б) влияния водорода на ход гидрирования и относительную скорость образования цис- и транс-1,2-диметилцик-логексанов. [c.23]

    При Сб-дегидроциклизации алканов и Сз-циклизациц алкенов на Pt/AbOa показано [84, 126], что скорость реакции в отсутствие Нг быстро падает, доходя фактически до нуля, и наоборот, в токе Нг проходит успешная циклизация как алканов, так и алкенов. Роль водорода при образовании циклопентанов в присутствии алюмоплатиновых катализаторов с низким содержанием Pt пока недостаточно ясна. Возможно, что влияние водорода на протекание реакции осуществляется по нескольким направлениям, часть которых обсуждалась выше. Не исключая этих возможностей и в случае нанесенных Pt-катализаторов, следует также обсудить ассоциативный механизм действия водорода [84], представляющийся авторам книги одним из наиболее вероятных. В соответствии с обсуждаемой схемой водород в случае реакции Сб-дегидроциклизации алканов играет ту же роль, что и в ряде других реакций, протекающих в присутствии металлсодержащих катализаторов, в частности в реакции миграции двойной связи в алкенах [127] и в конфигурационной изомеризации диалкилциклоалканов [128]. В этих реакциях водород входит в состав переходного комплекса, образующегося на поверхности катализатора по ассоциативной схеме. Можно полагать, что реакция Сз-дегидроциклизации, также протекающая при обязательном присутствии и, по-видимому, с участием Нг, проходит через промежуточные стадии образования и распада переходного состояния  [c.230]

    Нужно отметить, что различные методы активирования (облучение УФ-светом, -квантами и потоком электронов) приводят ь одинаковому соотношению цис- и гранс-изомеров (табл. 19). Вме сте с тем при значительных мощностях доз 7-излучени [4-10 эВ/(см -с)] отмечены реакции разрыва связей С—Су С—Н, находящихся в р-положении к двойной связи [26], а в при сутствии добавок — присоединение по двойной связи, перераспре деление водорода и миграция двойной связи [26—31]. Однако ос новной реакцией по-прежнему остается ц с-гранс-изомеризация скорость которой по меньшей мере на порядок выше скоростей по бочных реакций. Значительные количества побочных продукте при активированной ц с-транс-изомеризации образуются, в основ ном, после достижения равновесия. Так, при облучении корично кислоты рентгеновскими лучами и 7-квантами Со [мощность дозь 1,3-10 эВ/(смЗ-с)] после достижения, равновесия между цис- 1 транс-изомерами образуется соответственно 25—50% побочны продуктов [15]. [c.64]

    Концентрационная поляризация, в частности, очень невелика вследствие большой диффузионной подвижности и скорости миграции водородных ионов, перемешиваш1я раствора у катода выделяющимся газообразным водородом и др. Работами [c.41]

    Согласно [116] механизм спилловера водорода на алюмоплатиновом катализаторе включает быструю стадию диссоциации адсорбированного водорода на металле, а также быструю миграцию атомов водорода через границу фаз к оксиду алюминия. Лимитирующая стадия— диффузия атомарного водорода на поверхности оксида алюминия. Наиболее интенсивно спилловер водорода протекает при высоких температурах, причем скорость его возрастает с повышением дисперсности платины и давления водорода. Следовательно, повы- [c.56]

    Для вычисления констант скорости реакций диспропорционирования алкильных радикалов мы исходили из экспериментально обоснованного факта о малой величине энергии активации этих реакций. Согласно [353] энергии активации реакций диспропорционирования и рекомбинации алкильных радикалов приблизительно одинаковы, а та.к как энергия активации реакций рекомбинации порядка 200—300 ккал, то и для реакций диспропорционирования энергии активации должны иметь значения приблизительно такие же. При расчетах стерических факторов реакций диспропорционирования для переходного состояния мы приняли конфигурацию голова к голове . Согласно [326], продукты реакции образуются путем перехода атома Н, находящегося в р-положении, от одног о радикала к другому. По аналогии с реакциями обмена предполагается, что для миграции атома водорода диспропорционирующие радикалы должны сблизиться на расстояние г, которое значительно меньше, чем дистанция между ними при рекомбинации, Это расстояние того же порядка, что и длина равновесной межатомной связи. В силу этих предположений при вычислении ротационной суммы состояний активированного комплекса реакций диспропорционирования радикалов мы использовали расстояния г (С—С или С—Н), превосходящие равновесные значения на 10—20%, как и в случае реакций обмена. [c.278]

    Еще ранее Биуотер и Стеси [298] для объяснения приблизительно равных скоростей образования СН4 и СзНе при фоторазложении н-С4Н]о (250—400 °С 2,66-10 Па) указывали на возможность 1,2-или 1,3-миграции водорода. Заключение об изомеризации --С4Нв радикалов во втор--С, д с последующим распадом на метильный радикал сделано также Лином и Беком [132] на основании исследования кинетики вторичной реакции образования метана при термическом разложении этана (550—726 С, 1,33-10 -т-8,0-10 Па). По-видимому, реакция действительно идет в две стадии, так как наличие в системе при больших степенях превращения цис- и транс-бутенов-2 свидетельствует скорее всего в пользу существования тор--С Нд. [c.189]

    Перечисленные сопутствующие процессы действительно имеют место в полном соответствии с предложенными схемами. Так, во время восстановления 1,2-диметилциклопентена на оксиде платины из реакционной смеси может быть выделен его 2,3-диметилизомер, а при восстановлении пентена-1 на скелетном никеле - цис- и т/ <з//с-пентены-2. В зависимости от применяемого катализатора, температуры и давления водорода изомеризация алкенов протекает или быстрее, или медленнее, чем гидрирование. На никеле, являющемся активным катализатором изомеризации, при температуре 60-130 °С миграция двойной связи в бутене-1 происходит в 2 раза быстрее гидрирования, а г ис-тр<зА/с-изомеризация бутена-2 - гораздо быстрее миграции двойной связи. Наоборот, на платиновом катализаторе при температуре 20 °С и атмосферном давлении гидрирование гексена происходит в 30 раз быстрее миграции двойной связи. Обмен атома водорода алкена на атом водорода с поверхности катализатора обнаруживается при гидрировании соединений, меченных дейтерием, или при каталитическом восстановлении дейтерием. Наиболее высока скорость такого обмена в аллильных положениях. [c.28]

    Следует учитывать еще одну особенность кварцевого стекла. При высоких температурах (1200—1 Ю0 С) сквозт. кварцевое стекло способны диффундировать хлористый водород, кислород, углекислый газ, водород и другие гаяы, причем скорость диффузии возрастает с уменьшением молекулярного веса газа [22, 44]. Установлено, что диффузия газов через кварнеиое стекло происходит за счет миграции молекул газа в междоузлиях решетки стекла. Так при 900° С в I сек через 1 см" стекла толщиной 1 мм при разности давлений в 1 аг проходит от 4 до [c.41]

    Двойные углерод-углероднне связи обычно восстанавливают с помощью водорода на гетерогенном катализаторе. Активность катализаторов падает в ряду Рс1 > КЪ > Р1 > N1 > Ри. Чтобы свести к минимуму возможность миграции водорода в процессе гидрирования, следует использовать никель, рутений или родий, так как платина особенно благоприятствует такой изомеризации. Скорость гидрирования обратно пропорциональна числу и размеру заместителей при двойной связи. Тетразамещенную двойную связь прогид- [c.106]

    Сравнение результатов по облучению гомогенной и гетерогенной систем показывает, что присутствие адсорбента вызывает значительный эффект. Было установлено, что силикагель и образцы, содержащие кобальт, дают наибольшие скорости разложения по сравнению с другими исследованными веществами. Соответствующие величины Огчз значительно выше, чем Огом-Согласно Кэффри и Аллену [13], в случае облучения в присутствии силикагеля величина Сгаз для образования водорода в 12 раз больше соответствующей величины Огом- Эти авторы предполагают, что при этом большая часть энергии, поглощенной адсорбентом, передается адсорбированному пентану они, кроме того, обратили внимание на тот факт, что на природу и состав продуктов реакции оказывает влияние природа адсорбента. Авторы считают, что полученные ими экспериментальные результаты недостаточны, чтобы дать удовлетворительное объяснение наблюдаемым явлениям. Тем не менее они считают, что передача энергии, вероятно, связана с миграцией к адсорбиро- [c.183]

    Окислы щелочноземельных металлов, например окись кальция, подобно гидридам, являются катализаторами гидрирования олефинов и циклогексенов, миграции двойной связи в олефинах, изомеризации 1,3-и 1,4-циклогексадиена, диепропор-ционирования водорода, дегидрирования и других реакций с участием водорода. Активность окисных катализаторов также очень сильно зависит от способа приготовления контакта. Катализатор, полученный разложением Са(ОН)г при 500 С, был наиболее активен в реакции изомеризации гексена-1, а катализатор, полученный разложением Са(0Н)2 при 900° С, активностью вовсе не обладал. Окись кальция, полученная из карбоната при 900—1000° С, была не очень активна в реакциях гидрирования, но отлично активировала миграцию С=С-связи в гексене-1 11511. Степень гидрирования гексена-1 снижалась с повышением температуры катализа (155—252° С) от 68 до 42% авторы объяснили это большой скоростью миграции двойной связи в гексене-1 с образованием гексена-2 и гексена-3, которые гидрируются труднее, чем гексен-1. Скорость гидрирования циклогексена в присутствии СаО была незначительной. Скорости гидрирования трех изомеров пентенов на катализаторе СаО, полученном из СаСОз, относились между собой 3-метилбутен-1 2-метилбутен-1 2-метилбутен-2=69 15 1. [c.71]

    Ароматические углеводороды А гН при растворении в жидком фтористом водороде образуют карбоний-ионы АгН . По форме линии (стр. 237) в широком интервале температур можно определить скорость внутримолекулярной миграции протона и обмена с НР". Эти реакции имеют большие энергии активации, порядка 8 ккал -молъ это можно было ожидать, так как должны разрываться С—Н-связи, что происходит без участия водородных связей. [c.251]

    Другим интересным результатом наших исследований является установление закономерности изменения каталитической активности никелевых катализаторов с изменением параметра решетки никеля. Изменение скорости гидрирования непредельного соединения и электроокисления водорода антибатно, и изменение энергии активации миграции водорода и электроокислеиия его симбатно изменению параметра решетки никеля. Во всех случаях максимумы и минимумы кривых изменения этих свойств соответствуют минимальному значению параметра решетки. [c.242]

    Путем сравнения скоростей изомеризации л-ксилола, л-этилтолуола и ге-изопропилтолуола была определена относительная миграционная способность метильной, изопропильной и этильной групп, соединенных с ароматическим ядром. В каждом случае основным продуктом реакции был мета-изомер. Изомеризация проводилась в толуольном растворе с одним молем бромистого водорода и одним молем бромистого алюминия (принимая А1аВгв) на один моль алкилтолуола. Было найдено, что скорость изомеризации заметно возрастает в ряду п-ксилол, п-этилтолуол и п-изопропилто-луол. Таким образом, по легкости миграции в этих условиях заместители располагаются в ряд метил < эти.и < изопропил изобутил, вероятно, мигрировал бы еще быстрее. Поскольку такой порядок совпадает также с той последовательностью, в которой располагаются алкильные группы по своей способности принимать положительный заряд в виде карбоний-иопа, то эти результаты указывают на переходное состояние (УУ) или на проме-жуточны я-комплекс (22), в котором алкильная группа В. несет положительный заряд [26а]. [c.114]

    Когда поверхность потенциальной энергии имеет два минимума, естественно возникает вопрос о высоте разделяющего их барьера и о скорости миграции протона между ними. Скорость перехода протона в принципе можно определить релаксационными методами, быстро смещая положение таутомерного равновесия путем изменения внешнего параметра и измеряя скорость релаксации системы. Однако в случае комплексов с водородной связью тина ОН -N пока не известно ни одного примера успешного измерения такого рода. Грюнвальд [126], анализируя ряд косвенных данных (например, но скоростям протонного обмена, спектрам флуоресценции систем с внутримолекулярной водородной связью, аномальной подвижности протонов во льду и т. п.), пришел к выводу о возможности миграции протона в системах с сильной водородной связью со скоростями, сравнимыми с частотой валентного колебания атома водорода, т. е. 10 —10 сек . К такому же выводу приходят теоретики при расчетах скорости перехода протона в одномерных двойных потенциальных ямах с различными высотой барьера и расстоянием между ямами. Например, по данным ра боты [127], при достаточно реальном расстоянии, которое необходимо пройти протону, возможно эффективное туннелирование с частотой порядка 10 даже через довольно высокий барьер — 5 ккал моль над нулевым ур овнем. [c.243]

    Миграция к углероду. Атомы углерода с незаполненной электронной оболочкой образуются в процессе сольволитических замещений, реакций отщепления и электрофильного присоединения к олефинам и ацетиленам. В ходе этих реакций перегруппировки происходят всегда, если промежуточный карбониевый катион может посредством 1,2-смещения атома водорода, алкила или арила превратиться в более устойчивый ион. Иногда перегруппировка начинается еще до образования карбониевого катиона, и в некоторых сольволитических реакциях повышение скорости зависит от движущей силы, доставляемой мигрирующей группой. Перегруппировки неопентильных соединений в условиях, подходящих для замещения или электрофильных присоединений, типичны. [c.461]

    Ионы водорода в водном растворе представляют особый случай. Скорость их кажущейся миграции в десять раз превышает скорость миграции большинства других ионов. ГплТроксильные 1ЮНЫ также перемещаются в воде быстрее аналогичных отрицательных попов. Оба эти явления можно объяснить на оспове цеппой реакцни Гроттуса. [c.88]

    На основании кинетических исследований с использованием арилсульфонилгидразинов, замещенных в ароматическом кольце, был постулирован механизм, изображенный на схеме (47). Реакция ускоряется электронодонорными группами и замедляется электроноакцепторными заместителями это означает, что перенос гидрида на карбонил маловероятен. Быстрое элиминирование аниона арилсульфината из соли (17) приводит к ариламинонитре-ну (18), который после миграции протона (или ароила) дает имид (19) при последующем элиминировании азота и внутримолекулярном переносе водорода образуется альдегид. Скорость реакции весьма мало зависит от растворителя это согласуется с промежуточным образованием нитрена (18) [95]. [c.717]

    На рис. 1.43 показана зависимость состава гептеновой части катализата от количества катализатора при дегидроциклизации гептена-1 в проточной и импульсной системах. Сравнение реакционной способности различных углеводородов проводилось при попеременном вводе сравниваемых углеводородов в один и тот же образец катализатора при одинаковых условиях. На рис. 1.44 в качестве примера приведена зависимость выходов толуола на одном образце катализатора (200 мг) при чередующихся вводах исходного транс-тептена 2 и г мс-гептена-2 от номера импульса. Таким образом, было показано, что скорость дегидроциклизации, а также миграции двойной связи и цис-транс-перехо)1,й у гептенов ниже, чем у гептадиенов и гептатриенов. Более высокие выходы гептадиенов и незначительные выходы гептана в условиях импульсного режима, по мнению авторов [118], обусловлены уменьшением роли обратных реакций гидрирования за счет хроматографического разделения продуктов реакции и водорода на катализаторе. Возможно также, что роль обратных реакций уменьшается за счет разбавления углеводородов гелием нри проведении реакции в импульсных условиях. [c.328]


Смотреть страницы где упоминается термин Водорода, миграция скорость: [c.1310]    [c.661]    [c.50]    [c.2034]    [c.218]    [c.337]    [c.471]    [c.603]    [c.607]    [c.160]    [c.67]    [c.236]   
Свободные радикалы (1970) -- [ c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Миграция



© 2025 chem21.info Реклама на сайте