Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь, влияние растворимость

    Влияние способности растворителей образовывать водородные связи на растворимость лигнина [c.206]

    Водородная связь играет большую роль в процессах растворения, так как растворимость зависит и от способности вещества давать водородные связи с растворителем. Например, сахар, молекулы которого имеют много ОН-групп, способных образовывать водородные связи, очень хорошо растворим в воде. Наоборот, отсутствием влияния водородной связи можно объяснить те случаи, когда полярные соединения не растворимы в воде. Так, полярный иодистый этил хорошо растворяет неполярный нафталин, а сам не растворяется в таком полярном растворителе, как вода. [c.134]


    В ЭТИХ случаях главным признаком взаимной растворимости является не подобие двух жидкостей, а наоборот, резкое их различие. Вещества различных групп хорошо смешиваются между собой, но их растворимость не подчиняется закону Рауля, и величина 7 не может быть подсчитана по уравнению Гильдебранда. Смеси таких жидкостей часто дают азеотропы и обладают другими особенностями. Способность растворителей к образованию водородных связей играет большую роль в их влиянии на силу кислот, оснований и солей (см. гл. VI и VII). [c.222]

    Установить наличие водородной связи можно различными способами, в том числе измерением дипольных моментов, по особенностям растворимости, понижению температуры замерзания, теплотам смешения, но наиболее важный способ основан на том влиянии, которое оказывает водородная связь на вид инфракрасных [9] и других спектров. Частоты колебаний в ИК-спектре таких групп, как О—Н и С = О, значительно сдвигаются, если эти группы участвуют в образовании водородной связи. При этом всегда наблюдается сдвиг полос поглощения в область более низких частот для обеих групп А—Н и В, причем для первых этот сдвиг более значителен. Например, свободная группа ОН в спиртах и фенолах поглощает в области от 3590 до 3650 см если же эта группа участвует в образовании водородной связи, полоса поглощения смещается на 50—100 см и расположена в области от 3500 до 3600 см [10]. Во многих случаях в разбавленных растворах только часть ОН-групп участвует в образовании водородных связей, а часть находится в свободном состоянии, тогда в спектрах наблюдается два пика. С помощью инфракрасной спектроскопии можно различить меж- и внутримолекулярные водородные связи, поскольку первые дают более интенсивный пик при повышении концентрации. Для определения водородных связей используются и другие виды спектроскопии КР-, электронная, ЯМР-сиектроскопия [11, 12]. Поскольку при образовании водородной связи протон быстро переходит от одного атома к другому, ЯМР-спектрометр записывает усредненный сигнал. Водородную связь определяют обычно по смещению химического сдвига в более слабое поле. Водородная связь меняется в зависимости от температуры и концентрации, поэтому сравнение спектров, записанных в разных условиях, служит для определения наличия водородной связи и измерения ее прочности. Как и в ИК-спектрах, в спектрах ЯМР можно различить меж- и внутримолекулярные водородные связи, так как последняя не зависит от концентрации. [c.115]


    Из-за полярности связи кислород — водород молекулы спиртов полярны. Низшие спирты хорошо растворимы в воде, однако по мере увеличения числа атомов углерода в углеводородном радикале влияние гидроксидной группы на свойства уменьшается и растворимость спиртов в воде понижается. Молекулы спиртов ассоциированы из-за образования водородных связей между ними, поэтому температуры их кипения выше температур кипения соответствующих углеводородов. [c.307]

    Влияние N-алкильного замещения в полиамидах, сопровождающегося уменьшением межмолекулярного взаимодействия за счет водородных связей, опять-таки можно продемонстрировать сравнением вышеприведенного полиамида с полностью N-этилированным полиамидом [26]. Вследствие N-этилирования температура плавления полиамида снижается более чем на 200" , а растворимость значительно увеличивается полиамид растворяется в 80%-ном спирте. [c.108]

    На ККМ в растворах ПАВ может влиять ряд факторов. Так, ККМ снижается с увеличением молекулярного веса углеводородной цепи ПАВ. Такая зависимость вполне понятна, потому что с увеличением длины углеводородной цепи уменьшается истинная растворимость и возрастает склонность молекул ПАВ к ассоциации. Влияние температуры на ККМ различно для ионогенных и неионогенных ПАВ. Для ионогенных ПАВ ККМ.обычно повы-щается с увеличением температуры вследствие дезагрегирующего действия теплового движения молекул. Однако этот эффект невелик, так как он ослаблен гидрофобными взаимодействиями, сопровождающимися увеличением энтропии системы. Поэтому влияние температуры на ККМ проявляется тем слабее, чем больше выражены гидрофобные свойства мыл. Для неионогенных ПАВ ККМ всегда уменьшается при повышении температуры. Это вызвано тем, что при повышении температуры водородные связи между эфирным атомом кислорода и молекулами воды разрушаются, оксиэтиленовые цепи дегидратируются и уменьшается их взаимное отталкивание, препятствующее агрегации. [c.410]

    Образование водородных связей оказывает сильное влияние на свойства карбоновых кислот. Так, например, благодаря образованию водородных связей 1-пентанол и пентановая кислота обладают почти одинаковой растворимостью в воде (около 3 г на 100 г воды), которая значительно выше, чем в случае пентана, который не образует водородных связей с водой и не растворим в ней. [c.106]

    Растворитель ацетон-МТБЭ обладает большой гигроскопичностью. Известно, что влияние воды увеличивается с повышением растворимости воды в применяемом растворителе. Снижение растворяющей способности растворителей в присутствии воды объясняется уменьшением действия дисперсионных сил вследствие образования водородных связей. [c.14]

    Зависимость физико-химических свойств твердых веществ от строения кристаллов 243 1. Зависимость физико-химических свойств твердых веществ от типа химической связи в кристаллах 243 2. Электрические свойства 244 3. Оптические свойства 244 4. Ковкость металлов 245 5. Спайность 246 6. Коэффициенты механического сжатия и термического расширения 247 7. Твердость и температура плавления 248 8. Влияние водородной связи на физико-химические свойства веществ 249 9. Эффект экранирования иоиов 250 10. Растворимость 251 [c.398]

    В водном растворе энергия взаимодействия компонентов зависит от влияния органических молекул на структуру жидкой воды. Суммарным проявлением этих взаимодействий является величина растворимости. Поэтому коэффициенты активности компонентов в адсорбционной фазе могут быть выражены через растворимость веществ и энергию их диполь-дипольного (или ионного) взаимодействия, характер которого в адсорбционной фазе может существенно отличаться от взаимодействия в жидкости из-за фиксированной ориентации на границе раздела фаз. Активность органических молекул в водных растворах при небольшой их растворимости с достаточным приближением учитывается степенью их ионизации. То обстоятельство, что водородные связи в водных растворах низкомолекулярных веществ играют основную роль, значительно облегчило понимание условий равновесия на границе раздела водный раствор — неполярный адсорбент и нахождение наиболее вероятной ориентации адсорбированных из раствора органических молекул. [c.209]

    Если размер углеводородной цепи в молекуле спирта велик, слабый отрицательный заряд в этой молекуле не оказывает заметного воздействия на сильные водородные связи между молекулами воды. Такие спирты мало растворимы в воде. Влияние водородной связи и других межмолекулярных сил на растворимость обсуждали Гильдебранд и Скотт [c.129]

    Основными преимуществами использования растворов являются точность контроля концентрации, отсутствие влияния кристаллизации и напряжений, легкость защиты образца от окисления и загрязнения и относительная легкость подбора интенсивности полос поглощения за счет разбавления или изменения толщины кюветы. К недостаткам следует отнести ограничение лишь несколькими областями спектра (так как растворитель имеет свои полосы поглощения), влияние взаимодействия растворитель — полимер на спектр (смещение, обусловленное водородными связями и т. п.), необходимость в применении мер предосторожности с целью предотвращения возможных побочных реакций между полимером и растворителем или примесями в нем (в частности, могут присутствовать перекиси или гидроперекиси в простых эфирах и растворителях типа тетрадекана) и, конечно, обязательное условие растворимости образца. [c.256]


    Растворимость препаратов лигнина, как и других полимеров, определяется строением и молекулярной массой, а также природой растворителя, главным образом, полярностью. Препараты лигнина могут растворяться в некоторых органических растворителях (диметилсульфоксид, диметилформамид, диоксан и др.), тогда как в других они не растворяются или растворяются частично. Известно, что растворимость вещества зависит от соотношения его полярности и полярности растворителя. Растворимость при этом будет максимальной, когда определенные свойства (способность к образованию Н-связей, химическое строение и т.п.) растворителя и растворяемого вещества близки. Наиболее часто растворяющую способность по отношению к полярным полимерам определяют по энергии когезии и способности к образованию водородных связей. Влияние энергии когезии оценивают по параметру растворимости (см. 7.1). Для лигнина этот показатель оценивается значением порядка 22500 (Дж/м ) . Шурх установил, что растворители с параметром растворимости, сильно отличающимся от этого значения, не растворяют препараты лигнина, а у растворителей с близкими значениями параметра растворимости растворяющая способность возрастает с увеличением способности к образованию водородных связей. Чем сильнее разница как в параметрах растворимости, так и в способности к образованию Н-связей, тем в большей степени должен быть деструктурирован лигнин для перехода в раствор. Полярность растворителя удобно характеризовать диэлектрической проницаемостью, связанной с параметром растворимости эмпирическим уравнением линейного типа. Существуют также попытки связать растворимость лигнина с параметрами, учитывающими донорно-акцепторные взаимодействия в системе полимер-растворитель. [c.412]

    Кинетические данные показывают, что аналогично влияет температура на длительность коагуляции. Из данных по зависимости длительности разделения фаз от температуры могут быть определены пороговые температуры коагуляции Гпор, и Тпор,, которые, так же как Спор, и Спор > являются характерными параметрами процесса коагуляции для данного типа латекса [45]. Если при введении электролита в латексные системы происходит резкое уменьшение сил электростатического отталкивания между частицами за счет снижения -потенциала частиц и подавления диссоциации адсорбированных молекул ПАВ (и изменения растворимости молекул ПАВ), то под влиянием теплового воздействия происходит ослабление водородных связей молекул воды и ПАВ адсорбционного слоя, что также способствует гидрофобизации системы и понижению ее устойчивости. В интервале времени тг — ть по-видимому, преодолевается энергетический барьер, препятствующий коагуляции системы и разделению фаз. При проведении коагуляции в условиях, при которых концентрация электролита Сэл Спорг и [c.258]

    Особенностью неионогенных деэмульгаторов является ухудшение их растворимости с повышением температуры. Это объясняется тем, что растворение их в воде связано с образованием водородных связей, Повышение температуры выше определенной вели ны приводит к их дегидратации, поскольку энергия водородной связи недостаточно велика, Дегидратированное при нагревании вещество теряет способность растворяться в воде, и раствор становится мутным, при охлаждении вещество вновь растворяется в воде. Каждый де ульгатор имеет свою температуру помутнения, являющуюся мерой соотношения величины гидрофильной и гидрофобной частей молекулы. При температуре помутнения деэмульгатор образует новую фазу и эфс ктивность его снижается, что обусловлено механизмом разрушения эмульсии. Экспериментальная проверка этого факта показала [ 110], что водорастворимые деэмульгаторы при введении в нефтяную эмульсию, нагретую выше их температуры помутнения теряют эффективность, Различие особенно значительно, если деэмульгаторы с низкими температурами помутнения используются для деэмульгации при высокой температуре, В случае проведения де-эмульгацни п температуре ниже температуры помутнения различие уменьшается, Способ ввода деэмульгатора оказывает наименьшее влияние на эффективность в случае применения реагентов с высокой температурой помутнения и низкой температурой деэмульгации. [c.132]

    Вследствие полярности молекул вода проявляет высокую активность при различных химических взаимодействиях, является хорошим растворителем для электролитов, которые в воде подвергаются диссоциации. Молекулы воды отличаются способностью к образованию водородных связей, что оказывает влияние па взаимодействие воды с другими веществами и на свойства водных растворов. Молекулы воды способны к образованию допорно-акцеп-горных связей, в которых они являются донорами неподеленных электронных пар ь ислородного атома. Все это обусловливает высокую реакционную и растворяющую снособность воды. В воде растворимы очень многие вещества. При этом часто молекулы (или ионы) растворяемых веществ образуют соединения с молекулами воды. Это явление называется гидратацией. Молекулы воды взаимодействуют также с поверхностью ионных кристаллов. [c.170]

    Являясь неполярными, углеводородные жидкости слабо растворяются в воде. Возможность растворения в воде углеводородов, как и других неполярных веществ, определяется числом льдоподобных структур. Чем больше этих структур, тем больше полостей, куда могут внедриться неполярные молекулы, и тем больпзе величина их растворимости. Эти факторы редко учитывают, например, при бурении в интервалах многолетнемерзлых пород, когда при повышении температуры водородные связи молекул замерзшей воды разрываются, уменьшая число льдоподобных образований, и изменяют адгезионные характеристики углеводородных пленок. Больнюе значение при этом имеет соотношение размеров молекул углеводородных жидкостей и пустот в льдоподобных структурах, наличие в воде органических и неорганических веществ, стабилизирующих ее структуру и приводящих к возникновению в системе процессов высаливания и всаливания неполярных молекул. Эти явления, кажущиеся несущественными на первый взгляд, оказывают большое влияние на процессы, происходящие на различных поверхностях раздела в промывочных жидкостях. [c.28]

    В о-окспкетопах н других соединениях (см. ниже) Н-атом гидроксильной группы взаимодействует с неподеленной парой электронов карбонильной группы, так что он образует в известном смысле мостик между атомами кислорода гидроксильной и карбонильной групп. Соединения с такими внутримолекулярными водородными мостиками называются X е л а т а м и, или в н у т р и к о м п л е к с и ы м и соединениями. Прочность внутрикомплексиой водородной связи зависит от строениясоедиис-ния. Образование ее оказывает большое влияние на физические свойства соединения (растворимость, спектр поглощения и т. д.) и может даже влиять на его химические свойства (например, процессы замещения). [c.642]

    Водородная связь играет большую роль и в процессах растворения, так как растворимость зависит и от способности вещества давать водородные связи с растворителем. При этом часто образуются продукты их взаимодействия — сольваты. В качестве примера можно указать на растворение спиртов в воде. Этот процесс сопровождается выделением теплоты и уменьшением объема, т. е. признаками, свидетельствующими об образовании соединений. В подобных случаях нельзя говорить об образовании сольватов за счет электростатического притяжения ионами дипольных молекул растворителя, так как речь идет о растворении неионизирующихся соединений. Отсутствием влияния водородной связи можно объяснить и те сЛучаи, когда полярные соединения не растворимы в воде. Так, полярный иодистый этил хорошо растворяет неполярный нафталин, а сам не растворяется в таком полярном растворителе, как вода. [c.236]

    Растворимость НПАВ в воде обусловлена гидратацией окси-этиленовой цепи, так как между молекулами воды и эфирным кислородом оксиэтиленовой цепи возникает водородная связь. Чем больше число оксизтиленовых групп, тем выше гидратация молекул НПАВ и тем больше их растворимость в воде. В значительной степени на растворимость НПАВ в воде влияет температура. Так как анергия 1 одородной связи сравнительно мала, то при нагревании происходит дегидратация молекул НПАВ и неионогенное вещ ество теряет способность растворяться в воде, при этом раствор НПАВ мутнеет. Для ка кдого неионогенного эмульгатора характерна определепная телшсратура (точка) помутнения, которую можно рассматривать как меру растворимости НПАВ в воде. Добавление к раствору НПАВ большинства электролитов приводит к значительному понижению растворимости и температуры помутнения, поскольку под влиянием электролита разрушаются водородные связи между оксиэтиленовой цепью и молекулами воды. [c.113]

    Структура полимерных молекул во многих случаях оказывает такое же влияние на растворимость и точку плавления, как и в случае органически к соединений. Так, кристалличность, высокая симметрия, водородные связи, высокая полярность, жес1 кость цепи и стереорегулярность в цепи обусловливают более высокую точку плавления и ху хшую растворимость. Для быстрого качественного определения растворимости можно рекомендовать следующую методику. [c.71]

    Имидазол, оксазол и тиазол — очень устойчивые соединения, неспосабные самооиисляться. О ксазол и тиазол — жидкости, смешивающиеся с водой во всех отношениях, с запахом, напоминающим запах пиридина, и с нормальными температурами кипения 69 и 117°С. Имидазол и 1-метилимидазол растворимы в воде и не имеют запаха они шпят при довольно высоких температурах, равных 256 и 199 °С, вероятно, из-за диполярной ассоциации. Ассоциация возникает в результате постоянного разделения зарядов между двумя кольцевыми атомами азота, которое гораздо более значительно, чем в оксазоле или тиазоле это видно из сравнения дипольных моментов имидазола (5,6 0), оксазола (1,4 0) и тиазол а (1,60). Кроме того, в незамещенном имидазоле немалое значение имеет и влияние достаточно сильных водородных связей. [c.329]

    Идею возможности применения теории объемного заполнения микропор для описания сорбции из жидкой фазы выдвинули Эльтеков и Стадник [113]. Эта идея использует представления об отсутствии влияния физического состояния сорбата в объемной фазе на сорбционный потенциал в микропорах углей и отсутствии ассоциативных, ионных и водородных связей между молекулами сорбируемого вещества и воды, а также внутри сорбата. Эта теория применима для расчета сорбции из очень разбавленных растворов ограниченно растворимых веществ уравнение изотермы сорбции на микропористых активированных углях в данном случае принимает вид  [c.71]

    В своей работе Вайсман исходил из предположения, что растворимость этиленхлоргидрина зависит от наличия водородных связей между гидроксильными группами и хлором. Оптимальный растворитель должен образовывать с этими группами более прочный вид связи. Следовательно, сразу можно отметить, что углеводороды совершенно непригодны в качестве растворителя. Спирты могут образовывать водородные связи, но нельзя ожидать, чтобы в этом отношении они превосходили воду. В случае альдегидов и кетонов имеется возможность образования ацетальной связи, а в случае сложных эфиров — возможность образования ортоэфиров. Если в а-положении к карбонильной группе имеется алкильная группа, то оказывают влияние пространственные затруднения. Эти влияния отчетливо видны из данных табл. 29. Наилучшими оказались растворители, содержащие карбонильную группу. Хорошо заметно уменьшение растворимости в 2,6-дипропилциклогексаноне по сравнению с циклогексаноном, обусловленное пространственными затруднениями. [c.389]

    С5, и МВС между гидроксилами при атомах Сб и СЗ". По существу, для разъединения макроцепей необходимо и достаточно разрушения МВС. Влияние первичных гидроксилов на растворимость целлюлозы в МММО и в других растворителях подтверждают результаты исследований [59, 60]. Однако многочисленные экспериментальные данные свидетельствуют также о том, что при растворении целлюлозы происходит разрыв не только МВС, но и ВВС. В частности, в работах [61-63] приводится сопоставление данных о растворимости целлюлозы в водных растворах ЫаОН с предварительной обработкой целлюлозы в условиях "парового взрыва" (набуханием при высокой температуре с последующим резким снижением давления, что приводит к резкому изменению объема целлюлозы и разрыву внутри- и межмолекулярных водородных связей). Это привело к обнаружению корреляции между растворимостью целлюлозы и разрывом внутримолекулярных водородных связей. [c.370]

    Наиболее распространенными типами водородной связи являются О—И...О при наличии гидроксильной группы (такого рода межмолеку-лярную связь образуют вода, фенол, спирты) О—Н...0 связь при наличии карбоксильной группы, которая склонна к образованию водородных связей через кислород (с водородом других, молекул), что наблюдается в карбоновых кислотах 14—Н...О образуют соединения NHз, КНз, N11 при растворении в воде. Три атома, участвующие в водородной связи, стремятся к образованию прямой линии. С практической точки зрения стереохимические следствия из водородной связи проявляются в трех главных областях в клешневидных (хелатированных) соединениях, кристаллических структурах и макромолекулах. Водородная связь рассматривается как наиболее важная из сил, способных определять расположение молекул в кристалле, где молекулы располагаются так, чтобы получить небольшое возможное число водородных связей. Водородная связь, допуская явления ассощ1ации, оказывает большое влияние на физические свойства ассоциированных соединений (вязкость, растворимость, летучесть, ИК-спектр и др.). Образующиеся [c.394]

    Для полисахаридов самым распространенным типом межмолекулярного взаимодействия является образование межмолекулярных водородных связей, и в этом случае огромное влияние на свойства полисахаридов оказывает степень упорядоченности их строения. Так, целлюлоза и хитин, обладающие стереорегулярной структурой и линейной конформацией молекул, нерастворимы в воде и лишь слабо набухают в ней, так как энергия межмолекулярного взаимодействия для этих соединений значительно превосходит энергию гидратации. Даже целлодекстрины сравнительно низкого молекулярного веса плохо растворимы в воде, тогда как полисахариды разветвленного строения, не имеющие квазикристал-лической структуры, обычно легко растворяются при молекулярных весах порядка-нескольких миллионов. Ассоциация полисахаридов в растворах также чаще всего обусловлена межмолекулярными водородными связями иногда она происходит во времени и приводит к структурированию и образованию нерастворимых форм, которые выпадают из раствора в осадок. Это явление назьшается ретроградацией растворов. [c.480]

    На растворимость полисахаридов сильное влияние оказывают неорганические соли, pH среды и т. д. Соли, присутствующие в растворе, часто вызывают разрушение водородных связей и повышение растворимости полисахаридов высокие концентрации солей, напротив, уменьшают гидратацию полисахаридных молекул и приводят к выпадению полисахаридов из растворов. Для полисахаридов, являющихся полиэлектролитами (полиуроновые кислоты, сульфаты полисахаридов), имеются дополнительные возможности межмолекулярного взаимодействия за счет электростатических сил этим объясняется, по-видимому, нерастворимость в воде их солей с многовалентными катионами. Аналогичную межмолеку-лярную сшивку в случае нейтральных полисахаридов могут вызывать [c.480]

    Для воды структу рные особенности естественно приписать изменению объемной архитектуры водородных связей под влиянием активных центров подложки. Эта нарушенная архитектура может восстанавливаться на расстояниях от поверхности порядка длины корреляции, достигающих для воды десятков ангстрем. Выше 70°С тепловое движение нарушает систему водородных связей и потому исчезает и структурная слагающая расклинивающего давления. Этот факт опровергает также предположение о возможном влиянии на структурную составляющую растворимости кварца, так как растворимость с повьппением температуры может только расти. [c.117]

    Введение в ароматическое кольцо групп—СН3 и—С2Н5 приводит к некоторому повышению электронной плотности ядра из-за положительного индуктивного эффекта. У этих заместителей появляется избыточный эффективный положительный заряд, который больше у метильной группы и меньше (вследствие более длинной цепи) у этильной. Параллельно изменяется и растворимость производных бензола. Растворимость толуола в воде примерно в три раза превышает растворимость этилбензола. Во много раз ббльшую растворимость, чем сам бензол, имеют его гидроксильные и аминные производные. Однако это качественное отличие представляет собой результат возникновения Н-связи, приво-дяш ей к разрушению структуры воды. При рассмотрении растворимости производных бензола видно, что растворимость самого бензола больше растворимости его производных, которые содержат заместители, не способные к образованию водородных связей. Причина этого, на первый взгляд, парадоксального явления заключается в том, что л-облака ароматических свяяей, пересекающие плотность бензольного кольца, имеют высокую электронную плотность и взаимодействуют с протонами молекул воды с довольно значительной энергией. Деформация этих облаков иод влиянием заместителей приводит к ослаблению энергии взаимодействия бензольного кольца с водой и соответственно к уменьшению растворимости, которое не может быть полностью компенсировано ни индукционным эффектом, ни эффектом сопряжения. Более сложное влияние на растворимость бензола оказывает накопление заместителей в бензольном кольце. [c.28]

    Наиболее интересны среди немногочисленных работ по обобщению свойств растворов газов в жидкостях исследования Ереминой [32] и Намиота [36], которым удалось установить основные закономерности свойств этих растворов влияние на растворимость газов их критической температуры дипольного момента поляризуемости и других свойств, а также свойств жидкости, ее строения, внутреннего давления, наличия водородных связей, энергии испарения и других. [c.12]

    Одним из следствий повышенной подвижности протонов М-неза-мещенных азолов можно назвать легкость образования водородных связей в жидких и твердых фазах, а также гораздо ббльшую растворимость в воде по сравнению с пирролами. Образование водородных связей менее вероятно для Ы-замещенных азолов, а также для оксазолов и триазолов. Влияние водородных связей в большей степени сказывается на свойствах Ы-незамещенных имидазолов. Имидазол представляет собой твердое вещество с т. пл. 90 С и [c.342]

    Примером влияния водородной связи на химические и физические свойства веществ является повышенная растворимость различных веществ в растворителях, содержащих электронодонорные атомы азота и кислорода (амины, эфиры). Причем растворимость растет по мере замещения водорода в метане или этане на галоген, например, от СНзС1 до СНС1з- Но при переходе к ССЬ растворимость резко падает. Это объясняется тем, что при увеличения числа атомов галогена повышается подвижность оставшихся в молекуле атомов водорода. При замещении же последнего из них на галоген исключается самая возможность возникновения водородной связи. [c.23]


Смотреть страницы где упоминается термин Водородная связь, влияние растворимость: [c.200]    [c.14]    [c.85]    [c.86]    [c.86]    [c.86]    [c.112]    [c.422]    [c.172]    [c.239]    [c.169]    [c.336]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.179 , c.180 , c.185 , c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2024 chem21.info Реклама на сайте