Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциация макромолекул в растворах и молекулярный вес

    Физические характеристики полимерных материалов, свойства растворов и расплавов полимеров определяются не только молекулярной массой и полидисперсностью данного высокомолекулярного соединения, но и химическим и пространственным (стерическим) строением полимерной цепи, ее гибкостью, а также способами ее ассоциации с соседними макромолекулами. [c.122]


    Здесь надо отметить, что длина сегмента макромолекулы в растворе определяется не только гибкостью цепи, но и ассоциацией макромолекул или их участков. Как мы видели, ассоциация зависит как от природы растворителя, так и от природы макромолекул, т. е. от содержания в них полярных или ионогенных групп, по которым может устанавливаться связь. Таким образом, кажущийся молекулярный вес является величиной весьма условной, о чем никогда не следует забывать. [c.453]

    Для вискозиметрических исследований пригодны растворы полимеров в 96 %-ной серной кислоте или метансульфокислоте. Константа Хаггинса составляет 0,3—0,5. Экспонента а в уравнении Марка — Хаувинка — Куна равна 1, что свидетельствует о высокой жесткости макромолекул, существующих в форме сильно проницаемого клубка. То, что в растворах ВВВ в 92 %-ной серной, а для высокомолекулярных полимеров даже в 96 /о-ной серной кислоте константа Хаггинса превышает 1, а также вид угловой зависимости при светорассеянии, свидетельствует об ассоциации макромолекул. Для нефракционированного ВВВ при характеристической вязкости в метансульфокислоте 2,66 дл/г и среднечисловой молекулярной массе 97 300 среднеквадратичный радиус инерции =6,36-10-12 см . [c.1036]

    Теория растворов высокополимеров рассматривает случаи, когда один или несколько компонентов раствора состоит из макромолекул. Классическим примером могут служить растворы каучука и полистирола в органических растворителях. Выводы теории растворов высокополимеров оказались полезными и в тех случаях, когда молекулярные объемы низкомолекулярных компонентов значительно отличаются друг от друга, а также при анализе явления ассоциации в растворах. Поэтому теория растворов высокополимеров оказала влияние на всю современную теорию растворов. В сущности, растворы высокополимеров, как правило, являются растворами неэлектролитов и могут рассматриваться как частный случай этих последних ). [c.312]

    В работах по исследованию свойств растворов поливинилхлорида, опубликованных в последние годы, рассматриваются вопросы, связанные с ассоциацией макромолекул поливинилхлорида [242] и изучением разветвления макромолекул в процессе пластикации [232, 235]. Исследована также зависимость вязкости растворов от величины молекулярного веса и строения макромолекулы поливинилхлорида [233, 234, 351], проведены работы по определению кинетики и теплоты набухания и растворения поливинилхлорида в различных соединениях [230, 245, 352—3551. [c.378]


    В растворах смесей полимеров возникает молекулярная неоднородность, обусловленная преимущественной ассоциацией макромолекул одного типа, ввиду близости их геометрического строения [c.153]

    Полиаминоамидокислоты растворяются в апротонных растворителях, таких, как диметилформамид, диметилацетамид, диметилсульфоксид, N-метилпирролидон, гексаметилфосфотриамид и пиридин. Характеристическая вязкость, равная 0,4—1,5 дл/г (диметилформамид, 25°С), соответствует молекулярной массе 7 000— 20 000, определенной осмометрическим методом [5]. В диметилацетамиде полиаминоамидокислоты образуют прочные ассоциаты. Для определения молекулярной массы методами светорассеяния или седиментации пригодны смеси растворителей, например диметилацетамид— N-метилацетамид (25 75), в которых ассоциация макромолекул таких полимеров значительно ослаблена [10]. [c.1021]

    С повышением молекулярного веса полимера склонность к ассоциации увеличивается. Поэтому температурный интервал, в котором наблюдается наибольшее снижение вязкости растворов (или наиболее резкое уменьшение степени ассоциации макромолекул), смещается в сторону более высоких температур (см. рис. 2). [c.122]

    Образование димера принято записывать в виде обратимой реакции 2Л А2, где А — мономерная, Лг — димерная формы ассоциирующего вещества. Однако ассоциацию макромолекул, с одной стороны, следует характеризовать, как и ассоциацию пизкомолекулярных соединений, уменьшением числа частиц в растворе, а с другой — числом связей между макромолекулами. В общем случае при ассоциации возможно образование димеров с различным числом связей между макромолекулами. Количество связей может изменяться от т-минимального числа связей, способного удержать полимерные молекулы в ассоциате (в частном случае т может быть равно 1), до п, которое может достигать степени полимеризации макромолекул, если в каждом звене имеется один реакционный центр и геометрия макро.молекул позволяет всем звеньям участвовать в ассоциации. Распределение димеров по числу связей описывается функцией распределения по энергиям Гиббса. Вообще говоря, кроме распределения по числу связей в димере должно наблюдаться распределение димеров по молекулярным массам. Но при использовании очень узких фракций полимеров, как в нашем случае, распределением димеров по. ММ можно пренебречь. [c.59]

    Вследствие межмолекулярной ассоциации асфальтены обычно содержатся в нефти в форме коллоидных (мицеллярных) частиц, а смолы — в виде соединений, молекулярно растворенных в углеводородной среде или сорбированных на поверхности асфальтеновых мицелл [1027—1029]. В поле зрения электронного микроскопа макромолекулы (мицеллы) асфальтенов из различных нефтей и нефтяных остатков в сильно разбавленных растворах выглядят как округлые частицы вытянутой (овальной) формы. По результатам электронно-микроскопических измерений средние максимальные размеры (длины больших осей овалов) частиц асфальтенов из различных нефтей могут меняться от 20—30 до 150— [c.185]

    С развитием работ по синтезу искусственных ВМС появилась необходимость в изучении строения макромолекул и их свойств. Большая молекулярная масса ВМС подтверл<далась, главным образом, исследованиями по дпффузии. Одпако на примере поверхностно-активных веществ было показано, что сравнительно низкомолекулярные соединения могут давать в растворе коллоидные частицы значительных размеров. На этом основании в 20-е годы нашего столетия распространилось представление о макромолекулах как ассоциатах из малых молекул, подобных мицеллам ПАВ. Предполагалось, что ассоциация обусловлена сильными, но неко-валептными связями. Эта теория получила название теории малых блоков ее сторонниками были Поляни, Герцог, Каррер, Гесс. [c.310]

    Растворы полимерных соединений представляют собой термо динамически устойчивые системы, что связано с молекулярно-дисперсным состоянием компонентов раствора. Следовательно, в истинных растворах полимеров последние диспергированы до молекулярного состояния. Однако для растворов высокомолекулярных, как и низкомолекулярных соединений характерна ассоциация. молекул. Отдельные сегменты гибких и очень длинных макромолекул полимеров могут входить одновременно в состав нескольких ассоциатов. Как и в растворах низкомолекулярных веществ, ассоциаты полимерных молекул находятся в непрерывном состоянии образования и разрушения. Продолжительность изменения ассоциатов высокомолекулярных молекул значительно больше, чем для ннзкомолекулярных веществ, что объясняется большей громоздкостью молекул. [c.63]

    Между этими крайними случаями имеется множество промежуточных. Соприкосновение раствора полимера с поверхностью даже непористого тела может привести к сильной или слабой адсорбции в зависимости от химии поверхности твердого тела, определяющей межмолекулярное взаимодействие с адсорбентом как звеньев макромолекул, так и молекул растворителя. Здесь сказываются те же факторы, влияние которых на адсорбцию из растворов и хроматографию обычных молекул было рассмотрено в лекциях 14, 16 и 17 для адсорбции и хроматографии молекул обычных размеров. Однако степень конформационной подвижности макромолекул зависит от разветвленности цепей, возможности и характера их сшивки, а также взаимной ассоциации, значение которых быстро возрастает с увеличением молекулярной массы полимера. Большое значение имеет распределение и природа функциональных групп в макромолекулах. [c.333]


    Исследования растворов полиокса указывают на существование в них надмолекулярных частиц, что может быть причиной некоторых аномалий в свойствах. Так, электронномикроскопическое изучение частиц, полученных лиофильной сушкой распыленных разбавленных растворов полиокса (молекулярная масса около 200 тыс.) в воде и диметилформамиде, приводит к размерам частиц до 100 нм [136], что в 5—10 раз превышает оценки размера индивидуальных макромолекул. К аналогичным выводам приводят исследования светорассеяния растворов, которым приписывается микрогетерогенный характер [137]. Видимо, межцепная ассоциация является причиной [c.269]

    Существование литийорганических соединений в неполярных средах в виде ассоциатов хорошо известно. Например, этиллитий в растворе гептана, по данным инфракрасной спектроскопии, представляет собой гексамер [80]. На ассоциацию растущих цепей указывают также другие факты. Так, при введении в реакционную смесь после полного завершения полимеризации агента, разрушающего активные комплексы (спирта и т. п.), вязкость раствора резко падает. Как показал Мортон [78] для полимеров стирола, бутадиена и изопрена, изменение вязкости отвечает уменьшению молекулярного веса в два раза. Следовательно, макромолекулы, освободившиеся при дезактивации от атомов лития (т. е. центров ассоциации), переходят из димерной формы в неассоциированную. Существенно, что изменение вязкости под влиянием агентов обрыва обнаружено только для живых цепей, полученных в углеводородной среде, но не в полярных растворителях. Как следует из уравнений ( -46—49), скорости реакций инициирования и роста [c.347]

    Как известно, ВМС способны к образованию термодинамически равновесных молекулярных растворов с особыми термодинамическими свойствами, обусловленными гибкостью цепей макромолекул, обладающих больщим числом конформаций. Вместе с тем исследования последних лет показали, что для этих систем характерно развитие процессов ассоциации макромолекул в растворах в зависимости от характера взаимодействия макромолекул друг с другом и с молекулами растворителя и от концентрации раствора макромолекулы могут существовать либо в виде гибких цепей (статистических клубков), либо как плотные глобулы свернутых цепей, либо в виде ассоциатов друг с другом. При развитой мозаичности — различии полярности участков цепей макромолекул — они, как указывалось, могут обладать значительной поверхностной активностью для подобных веществ характерна также резко выраженная склонность к агрегированию молекул и их глобулизации наряду со способностью к солюбилизации нерастворимых в данной среде веществ. [c.236]

    Светорассеяние полимеров в смешанных растворителях и в растворах сополимеров. При проведении измерений в смешанных растворителях кажуш,аяся молекулярная масса может зависеть от соотношения компонентов смеси или природы смешиваемых растворителей (рис. 4.18) даже при отсутствии межмолекулярной ассоциации. Как видно из рис. 4.18 [89], при переходе от одной системы к другой происходит изменение значений и Это связано с избирательной адсорбцией одного из растворителей макромолекулой, в связи с чем оптические свойства вблизи макроцепи не совпадают со свойствами всей среды в целом. [c.129]

    В области больших концентраций, зависящих от молекулярной массы полимера, макромолекулы начинают соприкасаться друг с другом. Первоначально Бикки [40] предположил, что при этом они зацепляются друг за друга, образуя петли. Отсюда возникла концепция зацеплений , широко используемая в различных теориях. Эта концепция близка к представлениям о перепутанных цепях в аморфных полимерах, которая признана неправильной. Ферри с сотр. [41] в серии работ экспериментально показали, что температурная зависимость вязкости и других реологических свойств растворов ряда полимеров противоречит модели Бикки. Ими были высказаны соображения об образовании в концентрированных растворах полимеров ассоциатов, простирающихся на сравнительно большие расстояния и возникающих не в результате геометрических переплетений, а в результате межмолекулярных лабильных контактов, легко смещающихся, что позволяет осуществляться течению. Фокс также считает, что молекулярные цепи не могут вести себя подобно веревкам, образующим петли, а при соприкосновении макромолекул должна иметь место обычная межмолекулярная ассоциация в результате контактов между макромолекулами [42]. Это близко к представлениям Лоджа о пространственных флуктуационных сетках, образующихся и разрушающихся под влиянием теплового движения [43]. [c.443]

    Наряду с сефадексом для гельфильтрации успешно применяются другие материалы, такие как агар и синтетические гидрофильные полимеры, например, полиакриламидные гели — биогели, а также гидрофобные полимеры, набухающие в органических растворителях и используемые для фракционирования гидрофобных полимеров. Весьма удачным для белковой физико-химии оказалось использование агара. Пористость агарового геля зависит от концентрации агара. С уменьшением его концентрации в геле доступность внутренних частей зерен для макромолекул увеличивается. На низкоконцентрированных гелях (2,5—5%) имеется возможность разделять белки с молекулярным весом вплоть до миллионов [25]. Так, гемоцианины, тироглобулин, у-глобу-лин человека, сывороточный альбумин, а- и р-лактоглобулин обладают существенно различными скоростями перемещения на колонке из агара. Стандартизация метода гельфильтрации позволяет его использовать не только для фракционирования белков, но и для определения молекулярного веса в весьма простом хроматографическом эксперименте. Интересной областью приложения гельфильтрации на сефадексе явилось определение молекулярного веса мономерных форм белков, способных к ассоциации. Как известно, полная диссоциация подобных комплексов наблюдается при столь низких концентрациях растворов, когда использование [c.204]

    Высокомолекулярные соединения обладают сильно выраженной склонностью к ассоциации, вследствие чего постоянство отношения величины температурной депрессии к концентрации раствора (т. е. область применимости криоскопического метода определения величины молекулярного веса) соблюдается лишь при очень низких концентрациях растворов полимера (до 1%). Величина предельной концентрации зависит от молекулярного веса фракции и полярности макромолекул. [c.33]

    Скорость ассоциации макромолекул ПВС в растворе зависит не только От концентрации, но и от факторов, приводящих к снижению кристалличности полимера. Методом двойного лучепреломления в потоке, являющимся весьма чувствительным и структурным изменениям в растворе, исследованы влияние ММ, содержания ацетатных групп и способа получения ПВС на процесс структурообразования в его водных растворах [112]. При хранении молекулярнодисперсные растворы ПВС становятся коллоидными системами, содержащими надмолекулярные частицы, имеющие форму сплюснутого эллипсоида [ИЗ]. Число этих частиц, зародышей кристаллической фазы, увеличивается со временем, однако рост их числа замедляется с увеличением как молекулярной массы ПВС (вследствие меньшей подвижности макромолекул), так и содержания в нем ацетатных групп. В водных рас-тво )ах ПВС, полученных из ПВА с неполной конверсией мономера, процесс структурообразования протекает значительно слабее, чем в растворах ПВС, полученных иа ПВА с-полной конверсией. Стабильность растворов ПВС улучшается также при повышении температуры полимеризаций исходного ВА, что может быть объяснено увеличением содержания 1,2-гликолевых структур и коротких ветвлений. [c.112]

    В обоих исследованных системах при добавлении высококристаллического ПП в ПС и ПЭ наблюдались немонотонные смеще-щения спектров примесных молекул, что указывает на немонотонные изменения плотности упаковки макромолекул в переходных слоях с изменением соотношения компонентов. Так, при введении 15—20% ПП в ПС и 5—10%) ПП в ПЭ образуются переходные слои, плотность упаковки макромолекул в которых наибольшая и выше, чем в соответствующих чистых компонентах. Этот результат согласуется с представлениями об ассоциации макромолекул в расплавах и растворах смесей [420, 387]. Таким образом, с помощью метода молекулярного зонда оказалось воз.можным не только исследовать направление изменений плотности упаковки, макромолекул в переходных слоях (повышение или понижение), но и оценить степень этих изменений. [c.206]

    В работах нашей лаборатории по растворам смесей полимеров впервые показано, что в смеси полимербв в растворе также возрастает ближний порядок в расположении макромолекул, что выражается в иовышенной степени ассоциации каждого компонента [26, 52—55]. Прямые доказательства повышенной ассоциации макромолекул в смеси полимеров в растворе были получены при измерении интенсивности светорассеяния в системе полимер — полимер — растворитель, когда показатели преломления одного из полимеров и растворителя практически совпадали [26, 53, 55]. Так, ПС (и = = 1,59) с молекулярным весом 5-10 имеет избыточное рассеяние в растворе в толуоле ( д = 1,50) более 80-10 см ири концентрации раствора 0,5%, а нолиизобутилен с молекулярным весом 10  [c.17]

    Изложенному методу присущи два недостатка. Во-первых, теория не вполне правильно предсказывает характер влияния молекулярного веса на вязкость, как это показано 151 расчетами для исследованных высокомолекулярных образцов. Во-вторых (и это является наиболее важным), существует разительное расхождение между значениями рассчитываемыми по формуле (20а) и определяемыми экспериментально для растворов в плохих растворителях. Формально это может объясняться неверной оценкой величины А в формуле (22), которая для плохих растворителей становится очень малой. Физическая причина этого — в существовании ассоциации макромолекул и образовании структуры в плохом растворителе. Наличие надмолекулярных ассоциатов должно приводить к повышению вязкости, причем образующиеся асссциаты должны быть большими по размеру и более устойчивыми для растворов полярных полимеров. Эти соображения согласуются с экспериментальными результатами, представленными на рис. 12. Для систем такого рода рассматриваемая модель, конечно, не может быть применена. [c.239]

    Таким образом, при проведении хроматографических экспериментов с макромолекулами на набухающих гелях следует учитывать весь комплекс сопутствующих явлений. Сюда входят степень совместимости полимера с гелем, возможность адсорбционного воздействия между ними, набухаемость как геля, так и макромолекул в условиях проведения опыта (характеризуемая константами д и 5(1,2) и РЯД менее общих, но существенных явлений, например таких, как гидратация геля в водных растворах или ассоциация макромолекул друг с другом и с молекулами растворителя. Поэтому интерпретацию данных хроматографического эксперимента следует проводить только при тщательном учете всех перечисленных факторов, влияющих на его результат. В частности, только при соблюдении условий истинной ГПХ можно пользоваться универсальной калибровкой хроматографа. В противном случае она будет разной для различных полимеров, растворителей и условий опыта. В качестве примера можно привести результаты, полученные [68] на полиакриломорфолиновых гелях (энзакрил К1 и К2) (рис. П1.30, 111.31). 1 ак видно, олигосахариды более активно проникают в гель, чем ПЭГ с той же молекулярной массой, а различная набухаемость геля в воде и хлороформе является одной из причин нарушения универсальной калибровки (см. также [87]). [c.129]

    Важным является также взаимодействие полимер — полимер внутримолекулярные взаимодействия дальнего порядка удаленных друг от друга групп одной и той же макромолекулы и функциональных групп различных макромолекул (межмолекулярпые взаимодействия). Кроме взаимного влияния на реакционную способность функциональные группы способны вступать в реакции, которые в случае протекания их по внутримолекулярному механизму приводят к сжатию клубка и ограничению гибкости макромолекул, в то время как протекание реакций по межмолекулярному механизму ведет в большей или меньшей мере к сшиванию. Подобные реакции могут протекать также и с участием бифункциональных низкомолекулярных веществ. Соотношение между внутри- и меж-молекулярными направлениями полимераналогичной реакции зависит от концентрации бифункционального низкомолекулярного вещества [31]. Внутримолекулярные реакции, сопровождающиеся циклизацией, идут преимущественно в разбавленных растворах при этом могут образовываться стабильные 5—12-членные циклы. Конформация и расстояние между концами цепей влияют на ход внутримолекулярных реакций, которые способны идти и в 0-усло-вйях, т. е. при максимальном образовании клубков [52, 53]. При этом часто наблюдается заметное снижение вязкости [54]. Переход от хорошего к плохому растворителю способствует обычно протеканию реакции по межмолекулярному механизму. Этого же можно ожидать, если во время реакции ухудшается растворимость и если какие-либо факторы влияют на доступность функциональных групп. Скорость внутримолекулярной реакции не должна меняться с изменением степени ассоциации макромолекул в растворе [14, 50]. Образующиеся при внутримолекулярных реакциях связи являются стабильными. При оценке вероятности виутримо- [c.21]

    Большая часть исследований свойств разбавленных растворов высших полиолефинов посвящена изучению соотношений между характеристической вязкостью и молекулярным весом, вторым ви-риальным коэффициентом и молекулярными размерами главным образом для сравнения поведения стереорегулярных и атактических полимеров. Измерения характеристик стереорегулярных изомеров в плохих растворителях чревато появлением ошибок, обусловленных ассоциацией макромолекул, по-видимому, вследствие начинающейся кристаллизации. Поэтому большая часть исследований проводилась в термодинамически хороших растворителях. Особое внимание было уделено полипропилену, полистиролу и по-либутену-1. Возможность деструкции полимера в растворе также осложняет исследования, особенно в случае высокой температуры плавления образца. [c.40]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    В работе [52] приведена диаграмма Зимма для одной из фракций метилцеллюлозы (у=190) в водном растворе 0,5 М ЫаС1. Из диаграммы следует, что второй вириальный коэффициент Аг равен нулю. Пользуясь экспериментальными результатами Нили, можно показать, что ассоциация макромолекул действительно сопровождается кажущимся изменением их жесткости. В табл. 4 представлены результаты расчетов о по данным Нили. При отсутствии ассоциатов аномальная зависимость о от М не обнаруживается, появление же их сопровождается кажущимся уменьшением о с ростом их молекулярного веса . [c.251]

    В равновесных растворах полимеров наряду с изолированными макромолекулами (молекулярный уровень дисперсности), существуют структуры определенных типов, возникающие вследствие агрегации или ассоциации макромолекул. Эти процессы протекают в области концентраций как ниже, так и выше С, что связано с зависимостью параметра взаимодействия полимер - растворитель Хп от концентрации. Взаимодействие клубков в растворах приводит к возникновению агрегатов молекул, представляющих собой роевое образование взаимодействующих друг с другом клубков с определенной продолжительностью жизни. Тип агрегатов и число молекул, входящих в него, определяются природой сил межмолекулярного взаимодействия между макромолекулами, природой растворителя и концентрацией раствора. Термодинамической причиной образования агрегатов может быть неполная термодинамическая совместимость фракций различной молекулярной массы даже одной химической природы. Следовательно, при образовании агрегатов может осуществляться их отбор по молекулярным массам, что подтверждает выдвинутую еще в 30-х гг. С. М. Липатовым [102] концепцию о зависимости степени агрегиро-ванности фракций от их молекулярной массы, обусловленной большей растворимостью низкомолекулярных фракций и менее ярко выраженной способностью к суммированию сил притяжения [102]. [c.35]

    Изучение вязкости, светорассеяния и других свойств разбавленных растворов полимеров позволяет сделать заключения о величине и форме макромолекул, полидисперсности, наличии ассоциации в растворах [102]. Аналогичные сведения может дать также и исследование электропроводности растворов полимеров, особенно полиэлектролитов [18]. С данной точки зрения интересны растворы полимерных диэлектриков. Действительно, электропроводность органических жидкостей (гл. 1), к которым относятся и многие мономеры, определяется движением ионов примесей. Поэтому вязкость растворов полимеров в органических растворителях должна существенно влиять на подвижность переносящих заряды ионов. Удельное же электрическое сопротивление низкомолекулярных жидкостей изменяется с температурой прямо пропорционально изменению вязкости [1]. Аналогичные результаты быди получены и при полимеризации высыхающих масел [103]. Ниже будут приведены некоторые экспериментальные данные, показывающие, что и для растворов полимеров имеется корреляция между вязкостью и электропроводностью. Поэтому исследования электропроводности растворов полимерных диэлектриков могут быть использованы и для изучения таких характеристик полимеров, как молекулярный вес, взаимодействие с растворителем и т. д.  [c.74]

    Скорость протекания конформационных переходов зависит от концентрации и молекулярной массы белка. В результате ассоциации полипептидных цепей в растворах возникают тройные спирали. Такое самоупорядочение макромолекул в растворе протекает наиболее эффективно вблизи изоэлектрической точки. [c.382]

    Один из создателей молекулярной теории растворов высокомолекулярных соединений ШтаудингерО представлял эти макромолекулы в форме палочек, свободно перемещающихся в жидкости. Однако экспериментальное исследование поляризации растворов высокомолекулярных соединений показало, что поведение макромолекул высокомолекулярных соединений в растворе сходно с поведением свернутых в клубок нитей. Конформации таких клубков и нитей в них в жидкой среде непрерывно изменяются вследствие теплового движения. В целом же форма клубка остается близкой к форме элипсоида вращения. Это подтверждается тем, что, в то время как длина линейных макромолекул значительно превосходит их поперечный размер — в сотни и тысячи раз, степень ассоциации этих молекул невелика и чуть выше 10. [c.61]

    При возрастании концентрации раствора полимера вязкость изменяется на много порядков и в случае сравнительно небольшого содерлония растворителя начинает приближаться к вязкости самого полимера ( 10 П). Большую роль играет природа растворителя, которая проявляется тем сильнее, чем жестче цепь макромолекулы и чем ближе температура опыта к 7 от раствора. С увеличением доли полимера в системе быстро сокращается среднее расстояние между макромолекулами, в связи с чем увеличивается вероятность взаимного столкновения их при хаотическом движении, образования при ассоциации простейших надмолекулярных структур и возникновения молекулярных сеток. Так появляются структурированные, упруговязкие системы, в которых молекулы связаны мел<ду собой в отличие от бесструктурных, у ко- [c.500]

    В плохих растворителях сродство макромолекул к молеку лам растворителя невелико и полимерные цепи стремятся контактировать с сегментами соседних цепей. В хороших раство-оителях предпочтительными оказываются контакты сегментов цепи с молекулами растворителя, что ограничивает непосредст--венные контакты полимер — полимер. Таким образом, поли- мерная молекула в хорошем растворителе обладает большей свободой перемещения среди других макромолекул, чем в плохом растворителе, где эта свобода ограничивается ассоциацией цепей. Такое образование кластеров в плохих растворителях зависит только от локальных взаимодействий, т. е. от концентрации полимера в растворе, но не от его молекулярного веса Подтверл<дением этого суждения является факт независимости концентрации с от молекулярного веса. Поэтому быстрое уве--личение вязкости т]о при повышении концентрации полимера в плохом растворителе может быть частично обусловлено образо--ванием структуры, возникающей как следствие сильного локального межсегментального трения. Предположение об образовании ассоциатов в растворах высказывалось также в работе [19а], хотя при этом обсуждался качественно иной механизм этого явления. [c.227]

    Следует иметь в виду, что помимо состояния веществ, четко определяющего их положение в каждой группе, существуют еще и промежуточные состояния, обусловленные динамической связью между рассмотренными системами. Так, например, молекулярные растворы могут быть частично диссоциированными, а при ассоциации частиц они приблилсаются к коллоидным растворам. Промежуточное положение между коллоидными и молекулярными растворами занимают и высокомолекулярные соединения у отдельных из них макромолекулы содержат поногепные группы, способные при определенных условиях диссоциировать с образованием макроионов. [c.127]

    В данном разделе кратко рассмотрены некоторые особенности растворов поливинилхлорида, имеющие большое значение при определении молекулярных характеристик и представляюдие интерес для объяснения его поведения при пластификации. Эго огносится главным образом, к вопросу об ассоциации молекул поливинилхлорида в различных растворителях. Кроме того, в этом разделе обсуждаются вопросы, касающиеся результатов измерения молекулярных характеристик поливинилхлорида разными исследователями и прежде всего, данные вискозиметрических исследований и данные о разветвленности макромолекул поливинилхлорида. [c.227]


Смотреть страницы где упоминается термин Ассоциация макромолекул в растворах и молекулярный вес: [c.339]    [c.339]    [c.22]    [c.331]    [c.103]    [c.331]    [c.161]    [c.208]   
Получение и свойства поливинилхлорида (1968) -- [ c.249 , c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация в растворах

Ассоциация макромолекул

Ассоциация макромолекул в растворах

Макромолекула в растворе

Молекулярный вес макромолекул

Раствор молекулярные



© 2024 chem21.info Реклама на сайте